REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Function approximation

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/35

1 - Limits of tabular RL

Tabular reinforcement learning

e All the methods seen so far belong to tabular RL.

o Q-learning necessitates to store in a Q-table one Q-value per state-action pair (s, a).

Game Board:

e
oo
Current state (s): 000
010

Q Table: y =0.95
000 000 000 100 010 001
100 010 001 000 000 000
ﬁ 0.2 0.3 1.0 | -022 | 03 | 0.0
@ 05 | -04 | -02 -004 -002!| 0.0
= | 021 | 04 | -03 | 05 1.0 0.0
= | .06 | 01 | 01 | -0.31|-0.01 | 0.0

Source: https://towardsdatascience.com/qrash-course-deep-g-networks-from-the-ground-up-1bbda41d3677

https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

Tabular reinforcement learning

o If a state has never been visited during learning, the Q-values will still be at their initial value (0.0), no
policy can be derived.

Visited state Not visited state

different pixel

Optimal action: left Optimal action: ?

e Similar states likely have the same optimal action: we want to be able to generalize the policy between
states.

4/35

Tabular reinforcement learning

e For most realistic problems, the size of the Q-table becomes quickly untractable.

||
aaEeneE
. — I eenes |
10.00|||-10.00(|(-10.00|||-10.00(||-10.00 EEDEEN
| | | | BEERERRR
BER
Gridworld Tetris Atari
10M 10760 107308 (ram) 10716992 (pixels)

Source: https://medium.com/@twt446/a-summary-of-deep-reinforcement-learning-rl-bootcamp-lecture-2-c3a15db5934e

o If you use black-and-white 256x256 images as inputs, you have 22°6*256 — 119728

e Tabular RL is limited to toy problems.

possible states!

5/35

https://medium.com/@twt446/a-summary-of-deep-reinforcement-learning-rl-bootcamp-lecture-2-c3a15db5934e

Tabular RL cannot learn to play video games

state {7

reward Iy

6/35

Continuous action spaces

e Tabular RL only works for small discrete action spaces.

e Robots have continuous action spaces, w

nere the actions are changes in joint angles or torques.

e Ajoint angle could take any value in |0, 7r].

action 3 =

action 1

action 4 action 5

/

— » action 6

» action 2

7135

Continuous action spaces

o A solution would be to discretize the action space (one action per degree), but we would fall into the
curse of dimensionality.

e The more degrees of freedom, the more discrete actions, the more entries in the Q-table...

e Tabular RL cannot deal with continuous action spaces, unless we approximate the policy with an actor-
critic architecture.

8 /35

2 - Function approximation

Feature vectors

e Let's represent a state s by a vector of d features

d(s) = [¢1(s), $2(8), - - -, da(s)]".

e Forthe cartpole, the feature vector would be:

.
b(s) = | 4
6.

e T is the position, @ the angle, & and 6 their
derivatives.

e We are able to represent any state s using these
four variables.

10/35

Feature vectors

e For more complex problems, the feature vector should include all the necessary information (Markov
property).

x position of the paddle

x position of the ball
y position of the ball
x speed of the ball
P(s) = y speed of the position
presence of brick 1
presence of brick 2

e In deep RL, we will learn these feature vectors, but let's suppose for now that we have them.

11/35

Feature vectors

e Note that we can always fall back to the tabular case using one-hot encoding of the states:

P(s1) =

e But the idea is that we can represent states with much less values than the number of states:

e We can also represent continuous state spaces with feature vectors.

1
0
0

0

d(s2)

d < |S]

0
1

0

0

¢(33) —

0
0
1

0

12/35

State value approximation

» In state value approximation, we want to approximate the state value function V™ (s) with a
parameterized function V,(s):

Vo(s) = V7 (s)

Feature vector

¢(s)

Approximated
Parameterized value
State function
s o — Vi (s)
parameters:
¥

e The parameterized function can have any form. Its has a set of parameters ¢ used to transform the
feature vector ¢(s) into an approximated value V,,(s).

13/35

Linear approximation of state value functions

e The simplest function approximator (FA) is the linear approximator.

Feature vector

()
Approximated
value
State
S — - VSO (S)

weights W

e The approximated value is a linear combination of the features:

Vo(s) = D wi¢ils) = w" x 4(s)

e The weight vector w = [wl, W,y .., wd]Tis the set of parameters ¢ of the function.

o A linear approximator is a single artificial neuron (linear regression) without a bias.

14 /35

Learning the state value approximation

e Regardless the form of the function approximator, we want to find the parameters ¢ making the
approximated values V,,(s) as close as possible from the true values V'™ () for all states s.

= This is a regression problem.

Feature vector

()
Approximated
value
State
S — - VSO (S)

weights W

e We want to minimize the mean square error between the two quantities:

min £(p) = Eses[(V(s) — Vi (s))”]

Y

o The loss function L£() is minimal when the predicted values are close to the true ones on average for all
states.

