REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Deep learning

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/26

1 - Artificial neural networks

2/26

Artificial neural networks
 An artificial neural network (ANN) is a cascade of fully-connected (FC) layers of artificial neurons.

hidden laver _ hidden layer 1 hidden layver 2 hidden laver 3
- input laver

- i _;=5..;'§:gn-.
£ Z7 F s
R QN
e :f' W = &) g oy ..'::" ol f LA :
P ve Sl SN e
oo T T T o R e T o e R
g s S s .:l',r;';
B S T ' Fa e W STy T e e
.”"ﬂ;* e ‘,#;i*#ﬁ'rh%:t*ﬁ?i‘i:# i
e s . x Ly o g T
i‘i;:i};h,s;:.‘-.,..; = '~.}¥#§+§§t-"§h‘.; 5{?3."’5-';‘;‘.#5-‘35 3
S A PR e R N e gt el ! e
E-::#_‘:;:';:ri:‘;t::*;::}aﬁ' ’:‘?:I:-t:_-..-‘;:'.::;!'.;-;';:-=r;lﬁlﬁ'{“‘};:i:_"'lfl:_-.-:-.:;g*i._._-::ﬁ,‘?_:-ft-.
gt e W S i e i Tl T e e e T N R,
Ty #-.#"t“*ﬂﬂ: '#ﬂj'arﬂ:-i'--. o T, R
;_'.-ﬁ-"ﬂ':=t-*¢;‘.ﬂn, i AT R G, R R
e) A e, i Ty i b N
B, B SNy R B AERy B ey
e @ NN @ i
iy i [g "'1-_-_-.."1 :.:'I-"'".":- 'F":"'i'é -"l;-_-_-r' ey, T
: o i -.f.-,j'a-.-* S -#,,f@ﬁ:t{ i
r
- L

s Y 2, g e £
w_;.ﬁ:ﬁ’rﬁﬁﬂ‘#; L5 SN
N N "ol

<

e Each layer k transforms an input vector h_; into an output vector h, using a weight matrix W, a bias
vector by, and an activation function f().

hy = f(Wi x hg_1 + bg)

e Overall, ANNs are non-linear parameterized function estimators from the inputs x to the outputs y with
parameters 6 (all weight matrices and biases).

y = Fy(x)

3/26

Loss functions

e ANNSs can be used for both regression (continuous outputs) and classification (discrete outputs) tasks.

o In supervised learning, we have a fixed training set D of N samples (x;, t;), where t; is the desired
output or target.

e Regression:

= The output layer uses a linear activation function: f(z) = x

= The network minimizes the mean square error (mse) of the model on the training set:

L(0) = Exgenl||t — yl|*

e Classification:

= The output layer uses the softmax operator to produce a probability distribution: y; = Zezzk
k

= The network minimizes the cross-entropy or negative log-likelihood of the model on the training set:

L(0) = Extep|—t logy]

4/26

Cross-entropy

e The cross-entropy between two probability distributions X and Y measures their similarity:

H(X,Y) — <Ewva[_ IOgP(Y — :B)]

e Are samples from X likely under Y'?

e Minimizing the cross-entropy makes the two distributions equal almost anywhere.

A
X Y

samples from X

\

5/26

Cross-entropy

e |n supervised learning, the targets t are fixed one-hot encoded vectors.

L(6) = Exgep[— Y t; logy;]

J

e But it could be any target distribution.

6/26

Backpropagation

 In both cases, we want to minimize the loss function by applying Stochastic Gradient Descent (SGD) or a
variant (Adam, RMSprop).

AO = —nVoL(0)

e The question is how to compute the gradient of the loss function w.r.t the parameters 6.

e For both the mse and cross-entropy loss functions, we have:

VoL(0) = Ep[—(t —y) Vo y]

e There is an algorithm to compute efficiently the gradient of the output w.r.t the parameters:
backpropagation (see Neurocomputing).

e In deep RL, we do not care about backprop: tensorflow or pytorch do it for us.

Rumelhart, Hinton, Williams (1986). “Learning representations by back-propagating errors”. Nature.

