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Markov Decision Process (MDP)
The kind of problem that is addressed by RL is called a Markov Decision Process (MDP). 

The environment is fully observable, i.e. the current
state  completely characterizes the process at
time  (Markov property).

Actions  provoke transitions between the two
states  and .

State transitions  are governed by
transition probabilities .

A reward  is (probabilistically) associated to
each transition .

n-armed bandits are MDPs with only one state.

MDPs are extensions of the Markov Chain (MC).

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Markov Chain (MC)
A first-order Markov chain (or Markov process) is a
stochastic process generated by a sequence of
transitions between states governed by state
transition probabilities.

A Markov chain is defined by:

The state set .

The state transition probability function:

Markov chains can be used to sample complex
distributions (Markov Chain Monte Carlo) and have
applications in many fields such as biology,
chemistry, financem etc.

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

S = {s  }  i i=1
N

  

P : S →

p(s ∣s)′

P (S)

= P (s  = s ∣s  = s)t+1
′

t

4 / 55

http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html


Markov Decision Process (MDP)
A Markov Decision Process is a MC where transitions are conditioned by actions  and associated
with a scalar reward .

A finite MDP is defined by the tuple :

1. The finite state set  with the Markov property.

2. The finite action set .

3. The state transition probability function:

4. The expected reward function:

5. The discount factor .
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Markov Decision Process (MDP)

Source: David Silver. http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Markov property
The Markov property states that:

Formally, the state  (state at time ) is Markov (or Markovian) if and only if:

The knowledge of the current state  (and the executed action ) is enough to predict in which state 
 the system will be at the next time step.

We do not need the whole history  of the system to predict what will happen.

Note: if we need  and  to predict , we have a second-order MDP.

The future is independent of the past given the present.
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Markov property
For example, the probability 0.8 of transitioning
from “Class 2” to “Class 3” is the same regardless
we were in “Class 1” or “Pub” before.

If this is not the case, the states are not Markov,
and this is not a Markov chain / decision process.

We would need to create two distinct states:

“Class 2 coming from Class 1”

“Class 2 coming from the pub”

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Markov property
Where is the ball going? To the little girl or to the
player?

Single video frames are not Markov states: you
cannot generally predict what will happen based on
a single image.

A simple solution is to stack or concatenate
multiple frames:

By measuring the displacement of the ball
between two consecutive frames, we can
predict where it is going.

One can also learn state representations containing the history using recurrent neural networks (see
later).

Source: https://medium.com/emergent-future/simple-reinforcement-
learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-
68463e9aeefc
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POMDP : Partially-Observable Markov Decision Process
In a POMDP, the agent does not have access to the
true state  of the environment, but only
observations .

Observations are partial views of the state, without
the Markov property.

The dynamics of the environment (transition
probabilities, reward expectations) only depend on
the state, not the observations.

The agent can only make decisions (actions) based
on the sequence of observations, as it does not
have access to the state directly (Plato’s cavern).

In a POMDP, the state  of the agent can be considered the concatenation of the past observations and
actions:

Under conditions, this inferred state can have the Markov property and the POMDP is solvable.

Source: https://artint.info/html/ArtInt_230.html
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State transition matrix
Supposing that the states have the Markov property, the
transitions in the system can be summarized by the state
transition matrix :

Each element of the state transition matrix corresponds to . Each row of the state transition
matrix sums to 1:

Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
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Expected reward
As with n-armed bandits, we only care about the expected reward received during a transition  (on
average), but the actual reward received  may vary around the expected value.

s → s′
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Sparse vs. dense rewards
An important distinction in practice is sparse vs. dense rewards.

Sparse rewards take non-zero values only during certain transitions: game won/lost, goal achieved,
timeout, etc.

Dense rewards provide non-zero values during each transition: distance to goal, energy consumption,
speed of the robot, etc.

MDPs with sparse rewards are much harder to learn.

Source: https://forns.lmu.build/classes/spring-2020/cmsi-432/lecture-13-2.html
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Transition and reward probabilities
Why do we need transition probabilities in RL?

Some RL tasks are deterministic: an action  in a state  always leads to the state :

Board games, video games…

Others are stochastic: the same action  can lead to different states :

Casino games (throwing a dice, etc)

Two-opponent games (the next state depends on what the other player chooses).

