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1 - Temporal Difference Learning
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Temporal-Difference (TD) learning
MC methods wait until the end of the episode to compute the obtained return:

If the episode is very long, learning might be very slow. If the task is continuing, it is impossible. 

Considering that the return at time  is the immediate reward plus the
return in the next step:

we could replace  by an estimate, which is the value of the next state:

This gives us:

V (s  ) =t V (s  ) +t α(R  −t V (s  ))t

t

R  =t r  +t+1 γ R  t+1

R  t+1

V (s  ) =π
t+1 E  [R  ∣s  =π t+1 t+1 s]

R  ≈t r  +t+1 γ V (s  )π
t+1
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Temporal-Difference (TD) learning
Temporal-Difference (TD) methods simply replace the actual return by
an estimation in the update rule:

where  is a sampled estimate of the return.

The quantity

is called equivalently the reward prediction error (RPE), the TD error or the
advantage of the action .

It is the difference between:

the estimated return in state : .

the actual return , computed with an estimation.

V (s  ) =t V (s  ) +t α (r  +t+1 γ V (s  ) −t+1 V (s  ))t

r  +t+1 γ V (s  )t+1

δ  =t r  +t+1 γ V (s  ) −t+1 V (s  )t

a  t

s  t V (s  )t
r  +t+1 γ V (s  )t+1
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Temporal-Difference (TD) learning
TD error:

If , it means that:

we received more reward  than expected, or:

we arrive in a state  that is better than expected.

we should increase the value of  as we underestimate it.

If , we should decrease the value of  as we overestimate it.

δ  =t r  +t+1 γ V (s  ) −t+1 V (s  )t

δ  >t 0

r  t+1

s  t+1

s  t

δ  <t 0 s  t
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TD policy evaluation TD(0)
The learning procedure in TD is possible after each transition: the backup diagram is limited to only one
state and its follower.

Backup diagram of TD(0) while True:

Start from an initial state .

foreach step  of the episode:

Select  using the current policy  in state .

Apply , observe  and .

Compute the TD error:

Update the state-value function of :

if  is terminal: break

TD learns from experience in a fully incremental manner. It does not need to wait until the end of an
episode. It is therefore possible to learn continuing tasks.

s  0

t

a  t π s  t

a  t r  t+1 s  t+1

δ  =t r  +t+1 γ V (s  ) −t+1 V (s  )t

s  t

V (s  ) =t V (s  ) +t α δ  t

s  t+1
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Bias-variance trade-off
The TD error is used to evaluate the policy:

If  is small enough, the estimates converge to:

By using an estimate of the return  instead of directly the
return as in MC,

we increase the bias (estimates are always wrong,
especially at the beginning of learning)

but we reduce the variance: only  is stochastic,
not the value function .

We can therefore expect less optimal solutions, but we will
also need less samples.

better sample efficiency than MC.

worse convergence (suboptimal).

V (s  ) =t V (s  ) +t α (r  +t+1 γ V (s  ) −t+1 V (s )) =t V (s  ) +t α δ  t

α

V (s) =π E  [r(s, a, s ) +π
′ γ V (s )]π ′

R  t

r(s, a, s )′

V π
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Exploration-exploitation problem
Q-values can be estimated in the same way:

Like for MC, the exploration/exploitation trade-off has to be managed: what is the next action ?

There are therefore two classes of TD control algorithms:

on-policy (SARSA)

off-policy (Q-learning).

Q(s  , a  ) =t t Q(s  , a  ) +t t α (r  +t+1 γ Q(s  , a  ) −t+1 t+1 Q(s  , a  ))t t

a  t+1

Source: UC Berkeley AI course , slides lecture 11
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http://ai.berkeley.edu/lecture_slides.html
http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx


SARSA: On-policy TD control
SARSA (state-action-reward-state-action) updates the value of a state-action pair by using the predicted
value of the next state-action pair according to the current policy.

When arriving in  from , we already sample the next action:

We can now update the value of :

The next action  will have to be executed next: SARSA is on-policy. You cannot change your mind
and execute another .

The learned policy must be -soft (stochastic) to ensure exploration.

