REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning
Deep Q-Learning

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/54



Value-based deep RL

oooooooooooooooooooo

Agent

@(s) DNN ¢ ,-" Z(0)
Qy(s, a)

State Action Environment

> — — — 7y(s,a) >

e The basic idea in value-based deep RL is to approximate the Q-values in each possible state, using a
deep neural network with free parameters 6:

Qy(s,a) = Q" (s,a) = E (Rs|s; = s,a; = a)

e The derived policy 7y uses for example an e-greedy or softmax action selection scheme over the
estimated Q-values:

o (s, a) < Softmax(Qy(s,a))
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Function approximators to learn the Q-values

There are two possibilities to approximate Q-values Qg (s, a):

e The DNN approximates the Q-value of a single

(s, a) pair.

(s, a)
v DNN &

e The action space can be continuous.

QQ(S ’ a)

e The DNN approximates the Q-value of all actions a

In a state s.

@(s)

e The action space must be discrete (one neuron per

action).

DNN 6

Qy(s, ay)
Qy(s, ay)
Qy(s, as)
Qy(s, ay)
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First naive approach: Q-learning with function approximation

We could simply adapt Q-learning with FA to the DNN:

e Initialize the deep neural network with parameters 6.

o Start from an initial state s.

o fort € |0, Tiotall:

= Select a; using a softmax over the Q-values Qg(st, a).

= Take a¢, observe r¢11 and S¢+1.

= Update the parameters 6

0y minimizing the loss function:

L(0) = (rer1 +7 max Qo(st11,0') — Qg(st,at))Q

a

= if s; is terminal: sample another initial state sg.

Remark: We will now omit the break for terminal states, it is always implicitly here.
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DNN need stochastic gradient descent

This naive approach will not work: DNNs cannot learn from single examples (online learning = instability).

DNNSs require stochastic gradient descent (SGD):

L(0) = Ep(|lt —y||*) = ZHt —yill?

The loss function is estimated by sampling a minibatch of K i.i.d samples from the training set to

compute the loss function and update the parameters 6.
This is necessary to avoid local minima of the loss function.
Although Q-learning can learn from single transitions, it is not possible using DNN.

Why not using the last K transitions to train the network? We could store them in a transition buffer and
train the network on it.
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Second naive approach: Q-learning with a transition buffer

e |nitialize the deep neural network with parameters 6.

+ Initialize an empty transition buffer D of size K: {(sk, ax, 7%, s}, )}

o fort € |0, Tiotall:
= Select a; using a softmax over the Q-values Qg(st, a).
= Take a;, observe r; 1 and 84 1.
= Store (¢, ¢, r++1, St+1) in the transition buffer.

= Every K steps:

o Update the parameters 6 using the transition buffer:

K
£(60) = > (e + max Qo(s}, ) — Qo(si, 1))’

K
k=1

o Empty the transition buffer.
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Correlated inputs

e Unfortunately, this does not work either.

e The last K transitions (s, a,r, s') are noti.i.d (independent and identically distributed).

o The transition (S¢11, @11, 712, St12) depends on (S;, a;, 7111, S¢1) by definition, i.e. the transitions
are correlated.

e Even worse, when playing video games, successive frames will be very similar or even identical.

use 5 i - 1 UaS 5 I ui=2 5 i

e The actions are also correlated: you move the paddle to the left for several successive steps.
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Correlated inputs

e Feeding transitions sequentially to a DNN is the same as giving all MNIST O’s to a DNN, then all 1’s, etc... It
does not work.
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Sequential-Correlated Varied Data Dist.

e In SL, we have all the training data before training: it is possible to get i.i.d samples by shuffling the
training set between two epochs.

e In RL, we create the “training set” (transitions) during training: the samples are not i.i.d as we act
sequentially over time.



Non-stationarity

e In SL, the targets t do not change over time: an image of a cat stays an image of a cat throughout
learning.

L(0) = Ext-p|l[t — Fo(x)[|

O @

O

& & @ -
® & ® Odl::rg (10%)
®— 00— 00—

& O O @y (90%)
O

@

e The problem is said stationary, as the distribution of the data does not change over time.
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Non-stationarity

o InRL, the targets t = r + v max, Qy(s’, a’) do change over time:

= (Qy(s’,a’) depends on 6, so after one optimization step, all targets have changed!

= As we improve the policy over training, we collect higher returns.

