

Deep Reinforcement Learning

Temporal Difference learning

Julien Vitay Professur für Künstliche Intelligenz - Fakultät für Informatik

1 - Temporal Difference Learning

Temporal-Difference (TD) learning

MC methods wait until the end of the episode to compute the obtained return:

- If the episode is very long, learning might be very slow. If the task is continuing, it is impossible.
- Considering that the return at time t is the immediate reward plus the return in the next step:

This gives us:

 \equiv

$$
V(s_t) = V(s_t) + \alpha(R_t-V(s_t))
$$

$$
R_t = r_{t+1} + \gamma\, R_{t+1}
$$

we could replace R_{t+1} by an estimate, which is the value of the next state:

$$
V^{\pi}(s_{t+1}) = \mathbb{E}_{\pi}[R_{t+1} | s_{t+1} = s]
$$

$$
R_t \approx r_{t+1} + \gamma\,V^{\pi}(s_{t+1})
$$

Temporal-Difference (TD) learning

Temporal-Difference (TD) methods simply replace the actual return by an estimation in the update rule:

is called equivalently the **reward prediction error** (RPE), the **TD error** or the advantage of the action a_t .

- It is the difference between:
	- the estimated return in state s_t : $V(s_t)$.
	- the actual return $r_{t+1} + \gamma\, V(s_{t+1})$, computed with an estimation.

$$
V(s_t)=V(s_t)+\alpha\left(r_{t+1}+\gamma\,V(s_{t+1})-V(s_t)\right)
$$

where $r_{t+1} + \gamma\,V(s_{t+1})$ is a sampled estimate of the return.

• The quantity

$$
\delta_t = r_{t+1} + \gamma\, V(s_{t+1}) - V(s_t)
$$

Temporal-Difference (TD) learning

TD error:

$$
\delta_t = r_{t+1} + \gamma\, V(s_{t+1}) - V(s_t)
$$

- If $\delta_t>0$, it means that:
	- we received more reward r_{t+1} than expected, or:
	- we arrive in a state s_{t+1} that is better than expected.
	- we should increase the value of s_t as we **underestimate** it.
- If $\delta_t < 0$, we should decrease the value of s_t as we **overestimate** it.

TD policy evaluation TD(0)

- The learning procedure in TD is possible after each transition: the backup diagram is limited to only one state and its follower.
- **Backup diagram of TD(0) while** True:

 \equiv

- - Start from an initial state s_0 .
	- foreach step t of the episode:
		-
		- Apply a_t , observe r_{t+1} and $s_{t+1}.$
		- Compute the TD error:

- if s_{t+1} is terminal: break
- TD learns from experience in a fully incremental manner. It does not need to wait until the end of an episode. It is therefore possible to learn continuing tasks.

Select a_t using the current policy π in state s_t .

 $) = V(s_t) + \alpha \, \delta_t$

$$
\delta_t = r_{t+1} + \gamma\, V(s_{t+1}) - V(s_t)
$$

Update the state-value function of s_t :

$$
V(s_t)=V
$$

Bias-variance trade-off

The **TD error** is used to evaluate the policy:

- By using an **estimate of the return** R_t instead of directly the return as in MC,
	- we **increase the bias** (estimates are always wrong, especially at the beginning of learning)
	- but we **reduce the variance**: only $r(s, a, s^{\prime})$ is stochastic, not the value function V^{π} .
- We can therefore expect **less optimal solutions**, but we will also need **less samples**.
	- better **sample efficiency** than MC.
	- worse **convergence** (suboptimal).

 \equiv

$\bm{V}(\bm{s}_t)) = \bm{V}(\bm{s}_t) + \alpha\,\delta_t$

 $\gamma\,V^{\pi}(s')]$

$$
V(s_t)=V(s_t)+\alpha\left(r_{t+1}+\gamma\,V(s_{t+1})\,-\right.
$$

If α is small enough, the estimates converge to:

$$
V^{\pi}(s) = \mathbb{E}_{\pi}[r(s, a, s') + \gamma
$$

Exploration-exploitation problem

Q-values can be estimated in the same way:

- Like for MC, the exploration/exploitation trade-off has to be managed: what is the next action a_{t+1} ?
- There are therefore two classes of TD control algorithms:
	- **on-policy** (SARSA)
	- **off-policy** (Q-learning).

$$
Q(s_t,a_t)=Q(s_t,a_t)+\alpha\,(r_{t+1}+\gamma\,Q(s
$$

 $\big) + \alpha \left(r_{t+1} + \gamma \, Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right)$

SARSA: On-policy TD control

SARSA (state-action-reward-state-action) updates the value of a state-action pair by using the predicted value of the next state-action pair according to the current policy.