7126

Components of neural networks

1 Reward
Agent |

State

A

Take |Environment
action

parameter 6

Observe state

e There are three aspects to consider when building a neural network:

1. Architecture: how many layers, what type of layers, how many neurons, etc.

o Task-dependent: each RL task will require a different architecture. Not our focus.

2. Loss function: what should the network do?

e Central to deep RL!
3. Update rule how should we update the parameters @ to minimize the loss function? SGD, backprop.

e Not really our problem, but see natural gradients later.

8 /26

2 - Convolutional neural networks

9/26

Convolutional layers

e When using images as inputs, fully-connected

networks (FCN) would have too many weights:

= Slow.

= Overfitting.

e Convolutional layers reduce the number of weights
by reusing weights at different locations.

= Principle of a convolution.

s Fast and efficient.

10/26

Convolutional layers

32

0000@

:._______\
|]

32

Source: https://github.com/vdumoulin/conv_arithmetic

A convolutional layer extracts features of its
Inputs.

d filters are defined with very small sizes (3x3,
5x5...).

Each filter is convoluted over the input image (or
the previous layer) to create a feature map.

The set of d feature maps becomes a new 3D
structure: a tensor.

If the input image is 32x32x3, the resulting tensor
will be 32x32xd.

The convolutional layer has only very few
parameters: each feature map has 3x3 values in
the filter and a bias, i.e. 10 parameters.

The convolution operation is differentiable:
backprop will work.

11/26

https://github.com/vdumoulin/conv_arithmetic

Max-pooling

224X224x64

112x112x64

pool

- e 112
224 downsampling

224

Source: http://cs231n.github.io/convolutional-networks/

e The number of elements in a convolutional layer is still too high. We need to reduce the spatial dimension

of a convolutional layer by downsampling it.

e For each feature, a max-pooling layer takes the maximum value of a feature for each subregion of the

image (mostly 2x2).

e Pooling allows translation invariance: the same input pattern will be detected whatever its position in the

iInput image.

e Max-pooling is also differentiable.

Single depth slice

— X

max pool with 2x2 filters
and stride 2

(R 2 | 4
SR /7 | 8
3 | 2 I
1 | 2

>

12/26

http://cs231n.github.io/convolutional-networks/

Convolutional neural networks

C3: f. maps 16@10x10
INPUT C1: feature maps S4: f. maps 16@5x5

53

B@ 1 4.1:1 4
‘ ‘ FuII cgml.ectmn Gaussnan connections
Convolutions Subsampling Convolutions Subsamplmg Full connectlun

C5: layer
150 FE layer OUTF’UT

o A convolutional neural network (CNN) is a cascade of convolution and pooling operations, extracting

layer by layer increasingly complex features.

e The spatial dimensions decrease after each pooling operation, but the number of extracted features

increases after each convolution.

e One usually stops when the spatial dimensions are around 7x7.

e The last layers are fully connected. Can be used for regression and classification depending on the output

layer and the loss function.

e Training a CNN uses backpropagation all along: the convolution and pooling operations are differentiable.

13/26

Convolutional neural networks

— CAR
¥ — TRUCK

A ‘ -

—]
' o

' S — BICYCLE
INPUT CONVOLUTION + RELU POOLING CONVOLUTION + RELU POOLING FLATTEN m;iur:gnﬂ SOFTMAX
" N . % & i g
FEATURE LEARNING CLASSIFICATION

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

e The only thing we need to know is that CNNs are non-linear function approximators that work well with
Images.

y = Fy(x)

e The conv layers extract complex features from the images through learning.

e The last FC layers allow to approximate values (regression) or probability distributions (classification).

14 /26

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

3 - Autoencoders

15/26

Autoencoders

e The problem with FCN and CNN is that they extract
features in supervised learning tasks.

encode > decode >

= Need for a lot of annotated data (image, label).

e Autoencoders allows unsupervised learning:
= They only need inputs (images).

e Their task is to reconstruct the input:

y =X~XX

e The reconstruction loss is simply the mse between the input and its reconstruction.