Uncertainty (shoot at basketball, slippery wheels, robotic grasping).

For a transition , the received reward can be also stochastic:

Casino games (armed bandit), incomplete information, etc.

Most of the problems we will see in this course have deterministic rewards, but we only care about
expectations anyway.
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t s, a  =t a)

a s s′

a s′

(s, a, s )′

r(s, a, s ) =′ E(r  ∣s  =t+1 t s, a  =t a, s  =t+1 s )′

14 / 55



Return
Over time, the MDP will be in a sequence of states (possibly infinite):

and collect a sequence of rewards:

In a MDP, we are interested in maximizing the return , i.e. the discounted sum of future rewards after
the step :

Reward-to-go: how much reward will I collect from now on?
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Return
Of course, you can never know the return at time : transitions and
rewards are probabilistic, so the received rewards in the future are not
exactly predictable at .

 is therefore purely theoretical: RL is all about estimating the return.

More generally, for a trajectory (episode) , one can define its return as:
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Discount factor
Future rewards are discounted:

The discount factor (or discount rate, or discount)  is a very important parameter in RL:

It defines the present value of future rewards.

Receiving 10 euros now has a higher value than receiving 10 euros in ten years, although the reward
is the same: you do not have to wait.

The value of receiving a reward  after  time steps is .

 determines the relative importance of future rewards for the behavior:

if  is close to 0, only the immediately available rewards will count: the agent is greedy or myopic.

if  is close to 1, even far-distance rewards will be taken into account: the agent is farsighted.
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Discount factor
When ,  tends to 0 when  goes to infinity: this makes sure that the return is always finite.γ < 1 γk k
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Episodic vs. continuing tasks

For episodic tasks (which break naturally into finite episodes of length , e.g. plays of a game, trips
through a maze), the return is always finite and easy to compute at the end of the episode. The discount
factor can be set to 1.

For continuing tasks (which can not be split into episodes), the return could become infinite if . The
discount factor has to be smaller than 1.
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Why the reward on the long term?
Selecting the action  in  does not bring reward immediately ( ) but allows to reach  in the
future and get a reward of 10.

Selecting  in  brings immediately a reward of 1, but that will be all.

 is better than , because it will bring more reward on the long term.
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Why the reward on the long term?
When selecting  in , the discounted return is:

while it is  for the action .

For small values of  (e.g. 0.1),  becomes smaller than one, so the action  leads to a higher
discounted return.

The discount rate  changes the behavior of the agent. It is usually taken somewhere between 0.9 and
0.999.
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Example: the cartpole balancing task
State: Position and velocity of the cart, angle and
speed of the pole.

Actions: Commands to the motors for going left or
right.

Reward function: Depends on whether we consider
the task as episodic or continuing.

Episodic task where episode ends upon failure:

reward = +1 for every step before failure, 0 at
failure.

return = number of steps before failure.

Continuing task with discounted return:

reward = -1 at failure, 0 otherwise.

return =  for  steps before failure.

In both cases, the goal is to maximize the return by maintaining the pole vertical as long as possible.

−γk k
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The policy

The probability that an agent selects a particular action  in a given state  is called the policy .

The goal of an agent is to find a policy that maximizes the sum of received rewards on the long term,
i.e. the return  at each each time step.

This policy is called the optimal policy .

a s π

π

(s, a)

: S × A → P (S)

→ π(s, a) = P (a  = a∣s  = s)t t
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R  t
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23 / 55



Goal of Reinforcement Learning
RL is an adaptive optimal control method for Markov Decision Processes using (sparse) rewards as a
partial feedback.

At each time step , the agent observes its Markov state , produces an action ,
receives a reward according to this action  and updates its state: .

The agent generates trajectories  depending on its policy .

The return of a trajectory is the (discounted) sum of rewards accumulated during the sequence:

The goal is to find the optimal policy  that maximizes in expectation the return of each possible
trajectory under that policy:
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2 - Bellman equations
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Value Functions
A central notion in RL is to estimate the value (or utility) of
every state and action of the MDP.

The value of a state  is the expected return when
starting from that state and thereafter following the agent’s
current policy .

