REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Temporal Difference learning

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/32

1 - Temporal Difference Learning

Temporal-Difference (TD) learning

e MC methods wait until the end of the episode to compute the obtained return:

V(se) =V(st) + a(R; — V(st))

e |f the episode is very long, learning might be very slow. If the task is continuing, it is impossible.

e Considering that the return at time 7 is the immediate reward plus the Q
return in the next step: (;Ttﬂ

®

Ry =11 + 9 R iNe

o Rip1 = V7 (s141)
we could replace R;, 1 by an estimate, which is the value of the next state:

Vw(8t+]—) — {"7" [Rt—|—].‘8t—|—]_ — S] l terminal state

e This gives us:

Ry~ ri1 +vV7™(8t41)

3/32

Temporal-Difference (TD) learning

o Temporal-Difference (TD) methods simply replace the actual return by
an estimation in the update rule:

V(st) = V(st) + a(res +7V(ste1) — V(st))
where ;.1 4+ ¥ V (s¢41) is a sampled estimate of the return.

e The quantity

0 = Te41 + ’YV(St+1) — V(St)

is called equivalently the reward prediction error (RPE), the TD error or the
advantage of the action a;:.

o |tis the difference between:
= the estimated return in state s;: V'(s¢).

= the actual return r¢+1 + ¥ V' (S¢+1), computed with an estimation.

o | i1 = V7™ (5141)

; terminal state

4/32

Temporal-Difference (TD) learning

e TD error:

0t = rep1 + Y V(8e41) — V(8¢)

e If 9 > 0, it means that:

= we received more reward 7;. 1 than expected, or:
= Wwe arrive in a state s;+1 that is better than expected.
= we should increase the value of s; as we underestimate it.

o If 0; < 0, we should decrease the value of s; as we overestimate it.

5/32

TD policy evaluation TD(0)

e The learning procedure in TD is possible after each transition: the backup diagram is limited to only one
state and its follower.

Backup diagram of TD(0) e while True:
O = Start from an initial state s.
® = foreach step ¢ of the episode:
O o Select a; using the current policy 7 in state s;.

o Apply a;, observe ;.1 and 84 1.

o Compute the TD error:
0t = 11 + Y V(se41) — Vi(st)
o Update the state-value function of s;:
Vi(sy)) =V(st) + ad;
o if 8411 is terminal: break

e TD learns from experience in a fully incremental manner. It does not need to wait until the end of an
episode. It is therefore possible to learn continuing tasks.

6/32

Bias-variance trade-off

e The TD error is used to evaluate the policy:

Vi(st) =V(st) + a(rer1 +yV(ser1) — Vist)) = V(st) + ady

e If v is small enough, the estimates converge to:

V7™(s) = Ex[r(s,a,s') + v V()]

e By using an estimate of the return R; instead of directly the Low Variance High Variance
return as in MC,

= we increase the bias (estimates are always wrong,
especially at the beginning of learning)

Low Bias

= but we reduce the variance: only (s, a, s') is stochastic,
not the value function V™.

e We can therefore expect less optimal solutions, but we will
also need less samples.

= better sample efficiency than MC.

High Bias

= worse convergence (suboptimal).

7132

Exploration-exploitation problem

e Q-values can be estimated in the same way:

Q(Staat) — Q(Staat) + (Tt+1 + ”)’Q(St+1aat+1) — Q(staat))

o Like for MC, the exploration/exploitation trade-off has to be managed: what is the next action a;. 1?
e There are therefore two classes of TD control algorithms:

= on-policy (SARSA)

= off-policy (Q-learning).

Source: UC Berkeley Al course slides, lecture 11

8/32

http://ai.berkeley.edu/lecture_slides.html
http://ai.berkeley.edu/slides/Lecture%2011%20--%20Reinforcement%20Learning%20II/SP14%20CS188%20Lecture%2011%20--%20Reinforcement%20Learning%20II.pptx

SARSA: On-policy TD control

SARSA (state-action-reward-state-action) updates the value of a state-action pair by using the predicted
value of the next state-action pair according to the current policy.

r '
Sty Sp+17 941 Sp420 0142

When arriving in sy 1 from (s¢, a;), we already sample the next action:

at+1 ~ 7T(8t+1, CL)

We can now update the value of (s, a;):

Q(st,at) = Q(st,at) + a(rer1 + v Q(St+1,at41) — Q(S¢,ar))

The next action a;, 1 will have to be executed next: SARSA is on-policy. You cannot change your mind
and execute another a; 1.