When arriving in s_{t+1} from (s_t,a_t) , we already sample the next action:

$$
a_{t+1} \sim \pi(s_{t+1},a)
$$

We can now update the value of (s_t, a_t) :

$$
Q(s_t,a_t) = Q(s_t,a_t) + \alpha \left(r_{t+1} + \gamma \, Q(s_{t+1},a_{t+1}) - Q(s_t,a_t) \right)
$$

- The next action a_{t+1} will **have to** be executed next: SARSA is **on-policy**. You cannot change your mind and execute another a_{t+1} .
- The learned policy must be ϵ -soft (stochastic) to ensure exploration.
- SARSA converges to the optimal policy if α is small enough and if ϵ (or τ) slowly decreases to 0.

$$
\underbrace{\bullet}_{s_{t+2},a_{t+2}}\cdots
$$

SARSA: On-policy TD control

while True:

 \equiv

- Start from an initial state s_0 and select a_0 using the current policy π .
- foreach step t of the episode:
	- Apply a_t , observe r_{t+1} and s_{t+1} .
	- Select a_{t+1} using the current **stochastic** policy π .
	- Update the action-value function of (s_t, a_t) :

$$
Q(s_t,a_t) = Q(s_t,a_t) + \alpha \left(r_{t+1} + \gamma \, Q(s_{t+1},a_{t+1}) - \right.
$$

o Improve the stochastic policy, e.g:

$$
\pi(s_t,a) = \begin{cases} 1 - \epsilon \text{ if } a = \operatornamewithlimits{argmax}_{\epsilon} Q(s_t,a) \\ \frac{\epsilon}{|\mathcal{A}(s_t) - 1|} \text{ otherwise.} \end{cases}
$$

if s_{t+1} is terminal: break

 $)-Q(s_t,a_t))$

Q-learning: Off-policy TD control

SARSA estimates the return using the next action sampled from the learned policy.

As the learned policy is stochastic, the Q-value of the next action will have a **high variance**.

The greedy action in the next state, the one with the highest Q-value, will not change from sample to \bullet sample: it can provide a more stable (less variance) estimate of the return:

We implicitly use the **Bellman optimality equation**

$$
R_t \approx r_{t+1} + \gamma\, Q^\pi(s_{t+1}, a_{t+1})
$$

$$
R_t \approx r_{t+1} + \gamma \, \max_{a} Q^{\pi}(s_{t+1}, a_{t+1}) \approx r_{t+1} + \gamma \, \max_{a} Q^*(s_{t+1}, a_{t+1})
$$

Q-learning: Off-policy TD control

Q-learning approximates the optimal action-value function Q^* independently of the current policy, using the greedy action in the next state.

- The next action a_{t+1} can be generated by a behavior policy: Q-learning is **off-policy**.
- The learned policy can be deterministic.

- The behavior policy can be an ϵ -soft policy derived from Q or expert knowledge.
- The behavior policy only needs to visit all state-action pairs during learning to ensure optimality.

$$
Q(s_t,a_t) = Q(s_t,a_t) + \alpha \left(r_{t+1} + \gamma\, \max_{a} Q(s_{t+1},a) - Q(s_t,a_t) \right)
$$

Q-learning: Off-policy TD control

while True:

 \equiv

- Start from an initial state s_0 .
- foreach step t of the episode:
	- Select a_t using the behavior policy b (e.g. derived from π).
	- Apply a_t , observe r_{t+1} and $s_{t+1}.$
	- Update the action-value function of (s_t, a_t) :

