

Deep Reinforcement Learning

Monte-Carlo methods

Julien Vitay Professur für Künstliche Intelligenz - Fakultät für Informatik

Key idea of Reinforcement learning: Generalized Policy Iteration

 \equiv

- RL algorithms iterate over two steps:
	- 1. **Policy evaluation**
		- -
			- based on:
				-
				- - Difference)

- From the current estimated values $V^{\pi}(s)$ or
	- $Q^{\pi}(s, a)$, a new better policy π is derived.
- After enough iterations, the policy converges to the **optimal policy** (if the states are Markov).

For a given policy π , the value of all states $V^{\pi}(s)$ or all state-action pairs $Q^{\pi}(s, a)$ is calculated, either

o the Bellman equations (Dynamic Programming) o sampled experience (Monte-Carlo and Temporal

2. **Policy improvement**

1 - Monte Carlo control

Principle of Monte-Carlo (MC) methods

The value of each state is defined as the mathematical expectation of the return obtained after that state and thereafter following the policy π :

• Instead of solving the Bellman equations, **Monte-Carlo methods** (MC) approximate this mathematical expectation by $\mathbf s$ ampling M trajectories τ_i starting from s and computing the sampling average of the obtained returns:

$$
V^{\pi}(s) = \mathbb{E}_{\rho_{\pi}}(R_t|s_t=s) = \mathbb{E}_{\rho_{\pi}}(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1}|s_t=s)
$$

$$
V^{\pi}(s) = \mathbb{E}_{\rho_{\pi}}(R_t|s_t=s) \approx \frac{1}{M}\sum_{i=1}^M R(\tau_i)
$$

- If you have enough trajectories, the sampling average is an unbiased estimator of the value function.
- The advantage of Monte-Carlo methods is that they require only **experience**, not the complete dynamics $p(s'|s,a)$ and $r(s,a,s').$

Monte-Carlo policy evaluation

- The idea of MC policy evaluation is to repeatedly sample **episodes** starting from each possible state s_0 and maintain a **running average** of the obtained returns for each state:
-

 \equiv

while True:

4. Update the estimated state value $V(s_t)$ of all encountered states using the obtained return:

 $V(s_t) \leftarrow V(s_t) + \alpha \left(R_t - V(s_t)\right).$

terminal state

 $\{s_1, a_1, \ldots, s_T\}$

.

- 1. Start from an initial state s_0 .
- 2. Generate a sequence of transitions according to the current policy π until a terminal state s_T is reached.

$$
\tau = (s_o, a_o, r_1,
$$

3. Compute the return $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$ for all encountered states ∞ *k* t + k +1 for all encountered states s_0, s_1, \ldots, s_T

Monte-Carlo policy evaluation of action values

- The same method can be used to estimate Q-values.
- **while** True:
	- 1. Start from an initial state s_0 .
	- 2. Generate a sequence of transitions according to the current policy π until a terminal state s_T is reached.

$$
\tau = (s_o, a_o, r_1,
$$

4. Update the estimated action value $Q(s_t,a_t)$ of all encountered state-action pairs using the obtained return:

3. Compute the return $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$ for all encountered state-action pairs $(s_0, a_0), (s_1, a_1), \ldots, (s_{T-1}, a_{T-1}).$ ∞ *k t*+*k*+1

terminal state

 \equiv

There are much more values to estimate (one per state-action pair), but the policy will be easier to derive.

 $s_1, a_1, \ldots, s_T)$

 $)+\alpha\left(R_{t}-Q(s_{t},a_{t})\right)$

$$
Q(s_t,a_t)=Q(s_t,a_t)\cdot
$$

Monte-Carlo policy improvement

- After each episode, the state or action values of the visited (s, a) pairs have changed, so the current policy might not be optimal anymore.
- As in DP, the policy can then be improved in a greedy manner:

Estimating the Q-values allows to act greedily, while estimating the V-values still requires the dynamics $p(s'|s,a)$ and $r(s,a,s').$

$$
\pi'(s) = \text{argmax}_a Q(s, a)
$$

$$
= \operatorname*{argmax}_{a} \sum_{s' \in \mathcal{S}} p(s'|s,a) \left[r(s,a,s') + \gamma \, V(s') \right]
$$