SARSA converges to the optimal policy if  is small enough and if  (or ) slowly decreases to 0.

s  t+1 (s  , a  )t t

a  ∼t+1 π(s  , a)t+1

(s  , a  )t t

Q(s  , a  ) =t t Q(s  , a  ) +t t α (r  +t+1 γ Q(s  , a  ) −t+1 t+1 Q(s  , a  ))t t

a  t+1

a  t+1

ϵ

α ϵ τ
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SARSA: On-policy TD control

while True:

Start from an initial state  and select  using the current policy .

foreach step  of the episode:

Apply , observe  and .

Select  using the current stochastic policy .

Update the action-value function of :

Improve the stochastic policy, e.g:

if  is terminal: break

s  0 a  0 π

t

a  t r  t+1 s  t+1

a  t+1 π

(s , a  )t t

Q(s  , a  ) =t t Q(s  , a  ) +t t α (r  +t+1 γ Q(s  , a  ) −t+1 t+1 Q(s  , a  ))t t

π(s  , a) =t  {1 − ϵ if a = argmaxQ(s  , a)t

 otherwise.∣A(s  )−1∣t

ϵ

s  t+1
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Q-learning: Off-policy TD control
SARSA estimates the return using the next action sampled from the learned policy.

As the learned policy is stochastic, the Q-value of the next action will have a high variance.

The greedy action in the next state, the one with the highest Q-value, will not change from sample to
sample: it can provide a more stable (less variance) estimate of the return:

We implicitly use the Bellman optimality equation

R  ≈t r  +t+1 γ Q (s  , a  )π
t+1 t+1

R  ≈t r  +t+1 γ  Q (s  , a  ) ≈
a

max π
t+1 t+1 r  +t+1 γ  Q (s  , a  )

a
max ∗

t+1 t+1
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Q-learning: Off-policy TD control
Q-learning approximates the optimal action-value function  independently of the current policy, using
the greedy action in the next state.

The next action  can be generated by a behavior policy: Q-learning is off-policy.

The learned policy can be deterministic.

The behavior policy can be an -soft policy derived from  or expert knowledge.

The behavior policy only needs to visit all state-action pairs during learning to ensure optimality.

Q∗

Q(s  , a  ) =t t Q(s  , a  ) +t t α (r  +t+1 γ  Q(s  , a) −
a

max t+1 Q(s  , a  ))t t

a  t+1

ϵ Q

12 / 32



Q-learning: Off-policy TD control
while True:

Start from an initial state .

foreach step  of the episode:

Select  using the behavior policy  (e.g. derived from ).

Apply , observe  and .

Update the action-value function of :

Improve greedily the learned policy:

if  is terminal: break

s  0

t

a  t b π

a  t r  t+1 s  t+1

(s , a  )t t

Q(s  , a  ) =t t Q(s  , a  ) +t t α (r  +t+1 γ  Q(s  , a) −
a

max t+1 Q(s  , a  ))t t

π(s  , a) =t  {1 if a = argmaxQ(s  , a)t

0 otherwise.

s  t+1
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No need for importance sampling in Q-learning
In off-policy Monte-Carlo, Q-values are estimated using the return of the rest of the episode on average:

As the rest of the episode is generated by , we need to correct the returns using the importance
sampling weight.

In Q-learning, Q-values are estimated using other estimates:

As we only sample transitions using  and not episodes, there is no need to correct the returns:

The returns use estimates , which depend on  and not .

The immediate reward  is stochastic, but is the same whether you sample  from  or from .

Q (s, a) =π E  [ρ  R(τ)∣s  =τ∼ρ  b 0:T−1 0 s, a  =0 a]

b

Q (s, a) =π E  [r  +s  ∼ρ  ,a  ∼bt b t t+1 γ  Q (s  , a)∣s  =
a

max π
t+1 t s, a  =t a]

b

Qπ π b

r  t+1 a  t π b
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Temporal Difference learning
Temporal Difference allow to learn Q-values from single transitions instead of complete episodes.

MC methods can only be applied to episodic problems, while TD works for continuing tasks.

MC and TD methods are model-free: you do not need to know anything about the environment (
 and ) to learn.

The exploration-exploitation dilemma must be dealt with:

On-policy TD (SARSA) follows the learned stochastic policy.

Off-policy TD (Q-learning) follows a behavior policy and learns a deterministic policy.

TD uses bootstrapping like DP: it uses other estimates to update one estimate.