15/35

Learning the state value approximation

o Let's suppose that we know the true state values V™ (s) for all states and that the parameterized function
is differentiable.

£(6) 4 e We can find the minimum of the loss function by
applying gradient descent (GD) iteratively:
ihe fncion Ap = —nVyL(p)
new 0L (0p)
minimum value 06 . . .
\ 0 . 0, « V,L(¢p) is the gradient of the loss function w.r.t to
: | > the parameters .
value 0
0o " O0L(¢) "
: 0
240
VoL(p) = | 9
0L ()
- Ok -

e When applied repeatedly, GD converges to a local minimum of the loss function.

16 /35

Learning the state value approximation

e To minimize the mean square error,

min L(¢) = Ezes[(V™(8) — Vw(s))z]

Y

we will iteratively modify the parameters ¢ according to:

Ap = @ri1 — n = —NVeL(p) = NV Eees[(VT(8) — Vip(s))?]

= Eoes [~ Vo (V7 (s) — Vi (5))7]

= Eses[n (V7 (s) = Vio(s)) ViV (s)]

e As it would be too slow to compute the expectation on the whole state space (batch algorithm), we will
sample the quantity:

0p =n (V" (8) — Vio(8)) Vi V()

and update the parameters with stochastic gradient descent (SGD).

17 /35

Learning the state value approximation

e Gradient of the mse:;

Ap =Esesn (V7 (s) — Vy(s)) Vi Vi (s)]
o If we sample K states s; from the state space:

Ap =1 % Z(Vﬂ(sk) — Voo (1)) Vi Vi ()

e We can also sample a single state s (online algorithm):

Ap =n(V"(s) — Vy(s)) VyVi(s)

e Unless stated otherwise, we will sample single states in this section, but the parameter updates will be
noisy (high variance).

18 /35

Linear approximation

e The approximated value is a linear combination of Feature vector
the features: P(5)

Approximated
value

sz ¢z W % ¢() State _ . Vgp(S)

weights W

e The weights are updated using stochastic gradient descent:

Aw = 1 (V7 (s) — V,(s)) §(s)

o This is the delta learning rule of linear regression and classification, with ¢(s) being the input vector and
V7 (s) — V,(s) the prediction error.

19/35

Function approximation with sampling

e The rule can be used with any function approximator, we only need to be able to differentiate it:

Ap =n(V7(s) = Vy(s)) VyoVi(s)

o The problem is that we do not know V™ (s), as it is what we are trying to estimate.
e We canreplace V”(s) by a sampled estimate using Monte-Carlo or TD:

= Monte-Carlo function approximation:
Ap =n(R: — Vy(s)) VyVi(s)
= Temporal Difference function approximation:
Ap =n(re +Ve(s') — Vo(s)) Ve Vi(s)

e Note that for Temporal Difference, we actually want to minimize the TD reward-prediction error for all
states, i.e. the surprise:

L(p) = Eses[(res1 + 7 Vo (8') — Vio(5))?] = Eses[6;]

20/35

Gradient Monte Carlo Algorithm for value estimation

e Algorithm:

= |nitialize the parameter ¢ to 0 or randomly.

= while not converged:

1. Generate an episode according to the current policy 7t until a terminal state st is reached.

T = (Soaaoarlaslaafla"')ST)

2. For all encountered states sg, S1,...,87-1:

1. Compute the return R; = Zk vkrt+k+1 .

2. Update the parameters using function approximation:
Ap =n (Rt — Vip(st)) Vo Vi(st)

e Gradient Monte-Carlo has no bias (real returns) but a high variance.

21/35

Semi-gradient Temporal Difference Algorithm for value estimation

e Algorithm:

= |nitialize the parameter ¢ to 0 or randomly.

= while not converged:
o Start from an initial state sy.
o foreach step t of the episode:
o Select a; using the current policy 7 in state s;.

o Observe 411 and 8. 1.

o Update the parameters using function approximation:

Ap =mn (Tt+1 Ty VSO(S?H—l) — Vw(st)) Vsovw(st)

o if 8411 is terminal: break

e Semi-gradient TD has less variance, but a significant bias as V,,(s;.+1) is initially wrong. You can never
trust these estimates completely.

22 /35

Function approximation for Q-values

e Q-values can be approximated by a parameterized function Qg(s, a) iIn the same manner.

e There are basically two options for the structure of the function approximator:

e The FA takes a feature vector for both the state s ¢ The FA takes a feature vector for the state s as

and the action a (which can be continuous) as input, and outputs one Q-value Qg(s, a) per
inputs, and outputs a single Q-value QH(S’ a,). possible action (the action space must be
discrete).
Feature vector
¢(3 ; a) Feature vector
gb(3) Approximated
values
State A :
—_— pproximated :
S Parameterized value Paramet.erlzed Qo (3 : al)
e State function
- —> QQ(S,Q) S - Q9(57a2)
parameters: parameters: QQ (37 CL3)
Action 0 0
a —_—

e In both cases, we minimize the mse between the true value Q" (s, a) and the approximated value

Qo(s,a).