Monte-Carlo control

- **Monte-Carlo control** alternates between **MC policy evaluation** and **policy improvement** until the optimal policy is found.
- **while** True:

 \equiv

- 1. Select an initial state s_0 .
- 2. Generate a sequence of transitions according to the current policy π until a terminal state s_T is reached.

$$
\tau=(s_o,a_o,r_1,s_1,a_1,.
$$

3. Compute the return $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$ of all encountered state-action pairs. 4. Update the estimated action value $Q(s_t, a_t)$ of all encountered state-action pairs: ∞ *k t*+*k*+1

$$
Q(s_t,a_t)=Q(s_t,a_t)+\alpha\left(R_t\right)
$$

5. For each state s_t in the episode, improve the policy:

$$
\pi(s_t,a) = \begin{cases} 1 \text{ if } a = \text{argmax } Q(s_t,a) \\ 0 \text{ otherwise.} \end{cases}
$$

 $\ldots, s_T)$

 $)+\alpha\left(R_{t}-Q(s_{t},a_{t})\right)$

2 - On-policy Monte Carlo control

How to generate the episodes?

- The problem with MC control is that we need a policy to generate the sample episodes, but it is that policy that we want to learn.
- We have the same **exploration/exploitation** problem as in bandits:
	- **If I trust my estimates too much (exploitation), I may miss more interesting solutions by keeping** generating the same episodes.
	- **If I act randomly (exploration)**, I will find more interesting solutions, but I won't keep doing them.

Source: http://ai.berkeley.edu/lecture_slides.html

Exploration/Exploitation dilemma

- **Exploitation** is using the current estimated values to select the greedy action:
	- The estimated values represent how good we think an action is, so we have to use this value to update the policy.
- **Exploration** is executing non-greedy actions to try to reduce our uncertainty about the true values:
	- The values are only estimates: they may be wrong so we can not trust them completely.
- If you only **exploit** your estimates, you may miss interesting solutions.
- If you only explore, you do not use what you know: you act randomly and do not obtain as much reward as you could.

\rightarrow You can't exploit all the time; you can't explore all the time.

 \rightarrow You can never stop exploring; but you can reduce it if your performance is good enough.

Stochastic policies

 \equiv

Exploration can be ensured by forcing the learned policy to be stochastic, aka ϵ -soft.

-Greedy action selection randomly selects non-*ϵ* greedy actions with a small probability ϵ :

Softmax action selection uses a Gibbs (or Boltzmann) distribution to represent the probability of choosing the action a in state s :

-greedy choses non-greedy actions randomly, while softmax favors the best alternatives. *ϵ*

$$
\pi(s,a) = \begin{cases} 1 - \epsilon \text{ if } a = \operatornamewithlimits{argmax}_{\frac{\epsilon}{|\mathcal{A}|-1}} Q(s,a) \\ \end{cases}
$$

$$
\pi(s,a) = \frac{\exp Q(s,a)/\tau}{\sum_{b}\exp Q(s,b)/\tau}
$$

- In on-policy control methods, the learned policy has to be ϵ -soft, which means all actions have a probability of at least $\frac{\epsilon}{\|A\|}$ to be visited. ϵ -greedy and softmax policies meet this criteria. $|\overline{\mathcal{A}}|$ $\frac{\epsilon}{\Delta \theta}$ to be visited. ϵ
- Each sample episode is generated using this policy, which ensures exploration, while the control method still converges towards the optimal ϵ -policy.
- **while** True:

 \equiv

- 1. Generate an episode $\tau = (s_0, a_0, r_1, \ldots, s_T)$ using the current **stochastic** policy π .
- 2. For each state-action pair (s_t, a_t) in the episode, update the estimated Q-value:

$$
Q(s_t,a_t) = Q(s_t,a_t) + \alpha \left(R_t - Q(s_t,a_t)\right)
$$

3. For each state s_t in the episode, improve the policy (e.g. ϵ -greedy):

$$
\pi(s_t,a) = \begin{cases} 1 - \epsilon \text{ if } a=\text{arg} \\ \frac{\epsilon}{|\mathcal{A}(s_t)-1|} \text{ otherw} \end{cases}
$$

 $\mathrm{gmax} \, Q(s,a)$ vise.