L(0) = Esanm [(r +v max Qp(s', a") — Qo (s,a))’]

Cl,

NN do not like this. After a while, they give up and settle on a suboptimal policy.

A supervised learning

t

>

training

A

reinforcement learning
t*

t

training

>
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lllustration of non-stationary targets

e We want our value estimates to “catch” the true values.

https://www.freecodecamp.org/news/improvements-in-deep-g-learning-dueling-double-dgn-prioritized-experience-replay-and-fixed-58b130cc5682/
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lllustration of non-stationary targets

o We update our estimate to come closer to the target.

o “ﬁﬁ
'l )

https://www.freecodecamp.org/news/improvements-in-deep-g-learning-dueling-double-dgn-prioritized-experience-replay-and-fixed-58b130cc5682/
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lllustration of non-stationary targets

e But the target moves! We need to update again.

https://www.freecodecamp.org/news/improvements-in-deep-g-learning-dueling-double-dgn-prioritized-experience-replay-and-fixed-58b130cc5682/
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lllustration of non-stationary targets

e This leads to very strange and inefficient optimization paths.

https://www.freecodecamp.org/news/improvements-in-deep-g-learning-dueling-double-dgn-prioritized-experience-replay-and-fixed-58b130cc5682/
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1 - Deep Q-networks (DQN)

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih  Koray Kavukcuoglu David Silver Alex Graves loannis Antonoglou
Daan Wierstra  Martin Riedmiller

DeepMind Technologies

Mnih et al. (2013) Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602
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Problem with non-linear approximators and RL

USsSce S i USba S l - I U= S !

e Non-linear approximators never really worked with RL before 2013 because of:

1. The correlation between successive inputs or outputs.
2. The non-stationarity of the problem.

e These two problems are very bad for deep networks, which end up overfitting the learned episodes or not
learning anything at all.

e Deepmind researchers proposed to use two classical ML tricks to overcome these problems:

1. experience replay memory.

2. target networks.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602
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Experience replay memory

» To avoid correlation between samples, Mnih et al. (2015) proposed to store the (s, a, r, s’) transitions in
a huge experience replay memory or replay buffer D (e.g. 1 million transitions).

Minibatch of transitions

Agent K,
gen . { (s > 15 Sk)}kK=1 :
o (s) DNN 6 > '
Z(0)
State Action Experience
I - — — mys,a)
Replay
Q/(s,a) Memory

A

— Environment .
Transition (s, a,r,s")

 When the buffer is full, we simply overwrite old transitions.

e The Q-learning update is only applied on a random minibatch of those past experiences, not the last
transitions.

o This ensures the independence of the samples (non-correlated samples).
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Experience replay memory

e Initialize value network ()g.
e Initialize experience replay memory D of maximal size V.
o fort € |0, Tiotall:
= Select an action a; based on Qg(st, a), observe s, 1 and 74 1.
= Store (st, Aty Tt11, st+1) in the experience replay memory.
= Every Tirain Steps:
o Sample a minibatch D, randomly from D.
o For each transition (s, ax, T, S}, ) in the minibatch:
o Compute the target value t; = 7 + v maxy Qa(s;,a’)

o Update the value network (g on D, to minimize:

L(0) = Ep, [(tr — Qo(sk, ar))]
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Experience replay memory

Minibatch of transitions

Agent 0K,
gen : {(Sk’ Qs T Sk) }szl :
o(s) DNN 6 > .
Z(0)
State Action Experience
> — —) - 71'9(5', a)
Replay
Qy(s, a) Memory

A

— Environment .
Transition (s,a,r,s")

e But wait! The samples of the minibatch are still not i.i.d, as they are not identically distributed:
= Some samples were generated with a very old policy 7y, .

= Some samples have been generated recently by the current policy 7y.

e The samples of the minibatch do not come from the same distribution, so this should not work.
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Experience replay memory

This should not work, except if you use an off-policy algorithm, such as Q-learning!

Q" (s,a) = Egp,q,~b(Ttr1 + max Q" (s¢+1,0a)|5: = s,a; = a

In Q-learning, you can take samples from any behavior policy b, as long as the coverage assumption
stands:

w(s,a) > 0= b(s,a) >0

Here, the behavior policy b is a kind of “superset” of all past policies 7 used to fill the ERM, so it “covers”
the current policy.

b = {7‘-90777917'--77797:}

Samples from b are i.i.d, so Q-learning is going to work.
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Experience replay memory

e Note: it is not possible to use an experience replay memory with on-policy algorithms.