The state-value function  of a state  given the policy 
 is defined as the mathematical expectation of the return

after that state:
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π

V (s) =π E  (R  ∣s  =ρ  π t t s) = E  ( γ r  ∣s  =ρ  π

k=0

∑
∞

k
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Value Functions

The mathematical expectation operator  is indexed by ,
the probability distribution of states achievable with .

Several trajectories are possible after the state :

The state transition probability function  leads
to different states , even if the same actions are taken.

The expected reward function  provides
stochastic rewards, even if the transition  is the
same.

The policy  itself is stochastic.

Only rewards that are obtained using the policy  should be
taken into account, not the complete distribution of states and
rewards.

V (s) =π E  (R  ∣s  =ρ  π t t s) = E  ( γ r  ∣s  =ρ  π
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Value Functions
The value of a state is not intrinsic to the state itself, it depends on the policy:

One could be in a state which is very close to the goal (only one action left to win game), but if the policy
is very bad, the “good” action will not be chosen and the state will have a small value.

V (s) =π E  (R  ∣s  =ρ  π t t s) = E  ( γ r  ∣s  =ρ  π

k=0

∑
∞

k
t+k+1 t s)

Source: https://www.carbonated.tv/sports/worst-open-goal-misses-in-football-gifs
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Value Functions
The value of taking an action  in a state  under policy  is
the expected return starting from that state, taking that action,
and thereafter following the following .

The action-value function for a state-action pair  under
the policy  (or Q-value) is defined as:

The Q-value of an action is sometimes called its utility: is it
worth taking this action?

a s π

π
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π
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Side note: Different notations in RL
Notations can vary depending on the source.

The ones used in this course use what you can read in most modern deep RL papers (Deepmind, OpenAI),
but beware that you can encounter  for the return…

This course Sutton and Barto
1998

Sutton and Barto 2017

Current state

Selected action

Sampled reward

Transition probability

Expected reward

Return

State value function

Action value function
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The V and Q value functions are inter-dependent
The value of a state  depends on the value  of the action that will be chosen by the policy 

 in :

If the policy  is deterministic (the same action is chosen every time), the value of the state is the same
as the value of that action (same expected return).

If the policy  is stochastic (actions are chosen with different probabilities), the value of the state is the
weighted average of the value of the actions.

If the Q-values are known, the V-values can be found easily.

V (s)π Q (s, a)π

π s

V (s) =π E  [Q (s, a)] =a∼π(s,a)
π

 π(s, a)Q (s, a)
a∈A(s)

∑ π

π

π
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Values and immediate rewards
We can note that the return at time  depends on the immediate reward  and the return at the next
time step :

When taking the mathematical expectation of that identity, we obtain:

It becomes clear that the value of an action depends on the immediate reward received just after the
action, as well as the value of the next state:

But that is only for a fixed  transition.

t r  t+1
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= r  + γ (r  + γ r  + ⋯ + γ r  + … )t+1 t+2 t+3
k−1

t+k+1

= r  + γ R  t+1 t+1
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Q (s  , a  ) =π
t t r(s  , a  , s  ) +t t t+1 γ V (s  )π

t+1
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The V and Q value functions are inter-dependent
Taking transition probabilities into account, one can obtain the Q-values when the V-values are known:

The value of an action depends on:

the states  one can arrive after the action (with a probability ).

the value of that state , weighted by  as it is one step in the future.

the reward received immediately after taking that action  (as it is not included in the value
of ).

Q (s, a) =π E  [r(s, a, s ) +s ∼p(s ∣s,a)′ ′
′ γ V (s )] =π ′

 p(s ∣s, a) [r(s, a, s ) +
s ∈S′

∑ ′ ′ γ V (s )]π ′

s′ p(s ∣s, a)′

V (s )π ′ γ

r(s, a, s )′

s′
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Bellman equation for 

A fundamental property of value functions used throughout reinforcement learning is that they satisfy a
particular recursive relationship:

This equation is called the Bellman equation for .

It expresses the relationship between the value of a state and the value of its successors, depending on
the dynamics of the MDP (  and ) and the current policy .

The interesting property of the Bellman equation for RL is that it admits one and only one solution .

V π

V (s)π =  π(s, a)Q (s, a)
a∈A(s)

∑ π

=  π(s, a) p(s ∣s, a) [r(s, a, s ) + γ V (s )]
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∑
s ∈S′

∑ ′ ′ π ′

V π

p(s ∣s, a)′ r(s, a, s )′ π

V (s)π

34 / 55



Bellman equation for 

The same recursive relationship stands for :

which is called the Bellman equation for .