The learned policy must be e-soft (stochastic) to ensure exploration.

SARSA converges to the optimal policy if & is small enough and if € (or 7) slowly decreases to 0.

9/32

SARSA: On-policy TD control

r r

Sty St412 9+ 3142942

e while True:
= Start from an initial state sy and select ag using the current policy 7.

= foreach step ¢ of the episode:

o Apply a¢, observe 11 and S¢+1.
o Select a4, 1 using the current stochastic policy 7.

o Update the action-value function of (s;, a;):

Q(St, at) — Q(St, at) + ("‘t+1 -+ 7@(3t+17 at+1) — Q(Sta at))

o Improve the stochastic policy, e.g:

B | A(sf)—l] otherwise.

{1 — € if a = argmax Q(s¢, a)
(8¢, a) =

o if 8411 is terminal: break

10/32

Q-learning: Off-policy TD control

e SARSA estimates the return using the next action sampled from the learned policy.
Ry = rep1 + v Q" (8141, ap1)

e Asthe learned policy is stochastic, the Q-value of the next action will have a high variance.

1.0

0.8

0.6
T
= 0.4

0.2

D.D | 1 11 1 1 11 1] | 11]

e The greedy action in the next state, the one with the highest Q-value, will not change from sample to
sample: it can provide a more stable (less variance) estimate of the return:

Ry = riq + 7y max Q" (8141, Aty1) = Te1 + 7y max Q" (8141, As11)

11/32

YA . ° I1° _°32 1) a2l o " E.. . me B, me

Q-learning: Off-policy TD control

e Q-learning approximates the optimal action-value function (Q* independently of the current policy, using

the greedy action in the next state.

4 4 4

Q(Staat) — Q(Staat) + ("°t+1 + 7Y mc?»X Q(St+17a) — Q(Staat))

ne next action a;. 1 can be generated by a behavior policy: Q-learning is off-policy.

ne

ne

ne

olS

pe

navior po

navior po

earned policy can be deterministic.

icy can be an e-soft policy derived from () or expert knowledge.

icy only needs to visit all state-action pairs during learning to ensure optimality.

12/32

Q-learning: Off-policy TD control

e while True:
= Start from an initial state s.

= foreach step t of the episode:

o Select a; using the behavior policy b (e.g. derived from).
o Apply a;, observe r;.1 and S;.1.

o Update the action-value function of (s, az):
Q(st,a:) = Q(st,a¢) + a(rn + max Q(st+1,a) — Q(8t,ar))

o Improve greedily the learned policy:

(s,.0) 1 if a = argmax Q(s¢, a)
(8¢, a) = .
t 0 otherwise.

o if 8411 is terminal: break

13/32

No need for importance sampling in Q-learning

e |In off-policy Monte-Carlo, Q-values are estimated using the return of the rest of the episode on average:

QW(Sa a’) — €'7'N,0b [PO:T—l R(T)|30 — 5,00 = CL]

e As the rest of the episode is generated by b, we need to correct the returns using the importance
sampling weight.

e In Q-learning, Q-values are estimated using other estimates:

Q" (s,a) = Eg,p, q,b(Ter1 + max Q" (s¢+1,0a)|5: = s,a; = a

e As we only sample transitions using b and not episodes, there is no need to correct the returns:

= The returns use estimates (™, which depend on 7 and not b.

= The immediate reward ;.1 is stochastic, but is the same whether you sample a; from 7 or from b.

14 /32

Temporal Difference learning

 Temporal Difference allow to learn Q-values from single transitions instead of complete episodes.

e MC methods can only be applied to episodic problems, while TD works for continuing tasks.

e« MC and TD methods are model-free: you do not need to know anything about the environment (
p(s'|s,a)and (s, a, s’)) to learn.

e The exploration-exploitation dilemma must be dealt with:

= On-policy TD (SARSA) follows the learned stochastic policy.

Q(s,a) = Q(s,a) + a(r(s,a,s') +vQ(s',a’) — Q(s, a))

= Off-policy TD (Q-learning) follows a behavior policy and learns a deterministic policy.
Q(Sa CL) — Q(Sa CL) T+ (’P(S, a, 3,) + mC?X Q(Sla (1,) - Q(Sa a))

e TD uses bootstrapping like DP: it uses other estimates to update one estimate.
e Q-learning is the go-to method in tabular RL.