Q7 (s,a) = Eys wp, asmor Tt41 + Y Q" (St41,0111) |5t = 8, a; = al

e a;,1 ~ T would not be the same between 7y, (which generated the sample) and 7, (the current
policy).
o The estimated return ;.1 + v Q™ (S¢+1, as11) would be biased, impairing convergence.
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Target network

e The second problem when using DNN for RL is that the target is non-stationary, i.e. it changes over time:
as the network becomes better, the Q-values have to increase.

e In DQN, the target for the update is not computed
from the current deep network 6:

Value network 6

DQN loss
( ) — — QQ(S a) D
/]! PLS
r + v max Qq(s’,a’)
a
Parameter transfer
but from a target network 0" updated only every few 00
thousands of iterations.
—> - Qy(s,a) —— Target
r+ v max Qg (s,a’) 4y max Qy(s)a)
CL, a

Target network 6’

o @' is simply a copy of 8 from the past.

e DQN loss function:

L£(0) = Ep|(r + v max Qo (s',a")) — Qo(s,a))?]
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Target network

o This allows the target r + v max, Qg (s’, a’) to be stationary between two updates.

e [t leaves time for the trained network to catch up with the targets.

A reinforcement learning A target networks
t’ t”
t [~
y
y
> - >
training training

e The update is simply replacing the parameters 8’ with the trained parameters 6:
6 «— 6

e The value network 6 basically learns using an older version of itself...

Mnih et al. (2013) Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602 23 /54
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DQN: Deep Q-network

e Initialize value network ()¢ and target network Qg .

e Initialize experience replay memory D of maximal size V.
o fort € |0, Tiotall:
= Select an action a; based on Qg(st, a), observe s 1 and 74 1.
= Store (8¢, az, Te11, St+1) in the experience replay memory.
= Every 1}..in Steps:
o Sample a minibatch D, randomly from D.

o For each transition (s, ax, 7't, S}, ) in the minibatch:

o Compute the target value t, = r; + v maxy Qg (s}c, a’) using the target network.

o Update the value network (g on D, to minimize:

L(0) = Ep, [(tr — Qo(sk,ar))’]

= Every Tiarget Steps:

o Update target network: 8’ < 6.
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DQN: Deep Q-network

e The deep network can be anything. Deep RL is only about defining the loss function adequately.

o For pixel-based problems (e.g. video games), convolutional neural networks (without max-pooling) are the
weapon of choice.

Convolution Convolution Fully connected Fully connected
h 4 v v v
‘
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- 7E: =B
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wE:
"‘;:ﬁ - +0O
.
B
5
-

Vg
-
O

Source: Mnih et al. (2015) Human-level control through deep reinforcement learning. Nature 518, 529-533. doi:10.1038/nature14236.
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Why no max-pooling?

224x224x64 204 x 224 x 3 224 x 224 x 654
112x112x64
pool
— 1 'ﬂﬁﬁr 128
'};ﬂ’/ﬁ:jx W6 = 266
.f/d://"r:-nxj.-:hm TxTxhl2

. FLH‘ 7 ] L 14 % 512 1% 1= 4096 1% 1= 1000

ﬂ LoLIgEW Illl ilZIII T .Hl.'].-.l-

ling
full nnected+Hel.L

Lk ::: i ::|.:-5:-c praacali
224 downsamp"ng 4 | softmax
112 ||

224

e The goal of max-pooling is to get rid of the spatial information in the image.

e For object recognition, you do not care whether the object is in the center or on the side of the image.
e Max-pooling brings spatial invariance.

e In video games, you want to keep the spatial information: the optimal action depends on where the ball is

relative to the paddle.
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Are individual frames good representations of states?

e |s the ball moving from the child to the baseball player, or the other way around?

e Using video frames as states breaks the Markov property: the speed and direction of the ball is a very
relevant information for the task, but not contained in a single frame.

e This characterizes a Partially-observable Markov Decision Process (POMDP).

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-q-68463e9aeefc
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Markov property in video games

e The simple solution retained in the original DQN paper is to stack the last four frames to form the state
representation.

e Having the previous positions of the ball, the network can learn to infer its direction of movement.