- Another option to ensure exploration is to generate the sample episodes using a **behavior policy** $b(s, a)$ different from the **learned policy** $\pi(s, a)$ of the agent.
- The **behavior policy** $b(s, a)$ used to generate the episodes is only required to select at least occasionally the same actions as the **learned policy** $\pi(s, a)$ (coverage assumption).

$$
\pi(s,a)>0 \Rightarrow b(s,a)
$$

- There are mostly two choices regarding the behavior policy:
- 1. An ϵ -soft behavior policy over the Q-values as in on-policy MC is often enough, while a deterministic (greedy) policy can be learned implictly.
- 2. The behavior policy could also come from **expert knowledge**, i.e. known episodes from the MDP generated by somebody else (human demonstrator, classical algorithm).

 \equiv

 > 0

Offline RL: process control

- 40% reduction of energy consumption when using deep RL to control the cooling of Google's datacenters. The RL algorithm learned passively from the **behavior policy** (expert decisions) what the optimal policy
- should be.
- Learning from data (a.k.a **learning from demonstrations**) is often referred to as **offline RL**.

Source: [https://deepmind.com/blog/deepmind-ai-reduces](https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/)google-data-centre-cooling-bill-40/

 \equiv

- But are we mathematically allowed to do this?
- We search for the optimal policy that maximizes in expectation the return of each **trajectory** (episode) possible under the learned policy π :

$$
\mathcal{J}(\pi) = \mathbb{E}_{\tau \sim \rho_{\pi}}[R(\tau)]
$$

- ρ_π denotes the probability distribution of trajectories achievable using the policy $\pi.$
- If we generate the trajectories from the behavior policy $b(s,a)$, we end up maximizing something else:

$$
\mathcal{J}'(\pi) = \mathbb{E}_{\tau \sim \rho_b}[R(\tau
$$

The policy that maximizes $\mathcal{J}'(\pi)$ is **not** the optimal policy of the MDP.

E*τ*∼*^ρ* [*R*(*τ*)]

- If you try to estimate a parameter of a random distribution π using samples of another distribution b , the sample average will have a strong **bias**.
- We need to **correct** the samples from b in order to be able to estimate the parameters of π correctly:
	- **importance sampling** (IS).

 \equiv

We want to estimate the expected return of the trajectories generated by the policy π :

We start by using the definition of the mathematical expectation:

$$
\mathcal{J}(\pi) = \mathbb{E}_{\tau \sim \rho_{\pi}}[R(\tau)]
$$

$$
{\cal J}(\pi) = \int_\tau \rho_\pi(\tau)\, R(\tau)\, d\tau
$$

The expectation is the integral over all possible trajectories of their return $R(\tau)$, weighted by the likelihood $\rho_\pi(\tau)$ that a trajectory τ is generated by the policy $\pi.$

Any other possible trajectory

The trick is to introduce the behavior policy b in what we want to estimate:

- $\rho_b(\tau)$ is the likelihood that a trajectory τ is generated by the behavior policy b .
- We shuffle a bit the terms:

 \equiv

$$
\mathcal{J}(\pi) = \int_\tau \frac{\rho_b(\tau)}{\rho_b(\tau)} \, \rho_\pi(\tau) \, I
$$

$$
\mathcal{J}(\pi) = \int_{\tau} \rho_b(\tau) \, \frac{\rho_{\pi}(\tau)}{\rho_b(\tau)} \, I
$$

and notice that it has the form of an expectation over trajectories generated by b :

J (*π*) = E*τ*∼*^ρ* [*R*(*τ*)]

$$
\mathcal{J}(\pi) = \mathbb{E}_{\tau \sim \rho_b}[\frac{\rho_\pi(\tau)}{\rho_b(\tau)} \: l
$$

This means that we can sample trajectories from b , but we need to $\textbf{correct}$ the observed return by the **importance sampling weight** $\frac{1 + \lambda}{\lambda}$. $\rho_b(\tau)$ $\rho_{\pi}(\tau)$

 $R(\tau) \, d\tau$

 $R(\tau) d\tau$

 \equiv

The importance sampling weight corrects the mismatch between π and b .