15/32

Optimal control with Q-learning

P Cart-Pole Swing-t

16 /32

https://www.youtube.com/watch?v=XiigTGKZfks

2 - Actor-critic methods

Actor-critic methods

o The TD error after each transition (S;, @z, 7¢11, S¢11):

0 = T11 ”YV(StH) — V(St)

tells us how good the action a; was compared to our expectation V(st).

e When the advantage d; > 0, this means that the action lead to a better reward or a better state than what

was expected by V' (s;), which is a good surprise, so the action should be reinforced (selected again) and
the value of that state increased.

« When §; < 0, this means that the previous estimation of (s, a;) was too high (bad surprise), so the
action should be avoided in the future and the value of the state reduced.

I rotate
the piece

Really bad

Actor Critic

Source: https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d/

18 /32

https://www.freecodecamp.org/news/an-intro-to-advantage-actor-critic-methods-lets-play-sonic-the-hedgehog-86d6240171d/

Actor-critic methods

b

Critic

*,
= Policy
S

e Actor-critic methods are TD methods that have a

Actor

state p—

i
Value

Function
I

/
reward

TD
error

—[Envirﬂnment

) separate memory structure to explicitly represent
the policy and the value function.

e The policy 7 is implemented by the actor, because
it is used to select actions.

action

o The estimated values V' (s) are implemented by

the critic, because it criticizes the actions made by
the actor.

e The critic computes the TD error or 1-step advantage:

0t = rey1 + Y V(8t41) — V(8¢)

e This scalar signal is the output of the critic and drives learning in both the actor and the critic.

19/32

Actor-critic methods

A e TD error after each transition:
= Policy -
"y

Actor

0t = 41 + YV (8t41) — V(8¢)

TD

Critic error

!

state p—w=| _Value | ion® Thecritic is updated using this scalar signal:
Function
’r' 1
reward V(St) — V(St) Oéét

Environment . : : :
[] e The actor is updated according to this TD error signal. For example a
softmax actor over preferences:

(P(Sta at) < p(s¢,at) + B0

m(s,a) = cPRES

e« When 0; > 0, the preference is increased, so the probability of selecting it again increases.

e When 9; < 0, the preference is decreased, so the probability of selecting it again decreases.

20/32

Actor-critic algorithm with preferences

o Startin sq. Initialize the preferences p(s, a) for each state action pair and the critic V' (s) for each state.

o foreach step t:

= Select a; using the actor 7 in state s;:

~ expp(s,a)
Zb expp(s, b)

(8¢, Q)

= Apply a;, observe ;11 and s¢. 1.

= Compute the TD error in s; using the critic:

Ot = Tr1 + 7Y V(5t+1) — V(St)

= Update the actor:

p(st,at) < p(st,ar) + B o

= Update the critic:

V(sy) + V(sy) + ady

21/32

Actor-critic methods

e The advantage of the separation between the actor and the
critic is that now the actor can take any form (preferences,
linear approximation, deep networks).

e |t requires minimal computation in order to select the actions,
in particular when the action space is huge or even
continuous.

e |t can learn stochastic policies, which is particularly useful in
non-Markov problems.
 Itis obligatory to learn on-policy:

= the critic must evaluate the actions taken by the current actor.

= the actor must learn from the current critic, not “old” V-values.

22 /32

3 - Eligibility traces and advantage estimation

Bias-variance trade-off

 MC has high variance, zero bias:

Low Variance High Variance

= Good convergence properties. We are more
likely to find the optimal policy.

= Not very sensitive to initial estimates.
= Very simple to understand and use.
= Needs a lot of transitions to converge.

e TD has low variance, some bias:
= More sample efficient than MC.

= TD(0) converges to V™ (s) (but not always with
function approximation).

= The bias implies that the policy might be
suboptimal.

High Bias

Low Bias

= More sensitive to initial values (bootstrapping).

24 /32

Drawback of learning from single transitions

Action values Increased Action values increased
Path taken by one-step Sarsa by Sarsa(x) with 4=0.9
k] - E +
]
¥
M | 3
i_ * mer
i ! Y

o When the reward function is sparse (e.g. only at the end of a game), only the last action, leading to that
reward, will be updated the first time in TD.

Q(Sa CL) — Q(Sa a’) T+ Q (T(Sa a, 5,) + mSLXQ(S,, a’) _ Q(S,CL))

e The previous actions, which were equally important in obtaining the reward, will only be updated the next
time they are visited.

e This makes learning very slow: if the path to the reward has n steps, you will need to repeat the same
episode at least n times to learn the Q-value of the first action.