Q-learning is the go-to method in tabular RL.

p(s ∣s, a)′ r(s, a, s )′

Q(s, a) = Q(s, a) + α (r(s, a, s ) +′ γ Q(s , a ) −′ ′ Q(s, a))

Q(s, a) = Q(s, a) + α (r(s, a, s ) +′ γ  Q(s , a) −
a

max ′ Q(s, a))
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Optimal control with Q-learning

Cart-Pole Swing-upCart-Pole Swing-up
ShareShare
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https://www.youtube.com/watch?v=XiigTGKZfks


2 - Actor-critic methods
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Actor-critic methods
The TD error after each transition :

tells us how good the action  was compared to our expectation .

When the advantage , this means that the action lead to a better reward or a better state than what
was expected by , which is a good surprise, so the action should be reinforced (selected again) and
the value of that state increased.

When , this means that the previous estimation of  was too high (bad surprise), so the
action should be avoided in the future and the value of the state reduced.

(s  , a  , r  , s  )t t t+1 t+1

δ  =t r  +t+1 γV (s  ) −t+1 V (s  )t

a  t V (s  )t

δ  >t 0
V (s  )t

δ  <t 0 (s  , a  )t t

Source: https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d/
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Actor-critic methods
Actor-critic methods are TD methods that have a
separate memory structure to explicitly represent
the policy and the value function.

The policy  is implemented by the actor, because
it is used to select actions.

The estimated values  are implemented by
the critic, because it criticizes the actions made by
the actor.

The critic computes the TD error or 1-step advantage:

This scalar signal is the output of the critic and drives learning in both the actor and the critic.

π

V (s)

δ  =t r  +t+1 γ V (s  ) −t+1 V (s  )t
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Actor-critic methods
TD error after each transition:

The critic is updated using this scalar signal:

The actor is updated according to this TD error signal. For example a
softmax actor over preferences:

When , the preference is increased, so the probability of selecting it again increases.

When , the preference is decreased, so the probability of selecting it again decreases.

δ  =t r  +t+1 γV (s  ) −t+1 V (s  )t

V (s  ) ←t V (s  ) +t α δ  t

  ⎩⎨
⎧p(s  , a  ) ← p(s  , a  ) + β δ  t t t t t

π(s, a) =  

 exp p(s,b)∑b

exp p(s,a)

δ  >t 0

δ  <t 0

20 / 32



Actor-critic algorithm with preferences
Start in . Initialize the preferences  for each state action pair and the critic  for each state.

foreach step :

Select  using the actor  in state :

Apply , observe  and .

Compute the TD error in  using the critic:

Update the actor:

Update the critic:

s  0 p(s, a) V (s)

t

a  t π s  t

π(s  , a) =t  

 exp p(s, b)∑b

exp p(s, a)

a  t r  t+1 s  t+1

s  t

δ  =t r  +t+1 γ V (s  ) −t+1 V (s  )t

p(s  , a  ) ←t t p(s  , a  ) +t t β δ  t

V (s  ) ←t V (s  ) +t α δ  t
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Actor-critic methods
The advantage of the separation between the actor and the
critic is that now the actor can take any form (preferences,
linear approximation, deep networks).

It requires minimal computation in order to select the actions,
in particular when the action space is huge or even
continuous.

It can learn stochastic policies, which is particularly useful in
non-Markov problems.

 

It is obligatory to learn on-policy:

the critic must evaluate the actions taken by the current actor.

the actor must learn from the current critic, not “old” V-values.

22 / 32



3 - Eligibility traces and advantage estimation
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Bias-variance trade-off
MC has high variance, zero bias:

Good convergence properties. We are more
likely to find the optimal policy.

Not very sensitive to initial estimates.

Very simple to understand and use.

Needs a lot of transitions to converge.

TD has low variance, some bias:

More sample efficient than MC.

TD(0) converges to  (but not always with
function approximation).

The bias implies that the policy might be
suboptimal.

More sensitive to initial values (bootstrapping).

V (s)π
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Drawback of learning from single transitions

When the reward function is sparse (e.g. only at the end of a game), only the last action, leading to that
reward, will be updated the first time in TD.

The previous actions, which were equally important in obtaining the reward, will only be updated the next
time they are visited.

This makes learning very slow: if the path to the reward has  steps, you will need to repeat the same
episode at least  times to learn the Q-value of the first action.

Q(s, a) = Q(s, a) + α (r(s, a, s ) +′ γ  Q(s , a) −
a

max ′ Q(s, a))

n

n
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n-step advantage
Optimally, we would like a trade-off between:

TD (only one state/action is updated each time, small
variance but significant bias)

Monte-Carlo (all states/actions in an episode are updated,
no bias but huge variance).