- If the two distributions are the same (on-policy), the IS weight is 1, no need to correct the return.
- If a sample is likely under b but not under π , we should not care about its return: $\frac{P\pi V}{\pi} <<$
- If a sample is likely under π but not much under b , we increase its importance in estimating the return: $>\,$ $\rho_b(\tau)$ $\rho_{\pi}(\tau)$ 1
- The sampling average of the corrected samples will be closer from the true estimate (unbiased).

$$
\frac{\rho_\pi(\tau)}{\rho_b(\tau)}<<1
$$

 \equiv

Great, but how do we compute these probability distributions $\rho_{\pi}(\tau)$ and $\rho_{b}(\tau)$ for a trajectory τ ?

Any other possible trajectory

- A trajectory τ is a sequence of state-action transitions $(s_0, a_0, s_1, a_1, \ldots, s_T)$ whose probability depends on:
	- the probability of choosing an action a_t in state s_t : the **policy** $\pi(s, a)$.
	- the probability of arriving in the state s_{t+1} from the state s_t with the action a_t : the **transition** $\textbf{probability}~p(s_{t+1}|s_t,a_t).$

$$
\cdots \hspace{1cm} \frac{(-1)^{r_{t+1}}(s_{t+1})}{a_{t}} \frac{1}{a_{t+1}} \left(\frac{1}{s_{t+1}} \right) \frac{1}{a_{t+2}} \left(\frac{1}{s_{t+2}} \right) \frac{1}{a_{t+2}} \left(\frac{1}{s_{t+3}} \right) \frac{1}{a_{t+3}} \cdots
$$

Trajectories generated by π

 \equiv

The **likelihood** of a trajectory $\tau = (s_0, a_0, s_1, a_1, \ldots, s_T)$ under a policy π depends on the policy and the transition probabilities (Markov property):

- $p(s_0)$ is the probability of starting an episode in s_0 , we do not have control over it.
- What is interesting is that the transition probabilities disappear when calculating the **importance sampling weight**:

The importance sampling weight is simply the product over the length of the episode of the ratio between $\pi(s_t, a_t)$ and $b(s_t, a_t)$.

$$
\rho_\pi(\tau) = p_\pi(s_0, a_0, s_1, a_1, \ldots, s_T) = p(s_0) \, \prod_{t=0}^{T-1} \pi_\theta(s_t, a_t) \, p(s_{t+1} | s_t, a_t)
$$

$$
\rho_{0:T-1} = \frac{\rho_{\pi}(\tau)}{\rho_{b}(\tau)} = \frac{p_{0}(s_{0})\prod_{t=0}^{T-1}\pi(s_{t},a_{t})p(s_{t+1}|s_{t},a_{t})}{p_{0}(s_{0})\prod_{t=0}^{T}b(s_{t},a_{t})p(s_{t+1}|s_{t},a_{t})} = \frac{\prod_{t=0}^{T-1}\pi(s_{t},a_{t})}{\prod_{t=0}^{T}b(s_{t},a_{t})} = \prod_{t=0}^{T-1}\frac{\pi(s_{t},a_{t})}{b(s_{t},a_{t})}
$$

- In off -policy MC control, we generate episodes using the behavior policy b and update greedily the learned policy π .
- For the state s_t , the obtained returns just need to be weighted by the relative probability of occurrence of the **rest of the episode** following the policies π and b :

and:

 \equiv

$$
\rho_{t:T-1} = \prod_{k=t}^{T-1} \frac{\pi(s_k,a_k)}{b(s_k,a_k)}
$$

$$
V^{\pi}(s_t) = \mathbb{E}_{\tau \sim \rho_b}[\rho_{t:T-1}\,R_t]
$$

• This gives us the updates:

$$
V(s_t) = V(s_t) + \alpha \, \rho_{t:T-1} \, (R
$$

$$
Q(s_t,a_t) = Q(s_t,a_t) + \alpha \, \rho_{t:T-1} \left(R_t - Q(s_t,a_t)\right)
$$

Unlikely episodes under π are barely used for learning, likely ones are used a lot.