25/32

n-step advantage

mffem 2stp 3step pstep MonteCaro e Optimally, we would like a trade-off between:

= TD (only one state/action is updated each time, small
variance but significant bias)

= Monte-Carlo (all states/actions in an episode are updated,
no bias but huge variance).

e In n-step TD prediction, the next n rewards are used to
; estimate the return, the rest is approximated.

e The n-step return is the discounted sum of the n next rewards is computed as in MC plus the predicted
value at step ¢ + n which replaces the rest as in TD.

n—1

Ry = Z VY ek " V(Stan)
k=0

e We can update the value of the state with this n-step return:

V(st) =V(s) + a(R} — V(s))

26 /32

n-step advantage

The n-step advantage at time ¢ is: bigger variance

n—l L cut here before variance gets too big!
n n
t — E A ek + 7"V (Stn) — V(se)

k=0 smaller variance

It is easy to check that the TD error is the 1-step
advantage:

5,5 — A% = Tyl + Y V(St_|_1) — V(St) Credit: S. Levine

As you use more “real” rewards, you reduce the bias of Q-learning.

As you use estimates for the rest of the episode, you reduce the variance of MC methods.

But how to choose n?

27 132

Eligibility traces : forward view

One solution is to average the n-step returns, using
a discount factor A :

R} =(1-X) Y X\"'Rp

n=1

Theterm 1 —)\ is there to ensure that the
coefficients A1 sum to one.

00 i 1
:4_:1)‘ 1:1—>\

Each reward 74,1 will count multiple times in the
A-return. Distant rewards are discounted by * in
addition to fyk.

Large n-step returns (MC) should not have as much

importance as small ones (TD), as they have a high
variance.

- O+——0

TD(N)
T 1 70

o] 1
T 1 T
Vb b

(1— M)A (I? Cf Ao

5 :
(1— A\ I Ar_q
St Ry

weight given to
the 3-step return total area = 1

decay by A

weaight given 1o
actual, final return

AN

Y

Timeg —=

28 /32

Eligibility traces : forward view

e To understand the role of A, let’s split the infinite sum w.r.t the end of the episode at time 1. n-step
returns with n > T all have a MC return of R;:

T—t—1
R} =(1-X) » XN 'R}+ AR,

n=1

e) controls the bias-variance trade-off:

« If A = 0, the A-returnis equalto R} = 741 + vV (8s41), i.e. TD: high bias, low variance.

s If A\ = 1, the A-return is equal to R; = ZZOZO 7]“ rii k11, i.e. MC: low bias, high variance.

e This forward view of eligibility traces implies to look at all future rewards until the end of the episode to
perform a value update. This prevents online learning using single transitions.

29 /32

Eligibility traces : backward view

J\I\I\\k\ accumulating eligibility trace

e Another view on eligibility traces is that the TD

reward prediction error at time ¢ is sent backwards

In time:

0t = Ter1 + YV (8t41) — V (5¢)

e Every state s previously visited during the episode

will be updated proportionally to the current TD
error and an eligibility trace e:(s):

V(s) < V(s)+ ad;e(s)

times of visits to a state

e The eligibility trace defines since how long the state
was visited:

Y Aer-1(8) it s # s
er(s) = .
e 1(s) +1 if s=s;

o)\ defines how important is a future TD error for the
current state.

30/32

TD(\) algorithm: policy evaluation

o foreach step t of the episode:

= Select a; using the current policy 7 in state s¢, observe r¢+1 and S¢+1.

= Compute the TD errorin s;:
0t = P41 + ’YW(StH) — Vk(St)
= Increment the trace of s;:
err1(8:) = es(st) + 1

= foreach state s € |s,, ..., s;] in the episode:

o Update the state value function:
Vit1(s) = Vi(s) + a bt et (s)
o Decay the eligibility trace:
er1(s) = Ay er(s)

= if s;.1 is terminal: break

31/32

Eligibility traces

Action values Increased Action values increased
Path taken by one-step Sarsa by Sarsa(h) with 1=0.9
= = E +
]
)
. sl
i— H - W Y
* 4 i |-

e The backward view of eligibility traces can be a

visited states and maintain a trace for each of t

e Eligibility traces are a very useful way to speed

trade-off.

oplied on single transitions, given we know the history of
nem.

earning up in TD methods and control the bias/variance

This modification can be applied to all TD methods: TD(A) for states, SARSA(A) and Q(\) for actions.

The main drawback is that we need to keep a trace for ALL possible state-action pairs: memory

consumption. Clever programming can limit this issue.

not be reinforced.

o If your problem is not strictly Markov (POMDP),

The value of A has to be carefully chosen for the problem: perhaps initial actions are random and should

eligibility traces can help as they update the history!

32/32