 $Q(s_t, a_t) = Q(s_t, a_t) + \alpha \left(r_{t+1} + \gamma\right. \max Q(s_{t+1}, a)$ *a* $\max Q(s_{t+1},a)-Q(s_{t},a_{t}))$

o Improve greedily the learned policy:

$$
\pi(s_t,a) = \begin{cases} 1 \text{ if } a = \text{argmax } Q(s_t,a) \\ 0 \text{ otherwise.} \end{cases}
$$

if s_{t+1} is terminal: break

No need for importance sampling in Q-learning

• In off-policy Monte-Carlo, Q-values are estimated using the return of the rest of the episode on average:

$$
Q^{\pi}(s,a) = \mathbb{E}_{\tau \sim \rho_b}[\rho_{0:T-1}\ R(\tau)|s_0
$$

- As the rest of the episode is generated by b , we need to correct the returns using the importance sampling weight.
- In Q-learning, Q-values are estimated using other estimates:

$$
Q^{\pi}(s,a) = \mathbb{E}_{s_t \sim \rho_b, a_t \sim b}[r_{t+1} + \gamma \, \max_a Q^{\pi}(s_{t+1},a) | s_t = s, a_t = a]
$$

As we only sample **transitions** using b and not episodes, there is no need to correct the returns:

 \equiv

- The returns use estimates Q^{π} , which depend on π and not $b.$
- The immediate reward r_{t+1} is stochastic, but is the same whether you sample a_t from π or from b .

 $\left[a_0=s,a_0=a\right]$

Temporal Difference learning

- **Temporal Difference** allow to learn Q-values from single transitions instead of complete episodes.
- MC methods can only be applied to episodic problems, while TD works for continuing tasks.
- MC and TD methods are **model-free**: you do not need to know anything about the environment ($p(s'|s,a)$ and $r(s,a,s'))$ to learn.
- The **exploration-exploitation** dilemma must be dealt with:
	- **On-policy** TD (SARSA) follows the learned stochastic policy.

Off-policy TD (Q-learning) follows a behavior policy and learns a deterministic policy.

- TD uses **bootstrapping** like DP: it uses other estimates to update one estimate.
- Q-learning is the go-to method in tabular RL.

$$
Q(s,a) = Q(s,a) + \alpha\left(r(s,a,s') + \gamma\,Q(s',a') - Q(s,a)\right)
$$

$$
Q(s,a) = Q(s,a) + \alpha \left(r(s,a,s') + \gamma\, \max_a Q(s',a) - Q(s,a) \right)
$$

Optimal control with Q-learning

 \equiv

The TD error after each transition $(s_t, a_t, r_{t+1}, s_{t+1})$:

- When the advantage $\delta_t > 0$, this means that the action lead to a better reward or a better state than what was expected by $V(s_t)$, which is a **good surprise**, so the action should be reinforced (selected again) and the value of that state increased.
- When $\delta_t < 0$, this means that the previous estimation of (s_t, a_t) was too high (**bad surprise**), so the action should be avoided in the future and the value of the state reduced.

$$
\delta_t = r_{t+1} + \gamma V(s_{t+1}) -
$$

tells us how good the action a_t was compared to our expectation $V(s_t).$

$$
)-V(s_{t})
$$

Source: <https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d/>

 \equiv

Actor-critic methods are TD methods that have a separate memory structure to explicitly represent the policy and the value function.

The policy π is implemented by the **actor**, because it is used to select actions.

The estimated values $V(s)$ are implemented by the **critic**, because it criticizes the actions made by

 $)-V(s_{t})$

-
-
- the actor.

The critic computes the **TD error** or **1-step advantage**:

This scalar signal is the output of the critic and drives learning in both the actor and the critic.

$$
\delta_t = r_{t+1} + \gamma\, V(s_{t+1})\, -
$$

 \equiv

TD error after each transition:

$$
\delta_t = r_{t+1}
$$

The critic is updated using this scalar signal:

The actor is updated according to this TD error signal. For example a

 $+$ β δ_t

softmax actor over preferences:

$$
\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t)
$$

$$
V(s_t)
$$

$$
)\leftarrow V(s_{t})+\alpha\,\delta_{t}
$$

$$
\begin{cases} p(s_t,a_t) \leftarrow p(s_t,a_t) - \\\\ \pi(s,a) = \frac{\exp p(s,a)}{\sum_b \exp p(s,b)} \end{cases}
$$

- When $\delta_t>0$, the preference is increased, so the probability of selecting it again increases.
- When $\delta_t < 0$, the preference is decreased, so the probability of selecting it again decreases.