1st hidden 2nd hidden 3rd hidden

lnDUt Iayer |ayer |ayer OUtpUt
T g-. A ---...................,”_“ rr (2('St : (1{})
-': Q(sy,at)
k fully fully _ 34
connected : connected . A Q)(s¢,a7)

8x8x4 filter ™, ™. .

stride 4 4x4x16 fllter ‘. Q))
' stride 2 I:L

84x84 x4 20x20x16 Ox9x32 256 ~18
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DQN training

e 50M frames (38 days of game experience) per game. Replay buffer of 1M frames.

e Action selection: e-greedy with € = 0.1 and annealing. Optimizer: RMSprop with a batch size of 32.

a 2200, b 6,000,
o 2,000t @
o =
3 1,800} g 5,000
2 1,600t b
1] ! L]
5 14001 5 4O /
o 1,200 2 3,000}
§ 1,000 §
o 800 t o 2,000
g 600} S
T 400} £ 1,000}
= = L)
< 200 <
0 20 40 60 80 100 120 140 160 180 200 0 20 40 &0 &80 100 120 140 160 180 200
Training epochs Training epochs
C 10 d 11 ¢
9 10 ¢
S . s s
= 7 3 8|
g " @ 7t
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> 2 2,
I
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D ; L | L | L L . M ; I:I ] I L L L i i i " ]
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Figure 2 | Training curves tracking the agent’s average score and average on the curve is the average of the action-value Q computed over the held-out

predicted action-value. a, Each point is the average score achieved per episode  set of states. Note that Q-values are scaled due to clipping of rewards (see
after the agent is run with g-greedy policy (¢ = 0.05) for 520k frames on Space  Methods). d, Average predicted action-value on Seaquest. See Supplementary
Invaders. b, Average score achieved per episode for Seaquest. ¢, Average Discussion for details.

predicted action-value on a held-out set of states on Space Invaders. Each point

Mnih et al. (2015) Human-level control through deep reinforcement learning. Nature 518, 529-533. doi:10.1038/nature14236.
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DQN to solve multiple Atari games

&) DoN Breakout
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DQN to solve multiple Atari games
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https://www.youtube.com/watch?v=W2CAghUiofY

DQN to solve multiple Atari games

Video Pinball
Boxing
Breakout
Star Gunner
Robotank

Atlantis

Crazy Climber
Gopher
Demon Attack
Name This Game
Krull

Assault

Road Runner
Kangaroo
James Bond
Tennis

|

1

Pong
Space Invaders
Beam Rider

Tutankham
Kung-Fu Master

Freeway
Time Pilot
Enduro

|

1

Fishing Derby
Up and Down
Ice Hockey
Q*Bert
HE.R.O.

Asterix

|

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

Zaxxon

Amidar

Alien

Venture

1

Seaquest
Double Dunk
Bowling

Ms. Pacman
Asteroids
Frostbite
Gravitar

Private Eye
Montezuma's Revenge

11 1

L1 1 1

L1 1 1 1 L1 L1 | |

L1 1

2539%
1707%
1327%
598%
508%
449%
419%
400%

278% —

246% ——
232% —
224% T
145% -

143% B

132%

121% —

119% —

112% —

294% T

22 e  The DQN network was trained to solve 49 different Atari
= 2600 games with the same architecture and
- hyperparameters.

e |n most of the games, the network reaches super-human
performance.

277% T

e Some games are still badly performed
(e.g. Montezuma'’s revenge), as they require long-term
planning.

e |t was the first RL algorithm able to learn different tasks
(no free lunch theorem).

67% ——
64% —
62% —
57% —
57% -~
54% —
43% —
42% —
32%—
+25%
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- 14%
+13%
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-2%
0%

102% —
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100% ———
97%
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76% A at human-level or above
69% —

67% —

e The 2015 paper in Nature started the hype for deep RL.

DQN

Best Linear Learner

)
I 1 (. 1

| I | |
0% 100% 200% 300%

)
[ ¢
400% 500% 600% 1000% 4500%

Mnih et al. (2015) Human-level control through deep reinforcement learning. Nature 518, 529-533. doi:10.1038/nature14236.
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2 - Double DQN

Deep Reinforcement Learning with Double Q-learning

Hado van Hasselt and Arthur Guez and David Silver
Google DeepMind

van Hasselt et al. (2015) Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461.
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Double DQN
e Q-learning methods, including DQN, tend to overestimate Q-values, especially for the non-greedy actions:
Qo(s,a) > Q" (s, a)

e This does not matter much in action selection, as we apply e-greedy or softmax on the Q-values anyway,
but it may make learning slower (sample complexity) and less optimal.

