

### **Deep Reinforcement Learning**

Function approximation

Julien Vitay

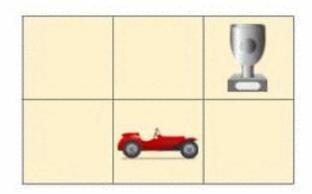
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 - Limits of tabular RL

### Tabular reinforcement learning

- All the methods seen so far belong to **tabular RL**.
- Q-learning necessitates to store in a **Q-table** one Q-value per state-action pair (s,a).

#### Game Board:



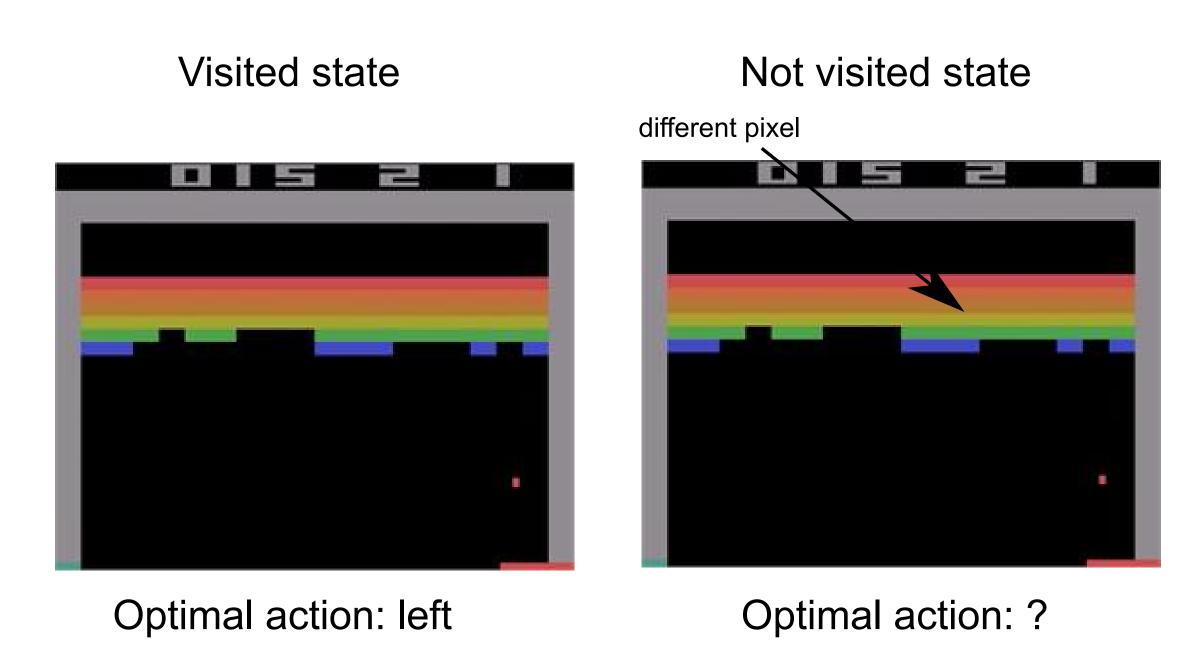
000 Current state (s):

| Q Table: |                |                |                |       |                |                |
|----------|----------------|----------------|----------------|-------|----------------|----------------|
|          | 0 0 0<br>1 0 0 | 0 0 0<br>0 1 0 | 0 0 0<br>0 0 1 | 100   | 0 1 0<br>0 0 0 | 0 0 1<br>0 0 0 |
|          | 0.2            | 0.3            | 1.0            | -0.22 | -0.3           | 0.0            |
|          | -0.5           | -0.4           | -0.2           | -0.04 | -0.02          | 0.0            |
|          | 0.21           | 0.4            | -0.3           | 0.5   | 1.0            | 0.0            |
|          | -0.6           | -0.1           | -0.1           | -0.31 | -0.01          | 0.0            |

Source: https://towardsdatascience.com/qrash-course-deep-q-networks-from-the-ground-up-1bbda41d3677

#### Tabular reinforcement learning

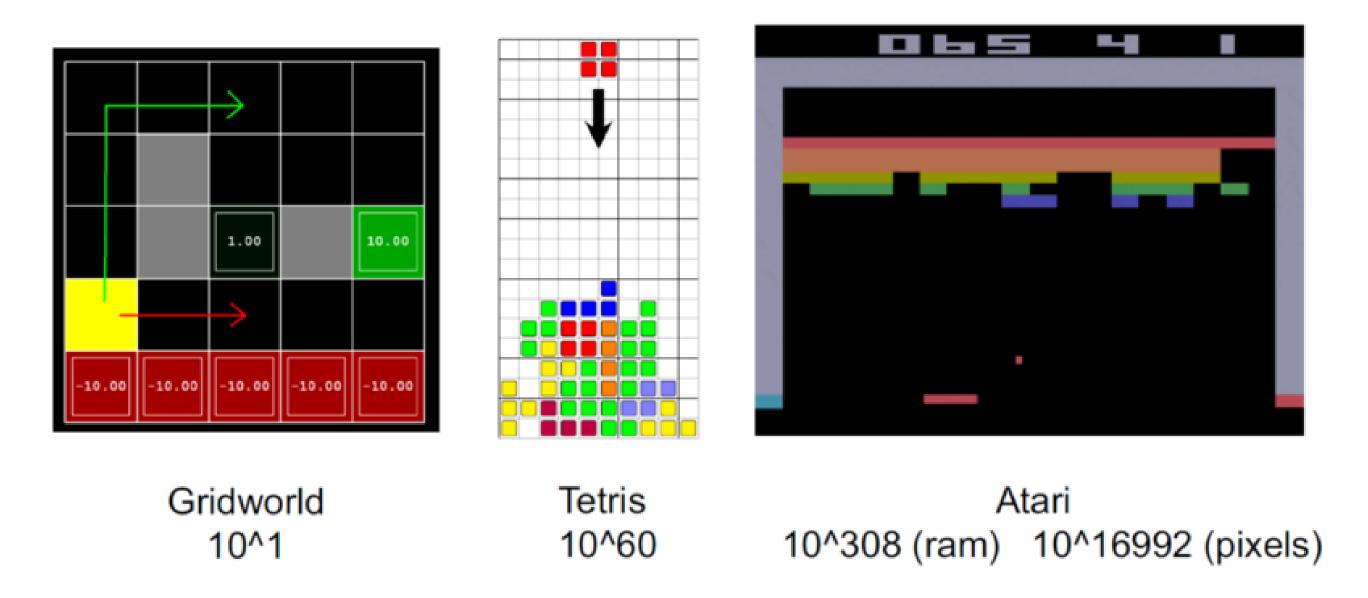
• If a state has never been visited during learning, the Q-values will still be at their initial value (0.0), no policy can be derived.



• Similar states likely have the same optimal action: we want to be able to **generalize** the policy between states.