23 /35

Q-learning with function approximation

e Initialize the parameters 6.

e while True;

= Start from an initial state sg.

= foreach step ? of the episode:

o Select a; using the behavior policy b (e.g. derived from).
o Take a;, observe 411 and 8. 1.

o Update the parameters 0:
A0 =7 (Tt+1 Ty mc?,x Q0(5t+17 a) - QH(Sta at)) VHQH(Sta a,t)

o Improve greedily the learned policy:

m(st,a) = Greedy(Qo(st,a))

o if 8411 is terminal: break

24 /35

3 - Feature construction

25/35

Feature construction

o Before we dive into deep RL (i.e. RL with non-linear FA), let’s see how we can design good feature vectors
for linear function approximation.

1 Reward
Agent NNy Policy

State

A

.| Take |Environment
action

i ok .
F270 N)
2\ gV

T SN%
PN/

parameter 6

Observe state

e The problem with deep NN is that they need a lot of samples to converge, what worsens the fundamental
problem of RL: sample efficiency.

e By engineering the right features, we could use linear approximators, which converge much faster.

e The convergence of linear FA is guaranteed, not (always) non-linear ones.

26 /35

Why do we need to choose features?

e For the cartpole, the feature vector ¢(s) could be:

.
é(s) = |,
9.

e x is the position, 8 the angle, and 0 their derivatives.

e Can we predict the value of a state linearly?

Vo(s) = Z’“’i i(s) = wh x ¢(s)

e No, a high angular velocity 0 is good when the pole is horizontal (going up) but bad if the pole is vertical
(will not stop).

e The value would depends linearly on something like 9 sin 0, which is a non-linear combination of
features.

27 135

Feature coding

e Let's suppose we have a simple problem where the state s is represented by two continuous variables x
and y.

e The true value function V™ (s) is a non-linear function of z and y.

V(s
1.0 (s)
state s
»
0.2
0.0
0.0 0.2 0.4 0.6 0.8 1.0

28 /35

Linear approximation

o If we apply linear FA directly on the feature vector |z, y|, we catch the tendency of V™ (s) but we make a

lot of bad predictions:

= high bias (underfitting).

1.0

0.2

0.0

0.0

V(s
(s) 1.0
0.8
state s
° 0.6
.
0.4
0.2
0.0
0.2 0.4 0.6 0.8 1.0

state s

0.0

0.2

0.4 0.6 0.8

1.0

29 /35

Polynomial features

e To introduce non-linear relationships between continuous variables, a simple method is to construct the
feature with polynomials of the variables.

e Example with polynomials of order 2:
T
#s)=11 =z y zy z° ¢

e We transform the two input variables x and y into a vector with 6 elements. The 1 (order 0) is there to
learn the offset.

e Example with polynomials of order 3:

d(s)=[1 z y zy 2> 3 2%y zy2 & |

e And so on. We then just need to apply linear FA on these feature vectors (polynomial regression).

Vso(s):w0+w1$+’w2y+’w3xy+’w4x2+w5y2+...

30/35

Polynomials

e Polynomials of order 2 already allow to get a better approximation.

V(s
1.0 (s)
state s
#*
0.2
0.0
0.0 0.2 0.4 0.6 0.8

1.0

0.0

Vp(s)
state s
®
0.0 0.2 0.4 0.6 0.8
X

1.0

31/35

Polynomials

e Polynomials of order 6 are an even better fit for our problem.

V(s V.(s
1.0 (s} 10 p(S)
state s state s
- -
0.2 0.2
0.0 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8
X X

1.0

32/35

Polynomials

e The higher the degree of the polynomial, the better the fit, but the number of features grows exponentially.

= Computational complexity.
= Overfitting: if we only sample some states, high-order polynomials will not interpolate correctly.

Underfitting Good Overfitting

@ hf
. N[+
. [
T r
l' e l
® ® .‘. ¢ . I

33/35

Feature spaces

e In machine learning (ML), the oldest trick in the book is the use of a feature space allowing to project data
into a higher-dimensional and non-linear space, so that the problem becomes linearly separable /
predictable.

e We can do the same in RL, using any kind of feature extraction methods:

e Polynomial features

e Gaussian (RBF) features

e Fourier transforms

e Tile coding

e Deep neural networks

Input Space Feature Space

e If the right features heve been extracted, linear methods can be applied.

34 /35

Summary of function approximation

Feature vector

d(s)
Approximated
Parameterized value
State function
—_—
S - Vo (s)

parameters:

Y

e In FA, we project the state information into a feature space to get a better representation.

e We then apply a linear approximation algorithm to estimate the value function:

Vo(s) = w' o(s)

e The linear FA is trained using some variant of gradient decent:

Aw =1 (V"(s) = Vy(s)) ¢(s)

e Deep neural networks are the most powerful function approximators in supervised learning.

e Do they also work with RL?

35/35