The following backup diagrams denote these recursive relationships.

Qπ

Q (s, a)π

  

Q (s, a)π =  p(s ∣s, a) [r(s, a, s ) + γ V (s )]
s ∈S′

∑ ′ ′ π ′

=  p(s ∣s, a) [r(s, a, s ) + γ  π(s , a )Q (s , a )]
s ∈S′

∑ ′ ′

a ∈A(s )′ ′

∑ ′ ′ π ′ ′

Qπ
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3 - Bellman optimality equations
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Optimal policy
The optimal policy is the policy that gathers the maximum of reward on the long term.

Value functions define a partial ordering over policies:

A policy  is better than another policy  if its expected return is greater or equal than that of  for all states .

For a MDP, there exists at least one policy that is better than all the others: this is the optimal policy .

We note  and  the optimal value of the different states and actions under .

Partial ordering

π π′ π′ s

π ≥ π ⇔′ V (s) ≥π V (s) ∀s ∈π′
S

π∗

V (s)∗ Q (s, a)∗ π∗

V (s) =∗
 V (s) ∀s ∈

π
max π S

Q (s, a) =∗
 Q (s, a) ∀s ∈

π
max π S, ∀a ∈ A
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The optimal policy is greedy
When the policy is optimal , the link between the V and Q values is
even easier.

The V and Q values are maximal for the optimal policy: there is no better
alternative.

The optimal action  to perform in the state  is the one with the highest optimal Q-value .

By definition, this action will bring the maximal return when starting in .

The optimal policy is greedy with respect to , i.e. deterministic.

π∗

a∗ s Q (s, a)∗

a =∗ argmax  Q (s, a)a
∗

s

Q (s, a) =∗ E  [R  ]ρ  π∗ t

Q (s, a)∗

π (s, a) =∗
 {1 if a = a∗

0 otherwise.
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Bellman optimality equations
As the optimal policy is deterministic, the optimal value of a state is
equal to the value of the optimal action:

The expected return after being in  is the same as the expected return after being in  and choosing the
optimal action , as this is the only action that can be taken.

This allows to find the Bellman optimality equation for :

The same Bellman optimality equation stands for :

The optimal value of  depends on the optimal action in the next state .

V (s) =∗
 Q (s, a)

a∈A(s)
max π∗

s s

a∗

V ∗

V (s) =∗
  p(s ∣s, a) [r(s, a, s ) +

a∈A(s)
max

s ∈S′

∑ ′ ′ γ V (s )]∗ ′

Q∗

Q (s, a) =∗
 p(s ∣s, a) [r(s, a, s ) +

s ∈S′

∑ ′ ′ γ  Q (s , a )]
a ∈A(s )′ ′
max ∗ ′ ′

(s, a) s′
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4 - Dynamic Programming (DP)
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Dynamic Programming (DP)
Dynamic Programming (DP) iterates over two steps:

1. Policy evaluation

For a given policy , the value of all states  or all state
action pairs  is calculated based on the Bellman
equations:

2. Policy improvement

From the current estimated values  or , a new
better policy  is derived.

After enough iterations, the policy converges to the optimal policy (if the states are Markov).

π V (s)π

Q (s, a)π

V (s) =π
 π(s, a)  p(s ∣s, a) [r(s, a, s ) +

a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (sπ ′

V (s)π Q (s, a)π

π

π ←′ Greedy(V )π
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Policy evaluation
Bellman equation for the state  and a fixed policy :

Let’s note  the transition probability between  and  (dependent on the policy ) and  the
expected reward in  (also dependent):

The Bellman equation becomes 

As we have a fixed policy during the evaluation, the Bellman equation is simplified.

s π

V (s) =π
 π(s, a)  p(s ∣s, a) [r(s, a, s ) +

a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V (s )]π ′

P  ss′
π s s′ π R  s

π

s

P  =ss′
π
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a∈A(s)
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R  =s
π

 π(s, a)  p(s ∣s, a) r(s, a, s )
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∑
s ∈S′
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V (s) =π R  +s
π γ  P  V (s )

s ∈S′

∑ ss′
π π ′
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Policy evaluation
Let’s now put the Bellman equations in a matrix-vector form.