#### Tabular reinforcement learning

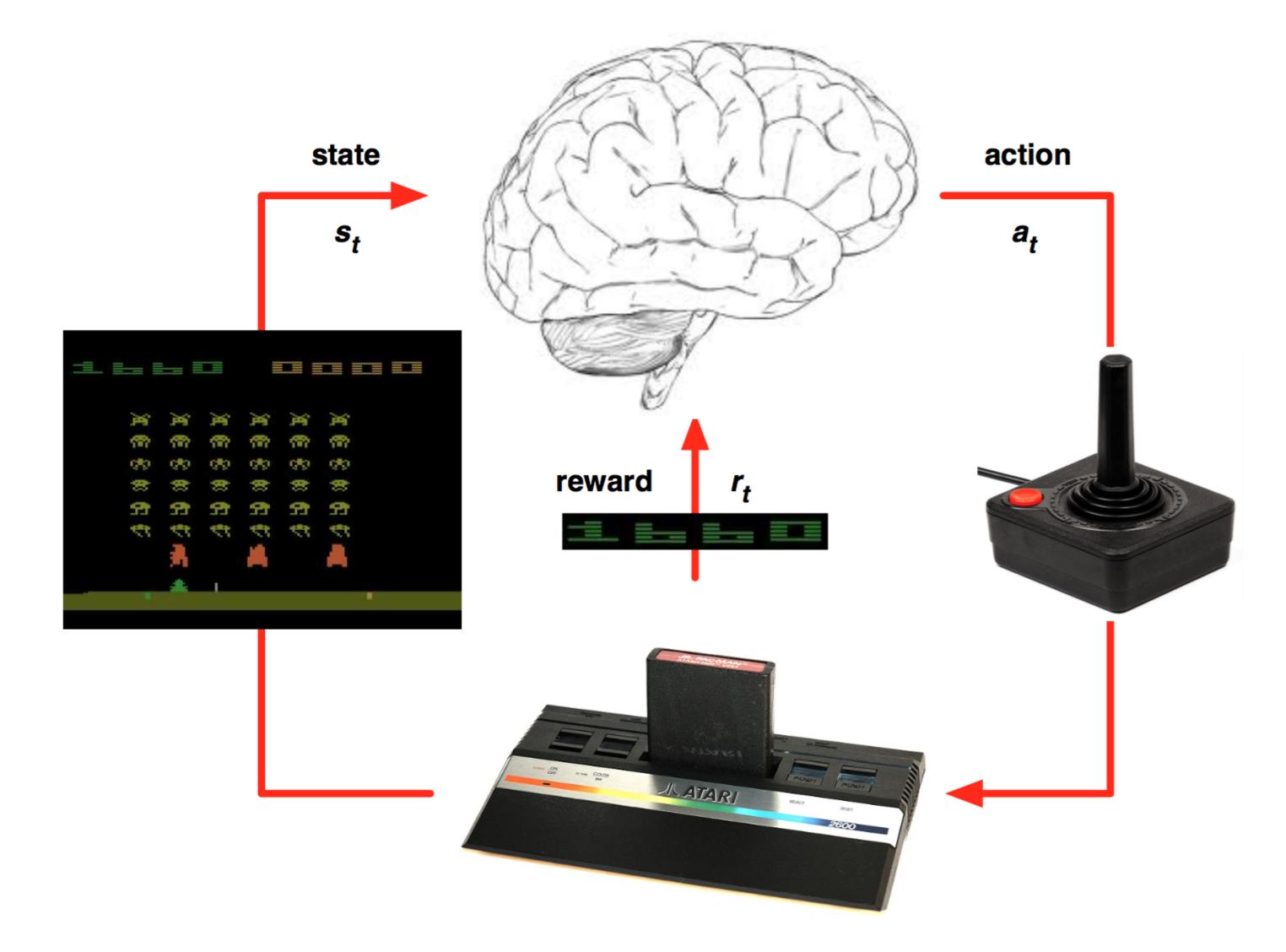
• For most realistic problems, the size of the Q-table becomes quickly untractable.



Source: https://medium.com/@twt446/a-summary-of-deep-reinforcement-learning-rl-bootcamp-lecture-2-c3a15db5934e

- ullet If you use black-and-white 256x256 images as inputs, you have  $2^{256*256}=10^{19728}$  possible states!
- Tabular RL is limited to toy problems.

# Tabular RL cannot learn to play video games



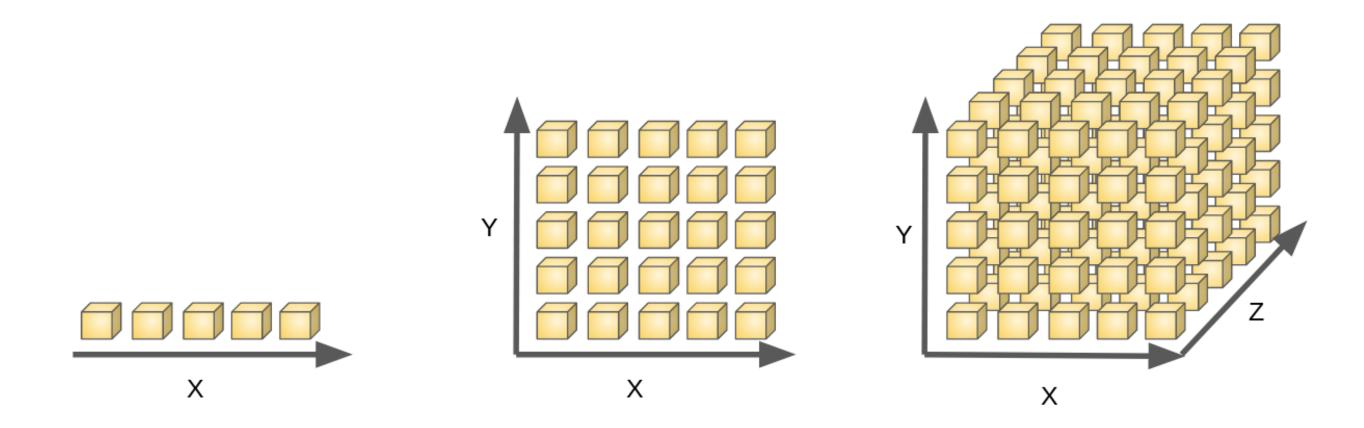
#### **Continuous action spaces**

- Tabular RL only works for small discrete action spaces.
- Robots have continuous action spaces, where the actions are changes in joint angles or torques.
- A joint angle could take any value in  $[0, \pi]$ .



#### **Continuous action spaces**

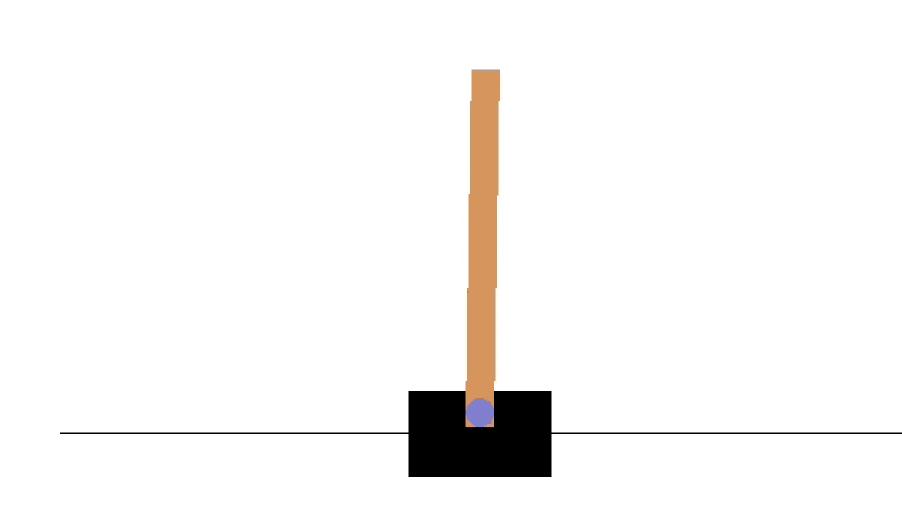
 A solution would be to discretize the action space (one action per degree), but we would fall into the curse of dimensionality.



- The more degrees of freedom, the more discrete actions, the more entries in the Q-table...
- Tabular RL cannot deal with continuous action spaces, unless we approximate the policy with an **actor-critic** architecture.

# 2 - Function approximation

#### **Feature vectors**



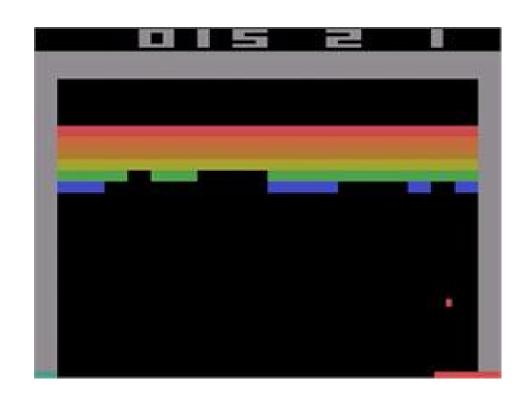
- Let's represent a state s by a vector of d features  $\phi(s) = [\phi_1(s), \phi_2(s), \ldots, \phi_d(s)]^T.$
- For the cartpole, the feature vector would be:

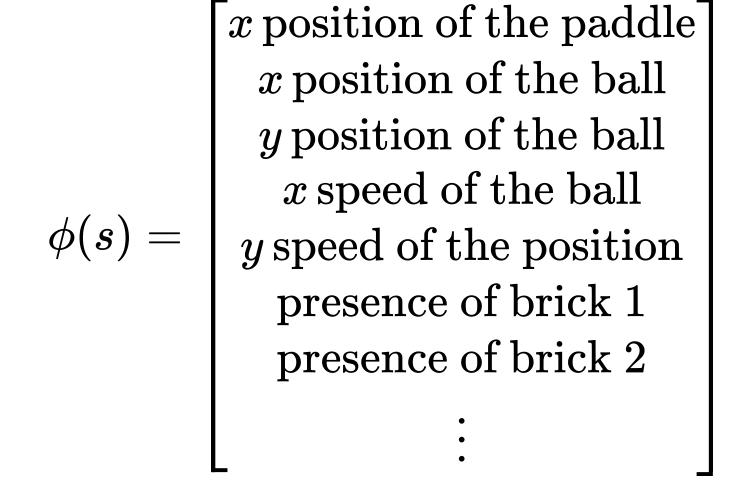
$$\phi(s) = egin{bmatrix} x \ \dot{x} \ heta \ \dot{ heta} \end{bmatrix}$$

- x is the position,  $\theta$  the angle,  $\dot{x}$  and  $\dot{\theta}$  their derivatives.
- We are able to represent **any state** *s* using these four variables.

