

Deep Reinforcement Learning

Deep learning

Julien Vitay Professur für Künstliche Intelligenz - Fakultät für Informatik

1 - Artificial neural networks

Artificial neural networks

An **artificial neural network** (ANN) is a cascade of **fully-connected** (FC) layers of artificial neurons.

Each layer k transforms an input vector \mathbf{h}_{k-1} into an output vector \mathbf{h}_k using a weight matrix W_k , a bias vector \mathbf{b}_k and an activation function $f()$.

$$
\mathbf{h}_k = f(W_k \times \mathbf{h}_{k-1} +
$$

Overall, ANNs are non-linear parameterized function estimators from the inputs x to the outputs y with parameters θ (all weight matrices and biases).

 \equiv

$$
\mathbf{y}=F_{\theta}(\mathbf{x})
$$

 \mathbf{b}_k

Loss functions

- ANNs can be used for both **regression** (continuous outputs) and **classification** (discrete outputs) tasks.
- In supervised learning, we have a fixed **training set** $\mathcal D$ of N samples $(\mathbf x_{t}, \mathbf t_{i})$, where t_{i} is the **desired output** or **target**.
- **Regression:**
	- The output layer uses a **linear** activation function: $f(x) = x$
	- The network minimizes the **mean square error** (mse) of the model on the training set:

- The output layer uses the **softmax** operator to produce a probability distribution: $y_j = \frac{e^{z_j}}{\sum_k e}$
- The network minimizes the **cross-entropy** or **negative log-likelihood** of the model on the training set:

$$
\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \in \mathcal{D}}[-\mathbf{t} \, \, \mathrm{lc}
$$

z k e^{z_j}

 \log y

Classification:

$$
\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \in \mathcal{D}}[||\mathbf{t} - \mathbf{y}||^2]
$$

Cross-entropy

 \equiv

The cross-entropy between two probability distributions X and Y measures their similarity:

$$
H(X,Y)=\mathbb{E}_{x\sim X}[-\log P(
$$

- Are samples from X likely under Y ?
- Minimizing the cross-entropy makes the two distributions equal almost anywhere.

 $P(Y = x)$]

Cross-entropy

 \equiv

In supervised learning, the targets **t** are fixed one-hot encoded vectors.

$$
\mathcal{L}(\theta) = \mathbb{E}_{\mathbf{x}, \mathbf{t} \in \mathcal{D}}[-\sum_j t_j \, \log y_j]
$$

• But it could be any target distribution.

Backpropagation

 \equiv

• In both cases, we want to minimize the loss function by applying **Stochastic Gradient Descent** (SGD) or a variant (Adam, RMSprop).

- The question is how to compute the **gradient of the loss function** w.r.t the parameters θ .
- For both the mse and cross-entropy loss functions, we have:

$$
\Delta \theta = - \eta \, \nabla_{\theta} \mathcal{L}(\theta)
$$

$$
\nabla_{\theta} \mathcal{L}(\theta) = \mathbb{E}_{\mathcal{D}} [-(\mathbf{t}-\mathbf{y}) \, \nabla_{\theta} \, \mathbf{y}]
$$

- There is an algorithm to compute efficiently the gradient of the output w.r.t the parameters: **backpropagation** (see Neurocomputing).
- In deep RL, we do not care about backprop: tensorflow or pytorch do it for us.

$$
\nabla_\theta\,\mathbf{y}]
$$

Components of neural networks

- There are three aspects to consider when building a neural network:
- 1. **Architecture:** how many layers, what type of layers, how many neurons, etc.
	- Task-dependent: each RL task will require a different architecture. Not our focus.
- 2. **Loss function:** what should the network do?
	- Central to deep RL!

- 3. Update rule how should we update the parameters θ to minimize the loss function? SGD, backprop.
	- Not really our problem, but see *natural gradients* later.

2 - Convolutional neural networks

Convolutional layers

- When using images as inputs, **fully-connected networks** (FCN) would have too many weights:
	- Slow.

 \equiv

Overfitting.

- **Convolutional layers** reduce the number of weights by **reusing** weights at different locations.
	- **Principle of a convolution.**
	- Fast and efficient.

Convolutional layers

A **convolutional layer** extracts **features** of its

 d filters are defined with very small sizes (3x3, $\,$

- inputs.
- 5x5…).
- Each filter is convoluted over the input image (or the previous layer) to create a **feature map**.
- The set of d feature maps becomes a new 3D structure: a **tensor**.
- If the input image is 32x32x3, the resulting tensor will be 32x32xd.
- The convolutional layer has only very few parameters: each feature map has 3x3 values in the filter and a bias, i.e. 10 parameters.
- The convolution operation is **differentiable**: backprop will work.

Source: https://github.com/vdumoulin/conv_arithmetic

- The number of elements in a convolutional layer is still too high. We need to reduce the spatial dimension of a convolutional layer by **downsampling** it.
- For each feature, a **max-pooling** layer takes the maximum value of a feature for each subregion of the image (mostly 2x2).
- Pooling allows translation invariance: the same input pattern will be detected whatever its position in the input image.
- Max-pooling is also differentiable.