 $(R_t-V(s_t))$

while True:

 \equiv

- 1. Generate an episode $\tau = (s_0, a_0, r_1, \ldots, s_T)$ using the **behavior** policy b .
- 2. For each state-action pair (s_t, a_t) in the episode, update the estimated Q-value:

$$
\rho_{t:T-1} = \prod_{k=t}^{T-1} \frac{\pi(s_k,a_k)}{b(s_k,a_k)}
$$

$$
Q(s_t,a_t) = Q(s_t,a_t) + \alpha \, \rho_{t:T-1} \left(R_t - Q(s_t,a_t) \right)
$$

3. For each state s_t in the episode, update the **learned** deterministic policy (greedy):

$$
\pi(s_t,a) = \begin{cases} 1 \text{ if } a = \operatornamewithlimits{argmax}\limits_{\mathbf{0} \text{ otherwise.}} Q(s_t,a) \end{cases}
$$

, *a*)

Problem 1: if the learned policy is greedy, the IS weight becomes quickly 0 for a non-greedy action a_t :

Off-policy MC control only learns from the last greedy actions, what is slow at the beginning. ${\bf Solution: }$ π and b should not be very different. Usually π is greedy and b is a softmax (or ϵ -greedy) over it.

Problem 2: if the learned policy is stochastic, the IS weights can quickly **vanish** to 0 or **explode** to infinity:

Solution: one can normalize the IS weight between different episodes (see Sutton and Barto) or **clip** it (e.g. restrict it to [0.9, 1.1], see PPO later in this course).

$$
\pi(s_t,a_t)=0 \to \rho_{0:T-1}=\prod_{k=0}^{T-1} \frac{\pi(s_k,a_k)}{b(s_k,a_k)}=0
$$

$$
\rho_{t:T-1} = \prod_{k=t}^{T-1} \frac{\pi(s_k,a_k}{b(s_k,a_k}
$$

If $\frac{\lambda}{\lambda}$ is smaller than 1, the products go to 0. If it is bigger than 1, it grows to infinity. $b(s_k,a_k)$ $\pi(s_k,a_k)$

$$
\frac{k\,k}{k\,}\,
$$

Advantages of off-policy methods

- The main advantage of **off-policy** strategies is that you can learn from other's actions, you don't have to rely on your initially wrong policies to discover the solution by chance.
	- **Example: learning to play chess by studying thousands/millions of plays by chess masters.**
- In a given state, only a subset of the possible actions are actually executed by experts: the others may be too obviously wrong.
- The exploration is then guided by this expert knowledge, not randomly among all possible actions.
- Off-policy methods greatly reduce the number of transitions needed to learn a policy: very stupid actions are not even considered, but the estimation policy learns an optimal strategy from the "classical" moves.
- Drawback: if a good move is not explored by the behavior policy, the learned policy will never try it.

Properties of Monte-Carlo methods

- Monte-Carlo evaluation estimates value functions via **sampling** of entire episodes.
- MC for action values is **model-free**: you do not need to know $p(s'|s,a)$ to learn the optimal policy, you just sample transitions (trial and error).
- MC only applies to **episodic tasks**: as you learn at the end of an episode, it is not possible to learn continuing tasks.
- MC suffers from the **exploration-exploitation** problem:
	- on-policy MC learns a stochastic policy (e-greedy, softmax) to ensure exploration.
	- **off-policy** MC learns a greedy policy, but explores via a behavior policy (importance sampling).
- Monte-Carlo methods have:

- a **small bias**: with enough sampled episodes, the estimated values converge to the true values.
- a **huge variance**: the slightest change of the policy can completely change the episode and its return. You will need a lot of samples to form correct estimates: **sample complexity**.