#### **Feature vectors**

• For more complex problems, the feature vector should include all the necessary information (Markov property).





• In deep RL, we will **learn** these feature vectors, but let's suppose for now that we have them.

#### **Feature vectors**

Note that we can always fall back to the tabular case using one-hot encoding of the states:

$$\phi(s_1) = egin{bmatrix} 1 \ 0 \ 0 \ \cdots \ 0 \end{bmatrix} \qquad \phi(s_2) = egin{bmatrix} 0 \ 1 \ 0 \ \cdots \ 0 \end{bmatrix} \qquad \phi(s_3) = egin{bmatrix} 0 \ 0 \ 1 \ \cdots \ 0 \end{bmatrix} \qquad \ldots$$

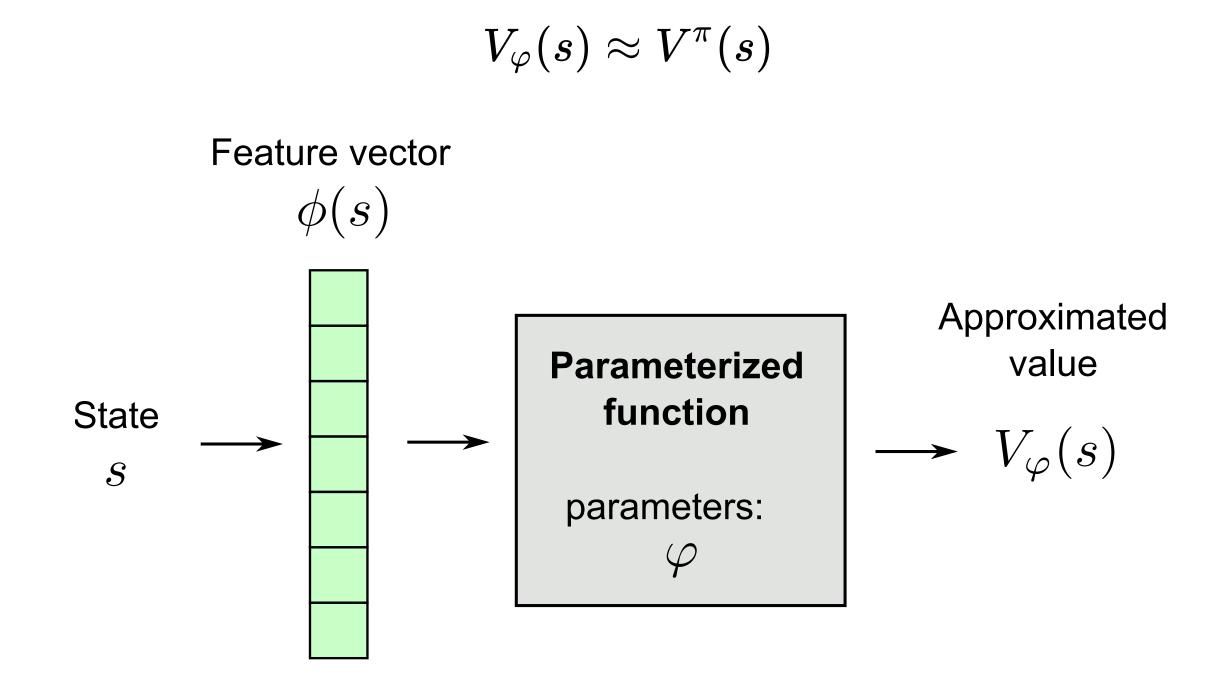
• But the idea is that we can represent states with much less values than the number of states:

$$d \ll |\mathcal{S}|$$

• We can also represent continuous state spaces with feature vectors.

#### State value approximation

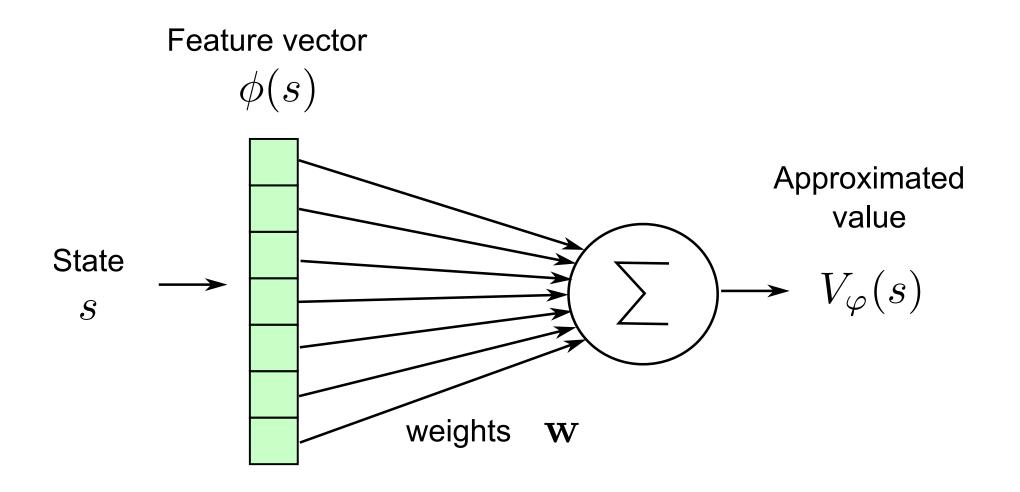
• In state value approximation, we want to approximate the state value function  $V^\pi(s)$  with a parameterized function  $V_\varphi(s)$ :



• The parameterized function can have any form. Its has a set of parameters  $\varphi$  used to transform the feature vector  $\phi(s)$  into an approximated value  $V_{\varphi}(s)$ .

#### Linear approximation of state value functions

• The simplest function approximator (FA) is the linear approximator.

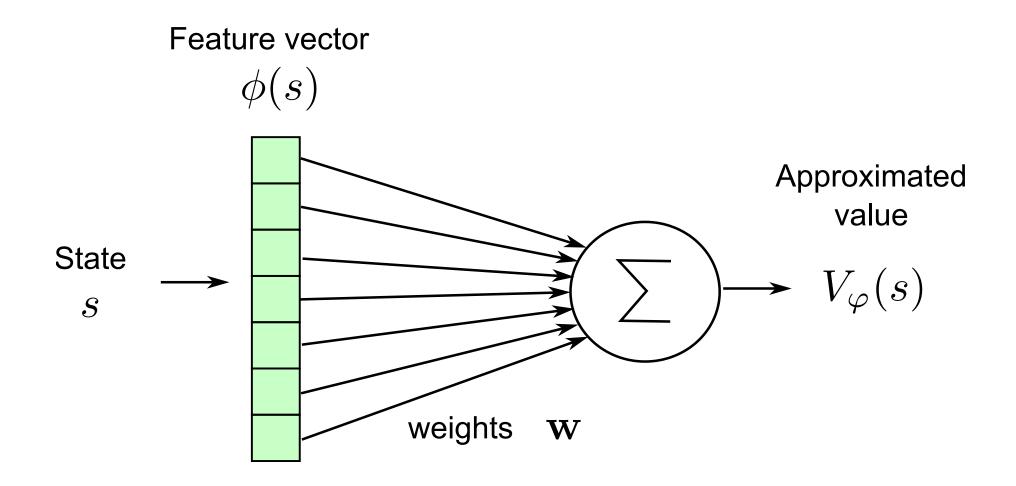


The approximated value is a linear combination of the features:

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \mathbf{w}^T imes \phi(s)$$

- ullet The **weight vector**  $\mathbf{w} = [w_1, w_2, \dots, w_d]^T$  is the set of parameters arphi of the function.
- A linear approximator is a single artificial neuron (linear regression) without a bias.

- Regardless the form of the function approximator, we want to find the parameters  $\varphi$  making the approximated values  $V_{\varphi}(s)$  as close as possible from the true values  $V^{\pi}(s)$  for all states s.
  - This is a regression problem.