Actor-critic algorithm with preferences

- Start in s_0 . Initialize the preferences $p(s, a)$ for each state action pair and the critic $V(s)$ for each state.
- **foreach** step t :
	- Select a_t using the actor π in state s_t :

Update the **actor**:

Update the **critic**:

 \equiv

 $V(s_t) \leftarrow V(s_t) + \alpha \, \delta_t$

$$
\frac{a)}{s,b)}
$$

 $)-V(s_{t})$

 $\,\vdash\beta\,\delta_t$

$$
\pi(s_t,a) = \frac{\exp{p(s,a)}}{\sum_{b}\exp{p(s,b)}}
$$

- Apply a_t , observe r_{t+1} and $s_{t+1}.$
- Compute the TD error in s_t using the critic:

$$
\delta_t = r_{t+1} + \gamma\, V(s_{t+1})\,-\,
$$

$$
p(s_t,a_t) \leftarrow p(s_t,a_t) + \\
$$

- The advantage of the separation between the actor and the critic is that now the actor can take any form (preferences, linear approximation, deep networks).
- It requires minimal computation in order to select the actions, in particular when the action space is huge or even continuous.
- It can learn stochastic policies, which is particularly useful in non-Markov problems.
- **It is obligatory to learn on-policy:**

- the critic must evaluate the actions taken by the current actor.
- the actor must learn from the current critic, not "old" V-values.

3 - Eligibility traces and advantage estimation

Bias-variance trade-off

 \equiv

MC has **high variance, zero bias**:

- - Good convergence properties. We are more likely to find the optimal policy.
	- **Not very sensitive to initial estimates.**
	- **Very simple to understand and use.**
	- **Needs a lot of transitions to converge.**
- -
	- $\textsf{TD}(0)$ converges to $V^\pi(s)$ (but not always with function approximation).
	- **Fig.** The bias implies that the policy might be suboptimal.
	-

TD has **low variance, some bias**:

More **sample efficient** than MC.

More sensitive to initial values (bootstrapping).

Drawback of learning from single transitions

When the reward function is sparse (e.g. only at the end of a game), only the last action, leading to that reward, will be updated the first time in TD.

$$
Q(s,a) = Q(s,a) + \alpha \left(r(s,a,s') + \gamma\, \max_a Q(s',a) - Q(s,a) \right)
$$

- The previous actions, which were equally important in obtaining the reward, will only be updated the next time they are visited.
- This makes learning very slow: if the path to the reward has n steps, you will need to repeat the same episode at least n times to learn the Q-value of the first action.

Action values increased by Sarsa (λ) with λ =0.9 $\ddot{}$ ╼┥ . ₩ ▙┝╾┝┽

 \equiv

- - TD (only one state/action is updated each time, small variance but significant bias)
	- Monte-Carlo (all states/actions in an episode are updated, no bias but huge variance).
- In **n-step TD prediction**, the next n rewards are used to estimate the return, the rest is approximated.
- The **n-step return** is the discounted sum of the n next rewards is computed as in MC plus the predicted value at step $t+n$ which replaces the rest as in TD.

Optimally, we would like a trade-off between:

We can update the value of the state with this n-step return:

$$
R^n_t = \sum_{k=0}^{n-1} \gamma^k \, r_{t+k+1} + \gamma^n \, V(s_{t+n})
$$

$$
V(s_t) = V(s_t) + \alpha \left(R_t^n - V(s_t)\right)
$$

n-step advantage

The **n-step advantage** at time t is:

• It is easy to check that the **TD error** is the 1-step advantage:

- As you use more "real" rewards, you **reduce the bias** of Q-learning.
- As you use estimates for the rest of the episode, you **reduce the variance** of MC methods.
- But how to choose n ?

$$
A^n_t = \sum_{k=0}^{n-1} \gamma^k \, r_{t+k+1} + \gamma^n \, V(s_{t+n}) - V(s_t) \qquad \qquad \text{cut here}
$$

$$
\delta_t = A^1_t = r_{t+1} + \gamma\, V(s_{t+1}) - V(s_t) \qquad \qquad \text{Credit: S. Levine}
$$

Eligibility traces : forward view

One solution is to average the n-step returns, using a discount factor λ :

- Each reward r_{t+k+1} will count multiple times in the λ -return. Distant rewards are discounted by λ^k in addition to γ^k .
- Large n-step returns (MC) should not ha ve as much importance as small ones (TD), as they ha ve a high variance.