True value and an estimate All estimates and max Bias as function of state
2 A

max, (¢(s,a) — max, Q,(s,a)

1 § ._ 4 l \ I ! 4 max, (J;(s,a)—

Ci(s,a) | v\ max, Q:(s,a)f 1 max, ().(s,a)
2 2 l ‘ / - Illr‘\l , l 2

| v /SN v 1\ 7
0 — = = 0 - — e 0
Qf.farij F_ ] Doubl {E estlimat
-6 -4 =2 0 2 4 § -6 -4 =2 () 2 4 § -6 -4 =2 (0 2 4 6
state state state

van Hasselt et al. (2015) Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461.
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Double DQN

e To avoid optimistic estimations, the target is computed by both the value network 6 and the target
network 6’:

= Action selection: The next greedy action a* is calculated by the value network @ (current policy):
a* = argmax_, Qy(s’,a’)
= Action evaluation: Its Q-value for the target is calculated using the target network 6’ (older values):

t=1r+ ’}’QQ'(S’,CL*)

o This gives the following loss function for double DQN (DDQN):

‘C(e) — 4:73[(r T QH’(S,7 argmax. QH('S,? CL/)) o QH('S) a’))2]

van Hasselt et al. (2015) Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461.
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Value estimates

Value estimates
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van Hasselt et al. (2015) Deep Reinforcement Learning with Double Q-learning, arXiv:1509.06461.
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3 - Prioritized Experience Replay

Published as a conference paper at ICLR 2016

PRIORITIZED EXPERIENCE REPLAY

Tom Schaul, John Quan, Ioannis Antonoglou and David Silver
Google DeepMind
{schaul, johnquan, icannisa,davidsilver}@google.com

Schaul et al. (2015) Prioritized Experience Replay. arXiv:1511.05952
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Prioritized Experience Replay

Store
— <S.f ’Ar ’RHI "SHI >

<£i‘fqr‘i€ ‘ji+l> ////’;F#fﬂ-#-_—_-_
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(SurAsRoasS) | Sample
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(S,.35A,.3,R 55,4 ) \—

Replay Buffer

Source: https://parksurk.github.io/deep/reinfocement/learning/drind_2-4_value_based_methods-post/

« The experience replay memory or replay buffer is used to store the last 1M transitions (s, a, 7, s').

e The learning algorithm randomly samples a minibatch of size K to update its parameters.

e Not all transitions are interesting:
= Some transitions were generated by a very old policy, the current policy won't take them anymore.

= Some transitions are already well predicted: the TD error is small, there is nothing to learn from.

0t = Tep1 + 7Y ma?}X Qé’(st—i—laat—H) — QQ(Staa’t) ~ 0
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Prioritized Experience Replay

Store
— (S A LR .S

- [ 1 1+1 2= 1+l >
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S.2) | Sample

. ¥_

Replay Buffer

Source: https://parksurk.github.io/deep/reinfocement/learning/drind_2-4_value_based_methods-post/

e The experience replay memory makes learning very slow: we need a lot of samples to learn something
useful:

= High sample complexity.

 We need a smart mechanism to preferentially pick the transitions that will boost learning the most,
without introducing a bias.

= Prioritized sweeping is actually a quite old idea:

Moore and Atkeson (1993) Prioritized sweeping: Reinforcement learning with less data and less time.
Machine Learning, 13(1):103-130.
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Prioritized Experience Replay

The idea of prioritized experience replay (PER) is to sample in priority those transitions whose TD error is
the highest:

0 = Ter1 + max Q0(5t+1aat+1) — Qé’(Staat)

a

In practice, we insert the transition (s, a, r, s, d) into the replay buffer.

To create a minibatch, the sampling algorithm select a transition k based on the probability:

(Bt
21 ([0k] + €)@

€ is a small parameter ensuring that transition with no TD error still get sampled from time to time.

P(k)

« allows to change the behavior from uniform sampling (oo = 0, as in DQN) to fully prioritized sampling (
« = 1). a should be annealed from 0 to 1 during training.

Think of it as a “kind of” softmax over the TD errors.

After the samples have been used for learning, their TD error 0 is updated in the PER.