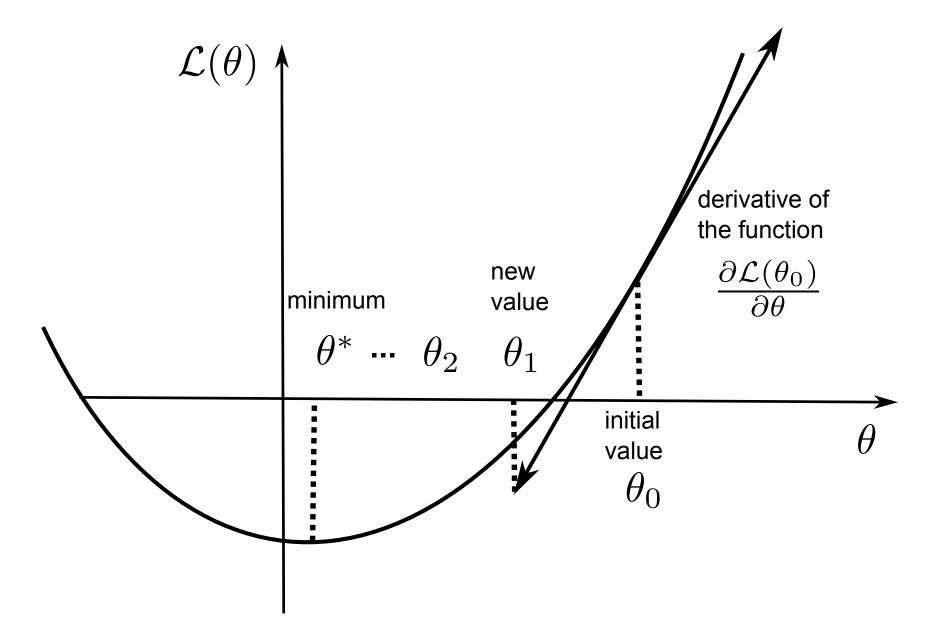


We want to minimize the mean square error between the two quantities:

$$\min_{arphi} \mathcal{L}(arphi) = \mathbb{E}_{s \in \mathcal{S}}[(V^{\pi}(s) - V_{arphi}(s))^2]$$

• The **loss function**  $\mathcal{L}(\varphi)$  is minimal when the predicted values are close to the true ones on average for all states.

• Let's suppose that we know the true state values  $V^{\pi}(s)$  for all states and that the parameterized function is **differentiable**.



 We can find the minimum of the loss function by applying gradient descent (GD) iteratively:

$$\Delta arphi = -\eta \, 
abla_arphi \mathcal{L}(arphi)$$

•  $\nabla_{\varphi} \mathcal{L}(\varphi)$  is the gradient of the loss function w.r.t to the parameters  $\varphi$ .

$$abla_{arphi}\mathcal{L}(arphi) = egin{bmatrix} rac{\partial \mathcal{L}(arphi)}{\partial arphi_1} \ rac{\partial \mathcal{L}(arphi)}{\partial arphi_2} \ rac{\partial \mathcal{L}(arphi)}{\partial arphi_K} \end{bmatrix}$$

• When applied repeatedly, GD converges to a local minimum of the loss function.

To minimize the mean square error,

$$\min_{arphi} \mathcal{L}(arphi) = \mathbb{E}_{s \in \mathcal{S}}[(V^{\pi}(s) - V_{arphi}(s))^2]$$

we will iteratively modify the parameters  $\varphi$  according to:

$$egin{aligned} \Delta arphi &= arphi_{k+1} - arphi_n = -\eta \, 
abla_arphi \mathcal{L}(arphi) = -\eta \, 
abla_arphi \mathbb{E}_{s \in \mathcal{S}}[(V^\pi(s) - V_arphi(s))^2] \ &= \mathbb{E}_{s \in \mathcal{S}}[-\eta \, 
abla_arphi(V^\pi(s) - V_arphi(s))^2] \ &= \mathbb{E}_{s \in \mathcal{S}}[\eta \, (V^\pi(s) - V_arphi(s)) \, 
abla_arphi V_arphi(s)] \end{aligned}$$

 As it would be too slow to compute the expectation on the whole state space (batch algorithm), we will sample the quantity:

$$\delta_arphi = \eta \left( V^\pi(s) - V_arphi(s) 
ight) 
abla_arphi V_arphi(s)$$

and update the parameters with stochastic gradient descent (SGD).

Gradient of the mse:

$$\Delta arphi = \mathbb{E}_{s \in \mathcal{S}}[\eta\left(V^{\pi}(s) - V_{arphi}(s)
ight) 
abla_{arphi} V_{arphi}(s)]$$

ullet If we sample K states  $s_i$  from the state space:

$$\Delta arphi = \eta \, rac{1}{K} \sum_{k=1}^K (V^\pi(s_k) - V_arphi(s_k)) \, 
abla_arphi V_arphi(s_k)$$

• We can also sample a single state s (online algorithm):

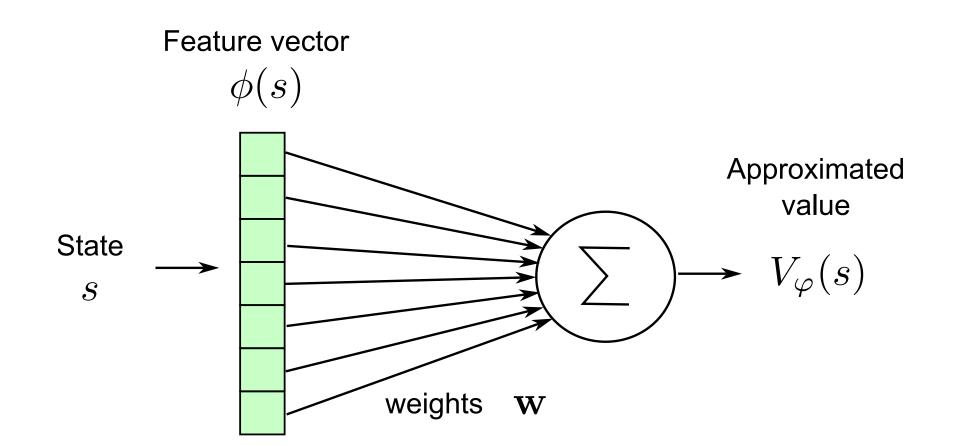
$$\Delta arphi = \eta \left( V^{\pi}(s) - V_{arphi}(s) 
ight) 
abla_{arphi} V_{arphi}(s)$$

 Unless stated otherwise, we will sample single states in this section, but the parameter updates will be noisy (high variance).

#### Linear approximation

 The approximated value is a linear combination of the features:

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \mathbf{w}^T imes \phi(s)$$



The weights are updated using stochastic gradient descent:

$$\Delta \mathbf{w} = \eta \left( V^{\pi}(s) - V_{arphi}(s) 
ight) \phi(s)$$

• This is the **delta learning rule** of linear regression and classification, with  $\phi(s)$  being the input vector and  $V^{\pi}(s) - V_{\varphi}(s)$  the prediction error.

#### Function approximation with sampling

• The rule can be used with any function approximator, we only need to be able to differentiate it:

$$\Delta arphi = \eta \left( V^{\pi}(s) - V_{arphi}(s) 
ight) 
abla_{arphi} V_{arphi}(s)$$

- ullet The problem is that we do not know  $V^\pi(s)$ , as it is what we are trying to estimate.
- ullet We can replace  $V^\pi(s)$  by a sampled estimate using Monte-Carlo or TD:
  - Monte-Carlo function approximation:

$$\Delta arphi = \eta \left( R_t - V_arphi(s) 
ight) 
abla_arphi V_arphi(s)$$

■ **Temporal Difference** function approximation:

$$\Delta arphi = \eta \left( r_{t+1} + \gamma \, V_{arphi}(s') - V_{arphi}(s) 
ight) 
abla_{arphi} V_{arphi}(s)$$

 Note that for Temporal Difference, we actually want to minimize the TD reward-prediction error for all states, i.e. the surprise:

$$\mathcal{L}(arphi) = \mathbb{E}_{s \in \mathcal{S}}[(r_{t+1} + \gamma \, V_{arphi}(s') - V_{arphi}(s))^2] = \mathbb{E}_{s \in \mathcal{S}}[\delta_t^2]$$

#### **Gradient Monte Carlo Algorithm for value estimation**

- Algorithm:
  - Initialize the parameter  $\varphi$  to 0 or randomly.
  - while not converged:
    - 1. Generate an episode according to the current policy  $\pi$  until a terminal state  $s_T$  is reached.

$$au=(s_o,a_o,r_1,s_1,a_1,\ldots,s_T)$$

- 2. For all encountered states  $s_0, s_1, \ldots, s_{T-1}$ :
  - 1. Compute the return  $R_t = \sum_k \gamma^k r_{t+k+1}$  .
  - 2. Update the parameters using function approximation:

$$\Delta arphi = \eta \left( R_t - V_arphi(s_t) 
ight) 
abla_arphi V_arphi(s_t)$$

• Gradient Monte-Carlo has no bias (real returns) but a high variance.