We first define the vector of state values : and the vector of expected reward :

The state transition matrix  is defined as:

V (s) =π R  +s
π γ  P  V (s )

s ∈S′

∑ ss′
π π ′

Vπ

V =π
   

V (s  )π
1

V (s  )π
2

⋮
V (s  )π

n

Rπ

R =π
   

R (s  )π
1

R (s  )π
2

⋮
R (s  )π

n

Pπ

P =π
      

P  s  s  1 1
π

P  s  s  2 1
π

⋮
P  s  s  n 1
π

P  s  s  1 2
π

P  s  s  2 2
π

⋮
P  s  s  n 2
π

…
…

⋮
…

P  s  s  1 n

π

P  s  s  2 n

π

⋮
P  s  s  n n

π
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Policy evaluation
You can simply check that:

leads to the same equations as:

for all states .

The Bellman equations for all states  can therefore be written with a matrix-vector notation as:

   =

V (s  )π
1

V (s  )π
2

⋮
V (s  )π

n

   +

R (s  )π
1

R (s  )π
2

⋮
R (s  )π

n

γ       ×

P  s  s  1 1
π

P  s  s  2 1
π

⋮
P  s  s  n 1
π

P  s  s  1 2
π

P  s  s  2 2
π

⋮
P  s  s  n 2
π

…
…

⋮
…

P  s  s  1 n

π

P  s  s  2 n

π

⋮
P  s  s  n n

π

   

V (s  )π
1

V (s  )π
2

⋮
V (s  )π

n

V (s) =π R  +s
π γ  P  V (s )

s ∈S′

∑ ss′
π π ′

s

s

V =π R +π γ P Vπ π
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Policy evaluation
The Bellman equations for all states  is:

If we know  and  (dynamics of the MDP for the policy ), we can simply obtain the state values:

where  is the identity matrix, what gives:

Done!

But, if we have  states, the matrix  has  elements.

Inverting  requires at least  operations.

Forget it if you have more than a thousand states (  million operations).

In dynamic programming, we will use iterative methods to estimate .

s

V =π R +π γ P Vπ π

Pπ Rπ π

(I− γ P ) ×π V =π Rπ

I

V =π (I− γ P ) ×π −1 Rπ

n Pπ n2

I− γ Pπ O(n )2.37

1000 ≈2.37 13

Vπ
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Iterative policy evaluation
The idea of iterative policy evaluation (IPE) is to consider a
sequence of consecutive state-value functions which should
converge from initially wrong estimates  towards the
real state-value function .

The value function at step   is computed using
the previous estimates  and the Bellman equation
transformed into an update rule.

We start with dummy (e.g. random) initial estimates  for the value of every state .

 is a fixed point of this update rule because of the uniqueness of the solution to the Bellman
equation.

V  (s)0

V (s)π

V  →0 V  →1 V  →2 … → V  →k V  →k+1 … → V π

k + 1 V  (s)k+1

V  (s)k
Source: David Silver.
http://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html

V  =k+1 R +π γ P V  

π
k

V  (s) ←k+1  π(s, a)  p(s ∣s, a) [r(s, a, s ) +
a∈A(s)

∑
s ∈S′

∑ ′ ′ γ V  (s )] ∀s ∈k
′ S

V  (s)0 s

V  =∞ V π
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Iterative policy evaluation
For a fixed policy , initialize .

while not converged:

for all states :

for all states :

if :

converged = True

π V (s) = 0 ∀s ∈ S

s

V  (s) =target  π(s, a)  p(s ∣s, a) [r(s, a, s ) +∑a∈A(s) ∑s ∈S′
′ ′ γ V (s )]′

δ = 0

s

δ = max(δ, ∣V (s) − V  (s)∣)target

V (s) = V  (s)target

δ < δ  threshold
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Policy improvement
For each state , we would like to know if we should choose an action  or not in order to
improve the policy.

The value of an action  in the state  for the policy  is given by:

If the Q-value of an action  is higher than the one currently selected by the deterministic policy:

then it is better to select  once in  and thereafter follow .