In n-step TD prediction, the next  rewards are used to
estimate the return, the rest is approximated.

The n-step return is the discounted sum of the  next rewards is computed as in MC plus the predicted
value at step  which replaces the rest as in TD.

We can update the value of the state with this n-step return:

n

n

t + n

R  =t
n

 γ r  +
k=0

∑
n−1

k
t+k+1 γ V (s  )n

t+n

V (s  ) =t V (s  ) +t α (R  −t
n V (s  ))t
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n-step advantage
The n-step advantage at time  is:

It is easy to check that the TD error is the 1-step
advantage:

As you use more “real” rewards, you reduce the bias of Q-learning.

As you use estimates for the rest of the episode, you reduce the variance of MC methods.

But how to choose ?

t

A  =t
n

 γ r  +
k=0

∑
n−1

k
t+k+1 γ V (s  ) −n

t+n V (s  )t

δ  =t A  =t
1 r  +t+1 γ V (s  ) −t+1 V (s )t Credit: S. Levine

n
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Eligibility traces : forward view
One solution is to average the n-step returns, using
a discount factor  :

The term  is there to ensure that the
coefficients  sum to one.

Each reward  will count multiple times in the 
-return. Distant rewards are discounted by  in

addition to .

Large n-step returns (MC) should not have as much
importance as small ones (TD), as they have a high
variance.

λ

R  =t
λ (1 − λ)  λ R  

n=1

∑
∞

n−1
t
n

1 − λ

λn−1

 λ =
n=1

∑
∞

n−1
 

1 − λ

1

r  t+k+1

λ λk

γk

28 / 32



Eligibility traces : forward view
To understand the role of , let’s split the infinite sum w.r.t the end of the episode at time . n-step
returns with  all have a MC return of :

 controls the bias-variance trade-off:

If , the -return is equal to , i.e. TD: high bias, low variance.

If , the -return is equal to , i.e. MC: low bias, high variance.

This forward view of eligibility traces implies to look at all future rewards until the end of the episode to
perform a value update. This prevents online learning using single transitions.

λ T

n ≥ T R  t

R  =t
λ (1 − λ)  λ R  +

n=1

∑
T−t−1

n−1
t
n λ R  

T−t−1
t

λ

λ = 0 λ R  =t
1 r  +t+1 γ V (s  )t+1

λ = 1 λ R  =t  γ r  ∑k=0
∞ k

t+k+1
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Eligibility traces : backward view

Another view on eligibility traces is that the TD
reward prediction error at time  is sent backwards
in time:

Every state  previously visited during the episode
will be updated proportionally to the current TD
error and an eligibility trace :

The eligibility trace defines since how long the state
was visited:

 defines how important is a future TD error for the
current state.

t

δ  =t r  +t+1 γV (s  ) −t+1 V (s  )t

s

e  (s)t

V (s) ← V (s) + α δ  e  (s)t t

e  (s) =t  {γ λ e  (s) if s = s  t−1  t

e  (s) + 1 if s = s  t−1 t

λ
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TD( ) algorithm: policy evaluation

foreach step  of the episode:

Select  using the current policy  in state , observe  and .

Compute the TD error in :

Increment the trace of :

foreach state  in the episode:

Update the state value function:

Decay the eligibility trace:

if  is terminal: break

λ

t

a  t π s  t r  t+1 s  t+1

s  t

δ  =t r  +t+1 γ V  (s  ) −k t+1 V  (s  )k t

s  t

e  (s  ) =t+1 t e  (s  ) +t t 1

s ∈ [s  , … , s  ]o t

V  (s) =k+1 V  (s) +k α δ  e  (s)t t

e  (s) =t+1 λ γ e  (s)t

s  t+1
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Eligibility traces

The backward view of eligibility traces can be applied on single transitions, given we know the history of
visited states and maintain a trace for each of them.

Eligibility traces are a very useful way to speed learning up in TD methods and control the bias/variance
trade-off.

This modification can be applied to all TD methods: TD( ) for states, SARSA( ) and Q( ) for actions.

The main drawback is that we need to keep a trace for ALL possible state-action pairs: memory
consumption. Clever programming can limit this issue.

The value of  has to be carefully chosen for the problem: perhaps initial actions are random and should
not be reinforced.

If your problem is not strictly Markov (POMDP), eligibility traces can help as they update the history!

λ λ λ

λ
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