### Semi-gradient Temporal Difference Algorithm for value estimation

- Algorithm:
  - Initialize the parameter  $\varphi$  to 0 or randomly.
  - while not converged:
    - $\circ$  Start from an initial state  $s_0$ .
    - $\circ$  **foreach** step t of the episode:
      - Select  $a_t$  using the current policy  $\pi$  in state  $s_t$ .
      - $\circ$  Observe  $r_{t+1}$  and  $s_{t+1}$ .
      - Update the parameters using function approximation:

$$\Delta arphi = \eta \left( r_{t+1} + \gamma \, V_{arphi}(s_{t+1}) - V_{arphi}(s_t) 
ight) 
abla_{arphi} V_{arphi}(s_t)$$

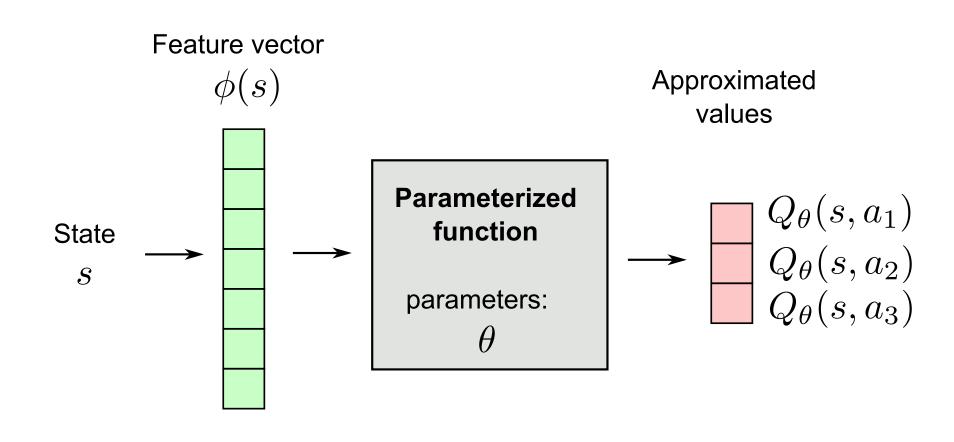
- $\circ$  if  $s_{t+1}$  is terminal: break
- ullet Semi-gradient TD has less variance, but a significant bias as  $V_{arphi}(s_{t+1})$  is initially wrong. You can never trust these estimates completely.

#### **Function approximation for Q-values**

- ullet Q-values can be approximated by a parameterized function  $Q_ heta(s,a)$  in the same manner.
- There are basically two options for the structure of the function approximator:
- The FA takes a feature vector for both the state s and the action a (which can be continuous) as inputs, and outputs a single Q-value  $Q_{\theta}(s,a)$ .
  - Feature vector  $\phi(s,a)$  State s Parameterized function  $Q_{\theta}(s,a)$  parameters:  $Q_{\theta}(s,a)$

 $\theta$ 

• The FA takes a feature vector for the state s as input, and outputs one Q-value  $Q_{\theta}(s,a)$  per possible action (the action space must be discrete).



• In both cases, we minimize the mse between the true value  $Q^{\pi}(s,a)$  and the approximated value  $Q_{\theta}(s,a)$ .

Action

### **Q-learning with function approximation**

- Initialize the parameters  $\theta$ .
- while True:
  - Start from an initial state  $s_0$ .
  - foreach step t of the episode:
    - $\circ$  Select  $a_t$  using the behavior policy b (e.g. derived from  $\pi$ ).
    - $\circ$  Take  $a_t$ , observe  $r_{t+1}$  and  $s_{t+1}$ .
    - $\circ$  Update the parameters  $\theta$ :

$$\Delta heta = \eta \left( r_{t+1} + \gamma \, \max_{a} Q_{ heta}(s_{t+1}, a) - Q_{ heta}(s_{t}, a_{t}) 
ight) 
abla_{ heta} Q_{ heta}(s_{t}, a_{t})$$

Improve greedily the learned policy:

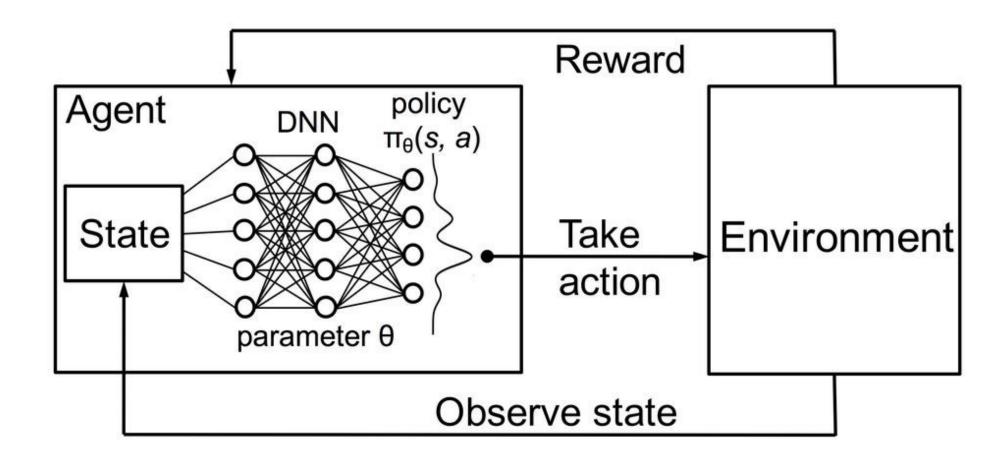
$$\pi(s_t,a) = \operatorname{Greedy}(Q_{ heta}(s_t,a))$$

 $\circ$  if  $s_{t+1}$  is terminal: break

#### 3 - Feature construction

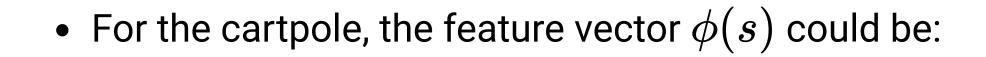
#### **Feature construction**

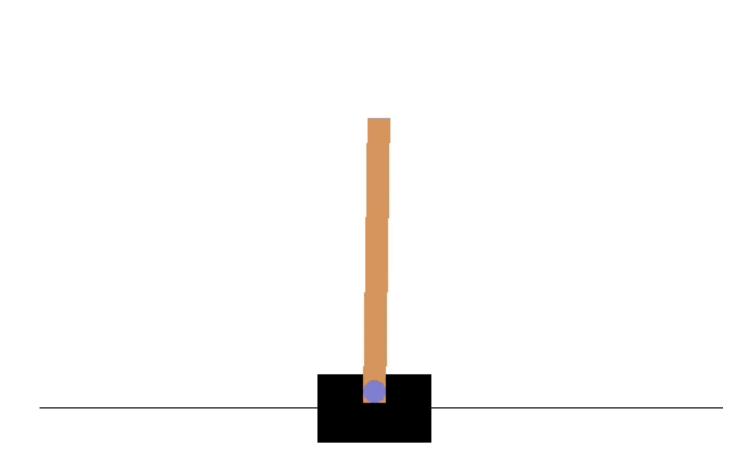
• Before we dive into deep RL (i.e. RL with non-linear FA), let's see how we can design good **feature vectors** for linear function approximation.



- The problem with deep NN is that they need a lot of samples to converge, what worsens the fundamental problem of RL: sample efficiency.
- By engineering the right features, we could use linear approximators, which converge much faster.
- The convergence of linear FA is **guaranteed**, not (always) non-linear ones.