Lautoencoder(e) — <I:xeDﬂ |5é — X‘ |2]

e Apart from the loss function, they are trained as regular NNs.

16 /26

Autoencoders

e Autoencoders consists of:

= the encoder: from the input x to the latent space z.

= the decoder: from the latent space z to the reconstructed input X.

/

Encoder

/

Source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

- |deally they are identical.

X ~ x

Bottleneck!

representation of the input.

\

Decoder

fo

N

An compressed low dimensional

Reconstructed
input

17 /126

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Autoencoders

e The latent space z is a compressed representation (bottleneck) of the inputs x.

e |t has to learn to compress efficiently the inputs without losing too much information, in order to
reconstruct the inputs.

= Dimensionality reduction.

= Unsupervised feature extraction.

Reconstructed

Input <--———————— . Ideally they are identical. ------------------ > input

X ~ x'

/
\

Bottleneck!

Encoder Decoder ,
X
9 fo ®
An compressed low dimensional
representation of the input.

Source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

18 /26

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Autoencoders in deep RL

e In deep RL, we can construct the feature vector with an autoencoder.

e The autoencoder can be trained offline with a random agent or online with the current policy (auxiliary

loss).

Latent space

Feature vector

|

\Encoder /

ﬁ

¢(3) / Decoder \

State

Function
approximator

Reconstructed

state

~

S

Approximated
value
Vi (s)

19/26

4 - Recurrent neural networks

20 /26

Recurrent neural networks

 FCN, CNN and AE are feedforward neural networks: they transform an input X into an output y:

y = Fy(x)
e If you present a sequence of inputs xX¢, X1, ..., X; to a feedforward network, the outputs will be
independent from each other:
Yo = Fy(xo)
y1 = Fp(x1)
yt = Fo(x¢)

e The output y; does not depend on the history of inputs Xg, X1,...,X: 1.

21/26

Recurrent neural networks

e This not always what you want.

o |f yourinputs are frames of a video, the correct response at time ¢ might also depend on previous frames.

Source: https://srirangatarun.wordpress.com/2018/07/09/video-frame-prediction-with-keras/

e The task of the NN could be to explain what happens at each frame.

e As we saw, a single frame is often not enough to predict the future (Markov property).

22 /26

https://srirangatarun.wordpress.com/2018/07/09/video-frame-prediction-with-keras/

Recurrent neural networks

o Arecurrent neural network (RNN) uses it previous output as an
additional input (context).

All vectors have a time index £ denoting the time at which this

l T vector was computed.
A? e The input vector at time ¢ is x;, the output vector is hy:

h; = f(W,; x x¢ + Wp, X hy_1 + b)

Source: C. Olah

e The input x; and previous output h;_; are multiplied by learnable weights:
= W, is the input weight matrix.

= W} is the recurrent weight matrix.

23 /26

Recurrent neural networks

®
l

!
i

&

(h)
W=

()
l
6

Source: C. Olah

e This is equivalent to a deep neural network taking the whole history xg, X1, .

weights between two time steps.
e The weights are trainable using backpropagation through time (BPTT).

A RNN can learn the temporal dependencies between inputs.

®
l

. . , Xt as inputs, but reusing

24 126

LSTM cell

o A popular variant of RNN is LSTM (long short-term
memory).

e In addition to the input x; and output hy, it also has

a state (or memory or context) C; which is
maintained over time.

e It also contains three multiplicative gates:

= The input gate controls which inputs should
enter the memory.

= The forget gate controls which memory should
be forgotten.

= The output gate controls which part of the
memory should be used to produce the output.

Source: C. Olah

251726

RNN in RL

Source: https://deepmind.com/blog/article/capture-the-flag-science

e An obvious use case of RNNs in deep RL is for POMDP (partially observable MDP).

e |f the individual states s; do not have the Markov property, the output of a LSTM

+
F Aj does:

= The output of the RNN is a representation of the complete history

S0,81,...,48¢.

e We can apply RL on the output of a RNN and solve POMDPs for free!

26 /26

https://deepmind.com/blog/article/capture-the-flag-science