If there is no better action, we keep the previous policy for this state.

s a = π(s)

a s π

Q (s, a) =π
 p(s ∣s, a) [r(s, a, s ) +

s ∈S′

∑ ′ ′ γ V (s )]π ′

a

Q (s, a) >π Q (s,π(s)) =π V (s)π

a s π
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Policy improvement
This corresponds to a greedy action selection over the Q-values, defining a deterministic policy :

After the policy improvement, the Q-value of each deterministic action  has increased or stayed the
same.

This defines an improved policy , where all states and actions have a higher value than previously.

Greedy action selection over the state value function implements policy improvement:

π(s)

π(s) ← argmax  Q (s, a) =a
π argmax   p(s ∣s, a) [r(s, a, s ) +a

s ∈S′

∑ ′ ′ γ V (s )]π ′

π(s)

argmax  Q (s, a) ≥a
π Q (s,π(s))π

π′

π ←′ Greedy(V )π
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Policy iteration
Once a policy  has been improved using  to yield a better policy , we can then compute  and
improve it again to yield an even better policy .

The algorithm policy iteration successively uses policy
evaluation and policy improvement to find the optimal policy.

The optimal policy being deterministic, policy improvement can be greedy over the state-action values.

If the policy does not change after policy improvement, the optimal policy has been found.

π V π π′ V π′

π′′

π   0
E

V  

π  0
I
π   1

E
V  

π1 I
...  

I
π  

∗ E
V ∗
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Policy iteration
Initialize a deterministic policy  and set .

while  is not optimal:

while not converged: # Policy evaluation

for all states :

for all states :

for each state : # Policy improvement

if  has not changed: break

π(s) V (s) = 0 ∀s ∈ S

π

s

V  (s) =target  π(s, a)  p(s ∣s, a) [r(s, a, s ) +∑a∈A(s) ∑s ∈S′
′ ′ γ V (s )]′

s

V (s) = V  (s)target

s ∈ S

π(s) ← argmax   p(s ∣s, a) [r(s, a, s ) +a ∑s ∈S′
′ ′ γ V (s )]π ′

π

51 / 55



Value iteration
One drawback of policy iteration is that it uses a full policy evaluation, which can be computationally
exhaustive as the convergence of  is only at the limit and the number of states can be huge.

The idea of value iteration is to interleave policy evaluation and policy improvement, so that the policy is
improved after EACH iteration of policy evaluation, not after complete convergence.

As policy improvement returns a deterministic greedy policy, updating of the value of a state is then
simpler:

Note that this is equivalent to turning the Bellman optimality equation into an update rule.

Value iteration converges to , faster than policy iteration, and should be stopped when the values do
not change much anymore.

V  k

V  (s) =k+1   p(s ∣s, a)[r(s, a, s ) +
a

max
s′

∑ ′ ′ γ V  (s )]k
′

V ∗

52 / 55



Value iteration
Initialize a deterministic policy  and set .

while not converged:

for all states :

for all states :

if :

converged = True

π(s) V (s) = 0 ∀s ∈ S

s

V  (s) =target max   p(s ∣s, a) [r(s, a, s ) +a ∑s ∈S′
′ ′ γ V (s )]′

δ = 0

s

δ = max(δ, ∣V (s) − V  (s)∣)target

V (s) = V  (s)target

δ < δ  threshold
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Dynamic Programming
Policy-iteration and value-iteration consist of alternations
between policy evaluation and policy improvement.

This principle is called Generalized Policy Iteration (GPI).

Solving the Bellman equations requires the following:

accurate knowledge of environment dynamics 
and  for all transitions (model-based);

enough memory and time to do the computations;

the Markov property.

Finding an optimal policy is polynomial in the number of
states and actions:  (  is the number of states, 

 the number of actions).

The number of states is often astronomical (e.g., Go has about  states), often growing exponentially
with the number of state variables (what Bellman called “the curse of dimensionality”).

In practice, classical DP can only be applied to problems with a few millions of states.

p(s ∣s, a)′

r(s, a, s )′

O(N M)2 N

M

10170
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Curse of dimensionality

If one variable can be represented by 5 discrete values:

2 variables necessitate 25 states,

3 variables need 125 states, and so on…

The number of states explodes exponentially with the number of dimensions of the problem.

Source: https://medium.com/diogo-menezes-borges/give-me-the-antidote-for-the-curse-of-dimensionality-b14bce4bf4d2
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