### Why do we need to choose features?





$$\phi(s) = egin{bmatrix} x \ \dot{x} \ heta \ \dot{ heta} \end{bmatrix}$$

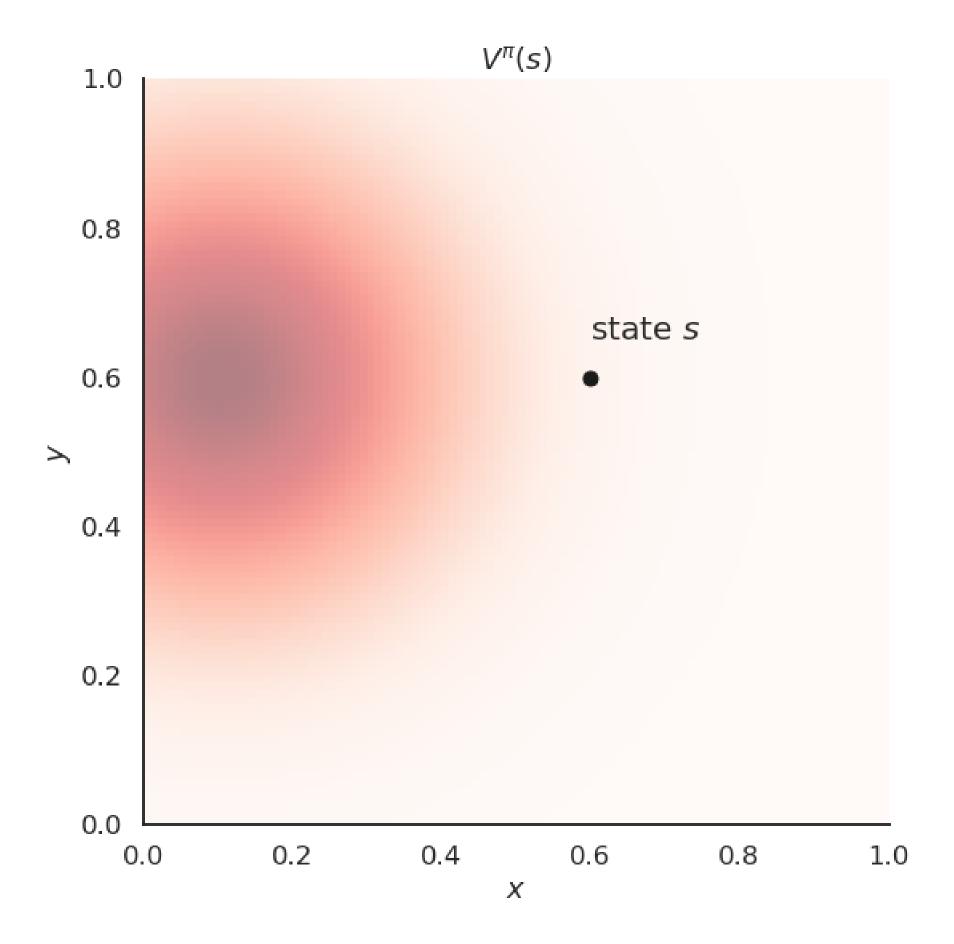
- x is the position, heta the angle,  $\dot{x}$  and  $\dot{ heta}$  their derivatives.
- Can we predict the value of a state linearly?

$$V_{arphi}(s) = \sum_{i=1}^d w_i \, \phi_i(s) = \mathbf{w}^T imes \phi(s)$$

- No, a high angular velocity  $\dot{\theta}$  is good when the pole is horizontal (going up) but bad if the pole is vertical (will not stop).
- The value would depends linearly on something like  $\dot{\theta} \sin \theta$ , which is a non-linear combination of features.

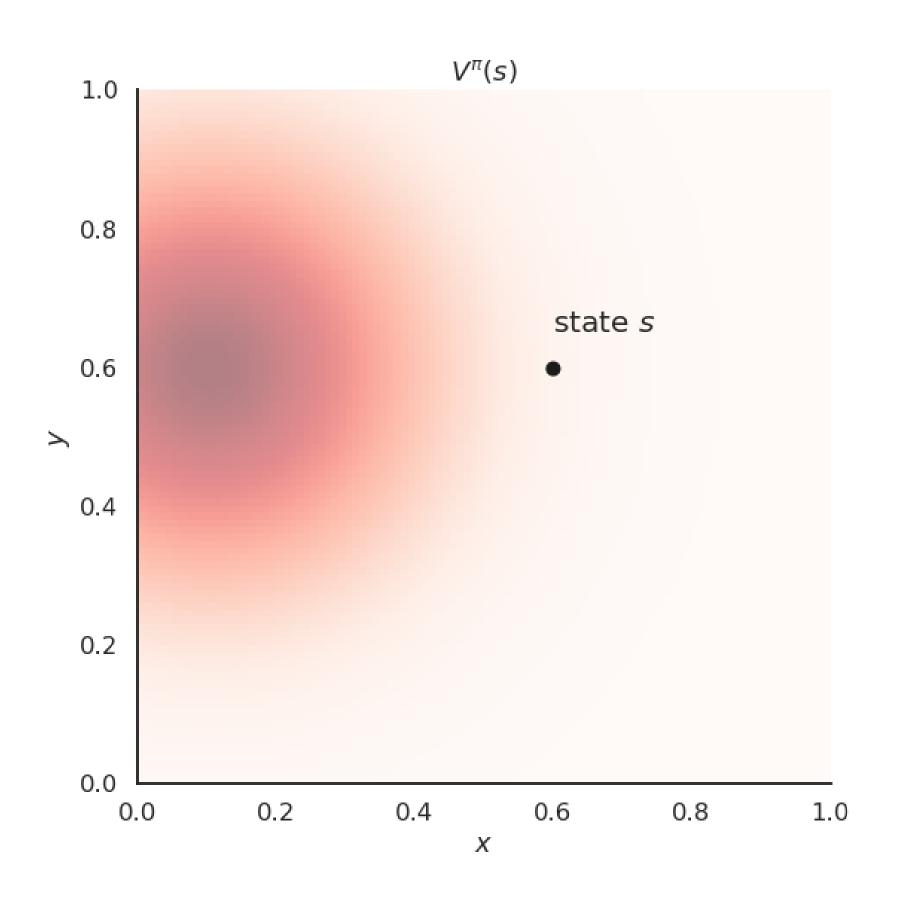
### **Feature coding**

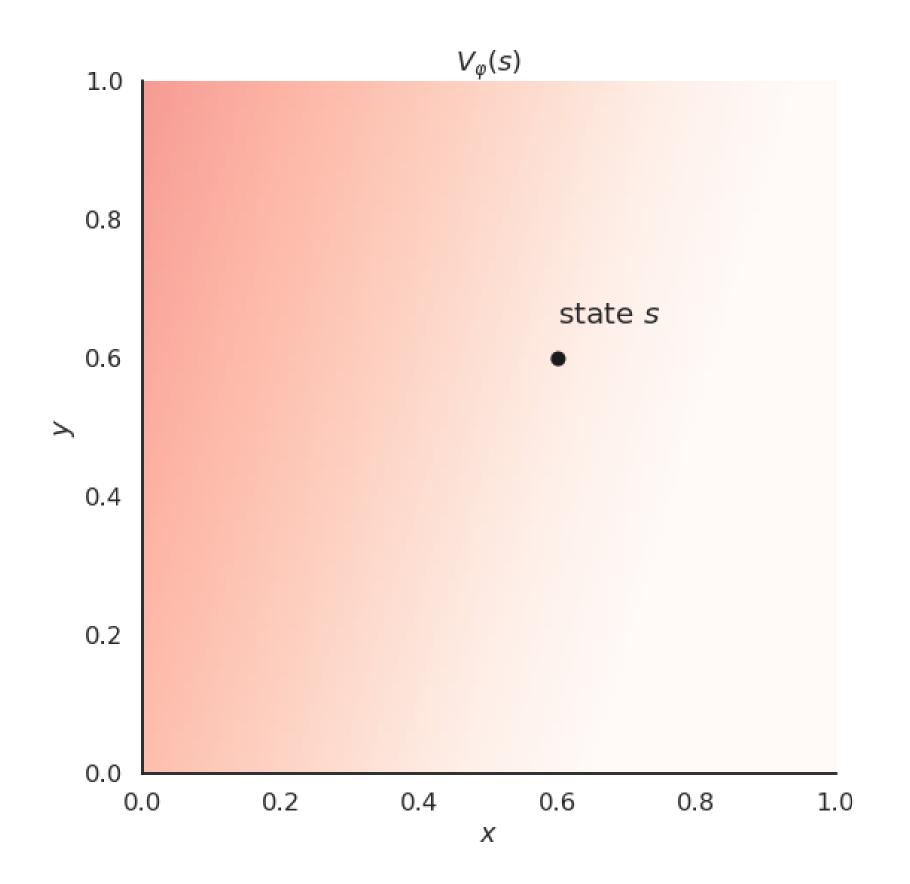
- Let's suppose we have a simple problem where the state s is represented by two continuous variables x and y.
- The true value function  $V^\pi(s)$  is a non-linear function of x and y.



### Linear approximation

- If we apply linear FA directly on the feature vector [x,y], we catch the tendency of  $V^\pi(s)$  but we make a lot of bad predictions:
  - high bias (underfitting).