 \equiv

$$
R_t^\lambda = (1-\lambda) \, \sum_{n=1}^\infty \lambda^{n-1} \, R_t^n
$$

The term $1-\lambda$ is there to ensure that the $\mathsf{coefficients}\; \lambda^{n-1} \; \mathsf{sum} \; \mathsf{to} \; \mathsf{one}.$

$$
\sum_{n=1}^\infty \lambda^{n-1} = \frac{1}{1-\lambda}
$$

Weight

Eligibility traces : forward view

To understand the role of λ , let's split the infinite sum w.r.t the end of the episode at time T . n-step returns with $n \geq T$ all have a MC return of R_t :

- If $\lambda = 0$, the λ -return is equal to $R^1_t = r_{t+1} + \gamma \, V(s_{t+1})$, i.e. TD: high bias, low variance.
- If $\lambda=1$, the λ -return is equal to $R_t=\sum_{k=0}^{\infty}\gamma^k\,r_{t+k+1}$, i.e. MC: low bias, high variance. ∞ *k t*+*k*+1
- This **forward view** of eligibility traces implies to look at all future rewards until the end of the episode to perform a value update. This prevents online learning using single transitions.

$$
R_t^{\lambda} = \left(1-\lambda\right) \sum_{n=1}^{T-t-1} \lambda^{n-1} \, R_t^n + \lambda^{T-t-1} \, R_t
$$

 λ controls the bias-variance trade-off:

Eligibility traces : backward view

Another view on eligibility traces is that the **TD** \boldsymbol{r} eward prediction error at time t is sent backwards in time: was visited:

> λ defines how important is a future TD error for the current state.

$$
V(s) \leftarrow V(s) + \alpha \, \delta_t \, e_t(s)
$$

 \equiv

• The eligibility trace defines since how long the state

$$
\delta_t = r_{t+1} + \gamma V(s_{t+1}) - V(s_t) \hspace{1cm} e_t(s) = \begin{cases} \gamma \, \lambda \, e_{t-1}(s) & \quad \text{if} \quad s \neq s_t \\ e_{t-1}(s) + 1 & \quad \text{if} \quad s = s_t \end{cases}
$$

Every state s previously visited during the episode will be updated proportionally to the current TD error and an **eligibility trace** $e_t(s)$:

TD() algorithm: policy evaluation *λ*

- foreach step t of the episode:
	- Select a_t using the current policy π in state s_t , observe r_{t+1} and s_{t+1} .
	- Compute the TD error in s_t :

Update the state value function:

$$
\delta_t = r_{t+1} + \gamma\, V_k(s_{t+1}) - V_k(s_t)
$$

Increment the trace of s_t :

$$
e_{t+1}(s_t)=e_t(s_t)+1\,
$$

 $\mathop{\mathsf{forceach}}\nolimits$ state $s\in [s_o,\dots,s_t]$ in the episode:

$$
V_{k+1}(s) = V_k(s) + \alpha \, \delta_t \, e_t(s)
$$

o Decay the eligibility trace:

$$
e_{t+1}(s) = \lambda \, \gamma \, e_t(s)
$$

if s_{t+1} is terminal: break

Eligibility traces

- The backward view of eligibility traces can be applied on single transitions, given we know the history of visited states and maintain a trace for each of them.
- Eligibility traces are a very useful way to speed learning up in TD methods and control the bias/variance trade-off.
- This modification can be applied to all TD methods: TD(λ) for states, SARSA(λ) and Q(λ) for actions.
- The main drawback is that we need to keep a trace for ALL possible state-action pairs: memory consumption. Clever programming can limit this issue.
- The value of λ has to be carefully chosen for the problem: perhaps initial actions are random and should not be reinforced.
- If your problem is not strictly Markov (POMDP), eligibility traces can help as they update the history!