 \equiv

8

 $\overline{4}$

Source: <http://cs231n.github.io/convolutional-networks/>

Convolutional neural networks

- A **convolutional neural network** (CNN) is a cascade of convolution and pooling operations, extracting layer by layer increasingly complex features.
- The spatial dimensions decrease after each pooling operation, but the number of extracted features increases after each convolution.
- One usually stops when the spatial dimensions are around 7x7.
- The last layers are fully connected. Can be used for regression and classification depending on the output layer and the loss function.
- Training a CNN uses backpropagation all along: the convolution and pooling operations are differentiable.

Convolutional neural networks

The only thing we need to know is that CNNs are non-linear function approximators that work well with images.

- The conv layers **extract complex features** from the images through learning.
- The last FC layers allow to approximate values (regression) or probability distributions (classification).

 \equiv

Source: <https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53>

$$
\mathbf{y} = F_{\theta}(\mathbf{x})
$$

3 - Autoencoders

Autoencoders

 \equiv

- -
- -
-

The problem with FCN and CNN is that they **extract features** in supervised learning tasks.

Need for a lot of annotated data (image, label).

Autoencoders allows **unsupervised learning**:

Fig. 1. They only need inputs (images).

Their task is to **reconstruct** the input:

The **reconstruction loss** is simply the **mse** between the input and its reconstruction.

Apart from the loss function, they are trained as regular NNs.

$$
\mathbf{y} = \mathbf{\tilde{x}} \approx \mathbf{x}
$$

 $\mathbf{\tilde{x}} - \mathbf{x} ||^2]$

$$
\mathcal{L}_\mathrm{autoencoder}(\theta) = \mathbb{E}_{\mathbf{x} \in \mathcal{D}}[||\mathbf{\tilde{x}}%
$$

Autoencoders

- Autoencoders consists of:
	- the encoder: from the input x to the latent space z.
	- the **decoder**: from the latent space \mathbf{z} to the reconstructed input $\tilde{\mathbf{x}}$.

 \equiv

~

Source: <https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html>

Autoencoders

 \equiv

- The latent space z is a compressed representation (bottleneck) of the inputs x.
- It has to learn to compress efficiently the inputs without losing too much information, in order to reconstruct the inputs.
	- **-** Dimensionality reduction.
	- **E** Unsupervised feature extraction.

Source: <https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html>

Autoencoders in deep RL

- In deep RL, we can construct the feature vector with an autoencoder.
- The autoencoder can be trained offline with a random agent or online with the current policy (auxiliary loss).

 \equiv

FCN, CNN and AE are feedforward neural networks: they transform an input x into an output y:

If you present a sequence of inputs $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_t$ to a feedforward network, the outputs will be independent from each other:

$$
\mathbf{y}=F_{\theta}(\mathbf{x})
$$

$$
\mathbf{y}_0 = F_{\theta}(\mathbf{x}_0)
$$

$$
\mathbf{y}_1 = F_{\theta}(\mathbf{x}_1)
$$

- $\mathbf{y}_t = F_{\theta}(\mathbf{x}_t)$
- The output \mathbf{y}_t does **not** depend on the history of inputs $\mathbf{x}_0, \mathbf{x}_1, \ldots, \mathbf{x}_{t-1}.$

This not always what you want.

 \equiv

If your inputs are frames of a video, the correct response at time t might also depend on previous frames.

- The task of the NN could be to explain what happens at each frame.
- As we saw, a single frame is often not enough to predict the future (**Markov property**).

Source: <https://srirangatarun.wordpress.com/2018/07/09/video-frame-prediction-with-keras/>

- additional input (*context*).
- vector was computed.
- The input vector at time t is \mathbf{x}_t , the output vector is \mathbf{h}_t :

$$
\mathbf{h}_t = f(W_x\,\times\,
$$

A **recurrent neural network** (RNN) uses it previous output as an

All vectors have a time index t denoting the time at which this

 $\mathbf{x}_t + W_h \times \mathbf{h}_{t-1} + \mathbf{b}$

Source: C. Olah

- The input \mathbf{x}_t and previous output \mathbf{h}_{t-1} are multiplied by **learnable weights**:
	- W_x is the input weight matrix.
	- W_h is the recurrent weight matrix.

- This is equivalent to a deep neural network taking the whole history $\mathbf{x}_0,\mathbf{x}_1,\ldots,\mathbf{x}_t$ as inputs, but reusing weights between two time steps.
- The weights are trainable using **backpropagation through time** (BPTT).
- A RNN can learn the **temporal dependencies** between inputs.

Source: C. Olah

A popular variant of RNN is **LSTM** (long short-term

- memory).
-
- -
	-
	-

In addition to the input \mathbf{x}_t and output \mathbf{h}_t , it also has a state (or memory or context) \mathbf{C}_t which is maintained over time.

It also contains three multiplicative **gates**:

The **input gate** controls which inputs should enter the memory.

The **forget gate** controls which memory should be forgotten.

The **output gate** controls which part of the memory should be used to produce the output.

Source: C. Olah

RNN in RL

- An obvious use case of RNNs in deep RL is for POMDP (partially observable MDP).
- If the individual states s_t do not have the Markov property, the output of a LSTM does:
	- **FRE OUT A The output of the RNN is a representation of the complete history** s_0, s_1, \ldots, s_t .
- We can apply RL on the output of a RNN and solve POMDPs for free!

Source: <https://deepmind.com/blog/article/capture-the-flag-science>