#### Polynomial features

- To introduce non-linear relationships between continuous variables, a simple method is to construct the feature with **polynomials** of the variables.
- Example with polynomials of order 2:

$$\phi(s) = egin{bmatrix} 1 & x & y & xy & x^2 & y^2 \end{bmatrix}^T$$

- We transform the two input variables x and y into a vector with 6 elements. The 1 (order 0) is there to learn the offset.
- Example with polynomials of order 3:

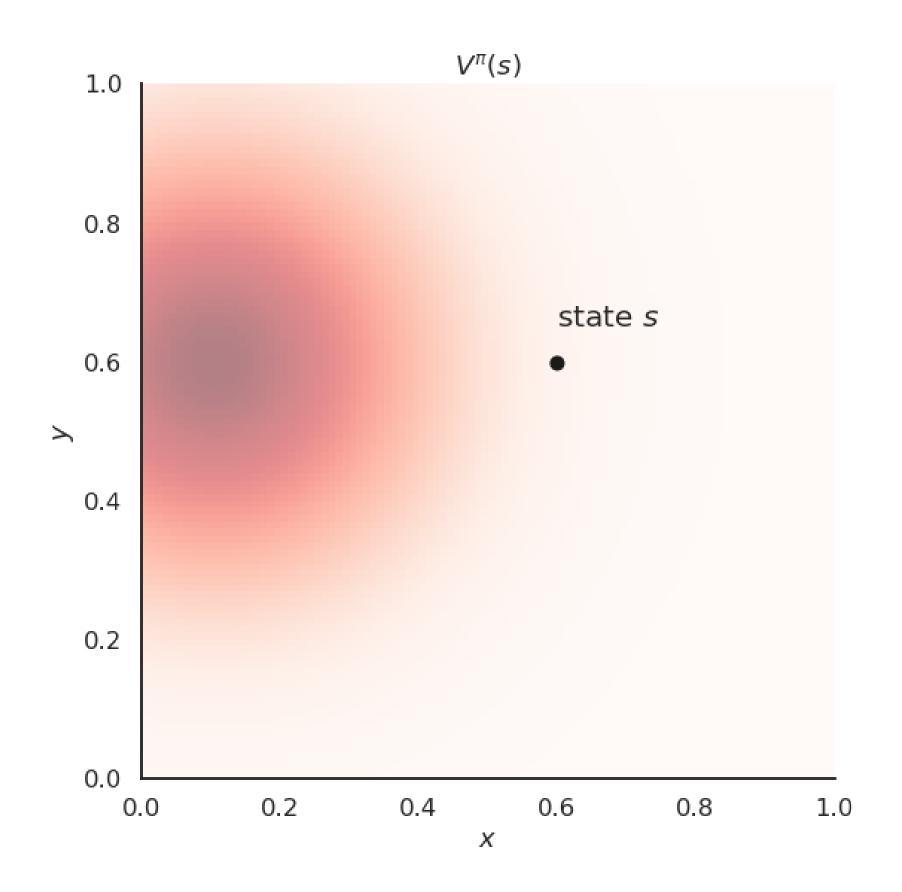
$$\phi(s) = egin{bmatrix} 1 & x & y & xy & x^2 & y^2 & x^2y & xy^2 & x^3 & y^3 \end{bmatrix}^T$$

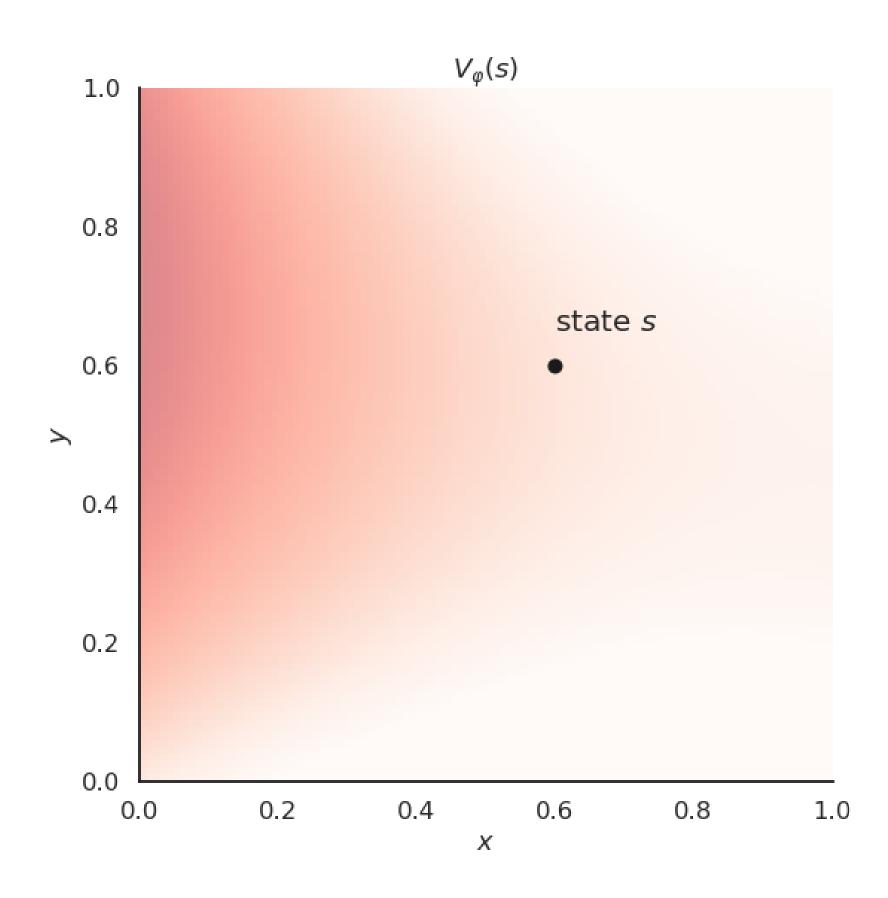
• And so on. We then just need to apply linear FA on these feature vectors (polynomial regression).

$$V_{arphi}(s) = w_0 + w_1\,x + w_2\,y + w_3\,x\,y + w_4\,x^2 + w_5\,y^2 + \dots$$

## **Polynomials**

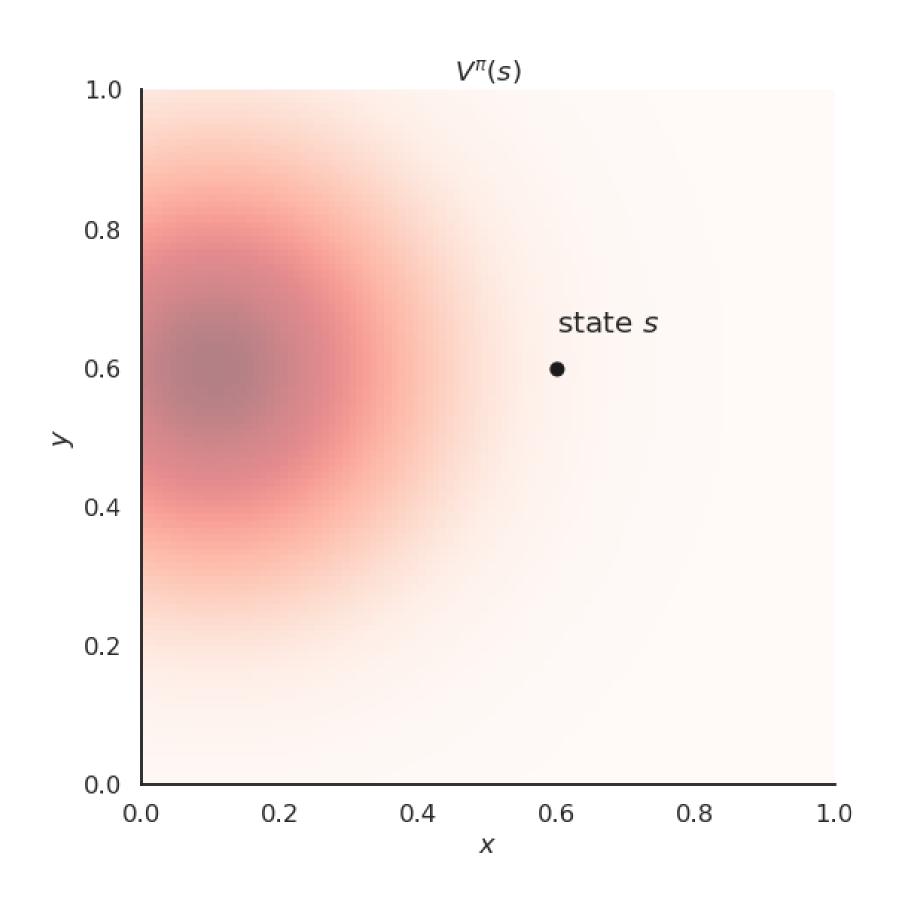
• Polynomials of order 2 already allow to get a better approximation.

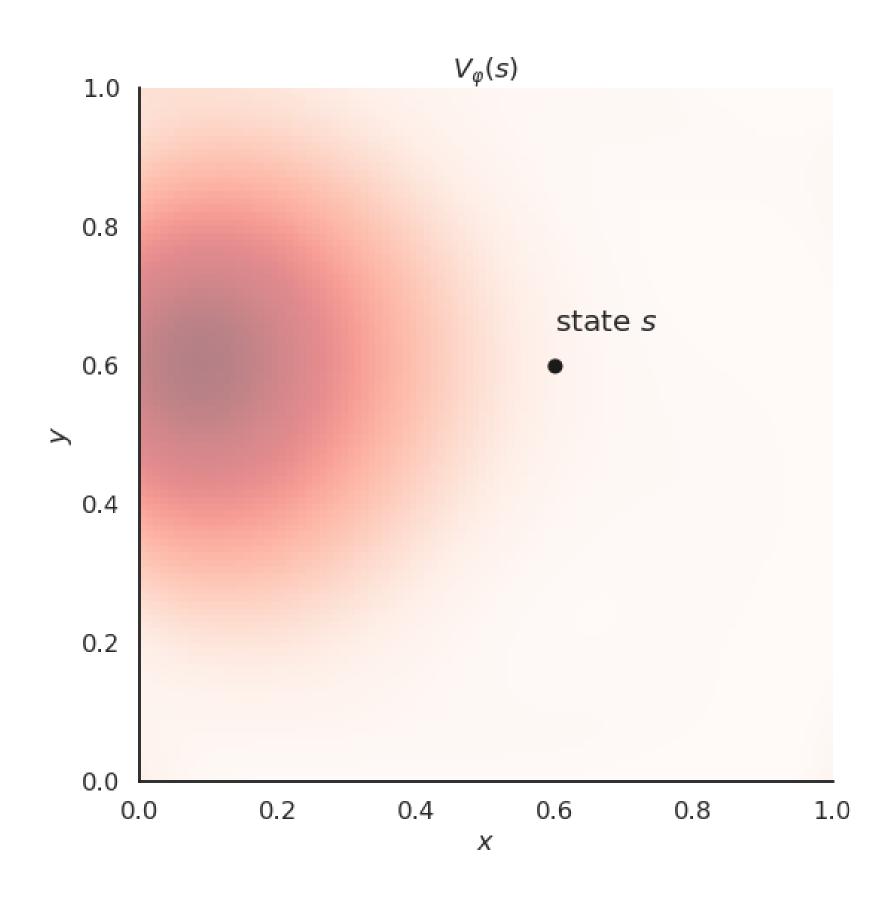




## **Polynomials**

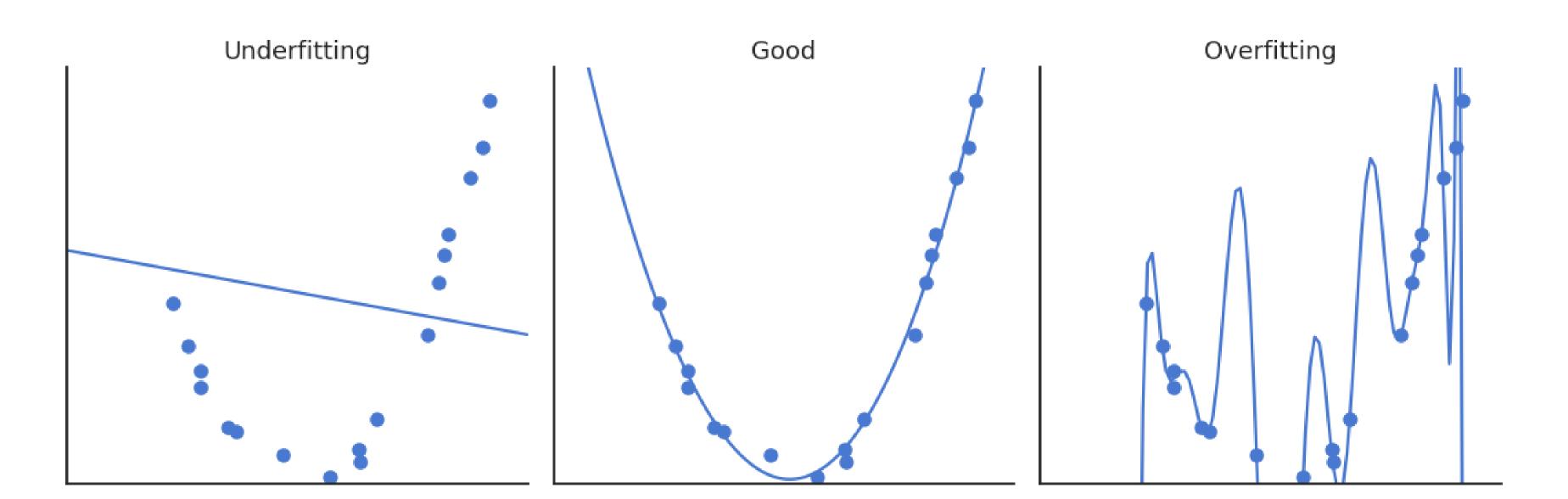
• Polynomials of order 6 are an even better fit for our problem.





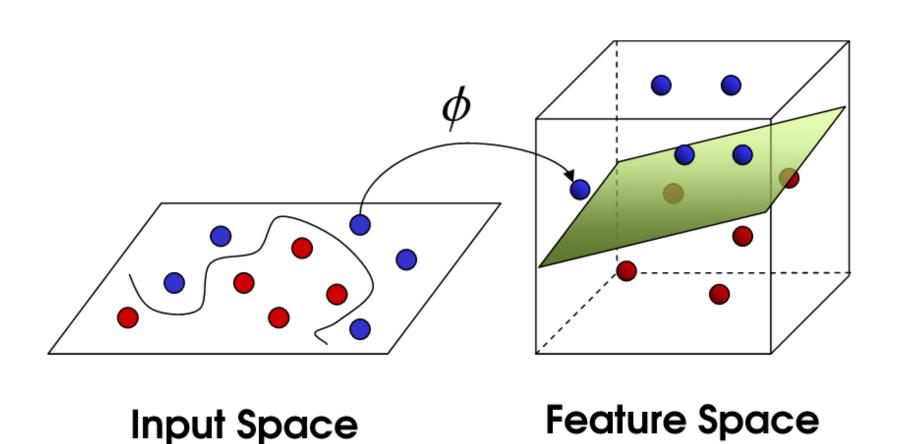
### **Polynomials**

- The higher the degree of the polynomial, the better the fit, but the number of features grows exponentially.
  - Computational complexity.
  - Overfitting: if we only sample some states, high-order polynomials will not interpolate correctly.



#### **Feature spaces**

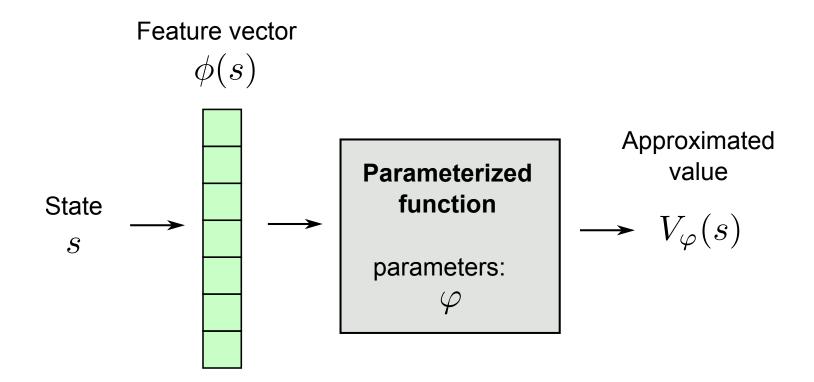
- In machine learning (ML), the oldest trick in the book is the use of a **feature space** allowing to project data into a higher-dimensional and non-linear space, so that the problem becomes linearly separable / predictable.
- We can do the same in RL, using any kind of feature extraction methods:



- Polynomial features
- Gaussian (RBF) features
- Fourier transforms
- Tile coding
- Deep neural networks

• If the right features heve been extracted, linear methods can be applied.

#### Summary of function approximation



- In FA, we project the state information into a **feature space** to get a better representation.
- We then apply a linear approximation algorithm to estimate the value function:

$$V_{arphi}(s) = \mathbf{w}^T \, \phi(s)$$

• The linear FA is trained using some variant of gradient decent:

$$\Delta \mathbf{w} = \eta \left( V^{\pi}(s) - V_{arphi}(s) 
ight) \phi(s)$$

- Deep neural networks are the most powerful function approximators in supervised learning.
- Do they also work with RL?