Schaul et al. (2015). Prioritized Experience Replay. arXiv:1511.05952
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Prioritized Experience Replay

e The main drawback is that inserting and sampling can be computationally expensive if we simply sort the
transitions based on (|dy| + €):

= Insertion: O(N log N).
= Sampling: O(N).
NN RN R RN RN R R R R NN R R R RN AR RN R RN RN R R RN RN RRNRNNNRENE

:|||||||||‘“|||“||‘W||I|I|IIIIIII|_‘III.III.IIIIIII.I.IIIII&.H--J.J.J.J.J.J.J_J_ |

Source: https://jaromiru.com/2016/11/07/lets-make-a-dgn-double-learning-and-prioritized-experience-replay/

sum > §
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Prioritized Experience Replay

e Using binary sumtrees, prioritized experience replay can be made efficient in both insertion (O(log N))
and sampling (O(1)).
e Instead of a linear queue, we use a binary tree to store the transitions.

e Details in a real computer science course...

O 000000 teaves

each leaf contains the priority
score of an experience

data index

Data SumTree

Source: https://www.freecodecamp.org/news/improvements-in-deep-g-learning-dueling-double-dgn-prioritized-experience-replay-and-fixed-
58b130cc5682/
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Prioritized Experience Replay
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Schaul et al. (2015) Prioritized Experience Replay. arXiv:1511.05952
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ized Experience Replay
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4 - Dueling networks
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Dueling networks

 DQN and its variants learn to predict directly the Q-value of each available action.

4 Q(s,a)
DQN ﬁ \ > l

1%

e Several problems with predicting Q-values with a DNN:

= The Q-values can take high values, especially with different values of ~.

= The Q-values have a high variance, between the minimum and maximum returns obtained during
training.

= For a transition (¢, a¢, S¢11), a single Q-value is updated, not all actions in s;.

Wang et al. (2016) Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581.
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Dueling networks

e Enduro game. A

Source: https://gfycat.com/clumsypaleimpala

Good state
actions matter V7T (S)

Q™ (s,a)

G T = )
AR 1 &%
L AN

Bad state
[ [ ] actions do not matter

e The exact Q-values of all actions are not equally important.

= In bad states (low V" (s)), you can do whatever you want, you will lose.

n neutral states, you can do whatever you want, nothing happens.

n good states (high V”(s)), you need to select the right action to get rewards, otherwise you lose.
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Advantage functions

} e An important notion is the advantage A™ (s, a) of

an action:

T . T T
Good state A (87 CL) _ Q (87 CL) -V (S)
Bad state .
e [t tells how much return can be expected by taking

__-_-_-_i . the action a in the state s, compared to what is

usually obtained in s with the current policy.

AT (s,a)

o If a policy 7 is deterministic and always selects a*
in s, we have:

A" (s,a") =0
A™(s,a #a") <0
e This is particularly true for the optimal policy.

e But if we have separate estimates V,,(s) and Qg (s, @), some actions may have a positive advantage.
e Advantages have less variance than Q-values.
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Dueling networks

a. V(S
y I
Dueling ;J;l '_El‘
DQN ﬁ

y |
A(s,a)

Q(s.a)

o In dueling networks, the network is forced to decompose the estimated Q-value Q4 (s, a) into a state
value V, (s) and an advantage function Ag(s, a):

Qo(s,a) = V,(s) + As(s,a)

e The parameters o and 3 are just two shared subparts of the NN 6.

e The loss function

L(0) = Ep[(r +v Qo (s',argmax, Qs(s',a’)) — Qo(s,a))]

is exactly the same as in (D)DQN: only the internal structure of the NN changes.

Wang et al. (2016) Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581.
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Unidentifiability

e The Q-values are the sum of two functions: Qy(s,a) = V,(s) + Az(s,a)

e However, the sum is unidentifiable:

e To constrain the sum, (Wang et al. 2016) propose that the greedy action w.r.t the advantages should have
an advantage of O:

Qo(s,a) = V,(s) + (Ap(s,a) — max Ag(s,a’))

e This way, there is only one solution to the addition. The operation is differentiable, so backpropagation
will work.

e (Wang et al. 2016) show that subtracting the mean advantage works better in practice:

Qu(5,0) = V() + (Ap(s,0) = 70 - Ap(s,)

Wang et al. (2016) Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581.
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Visualization of the value and advantage functions

e Which pixels change the most the value and advantage functions?

I'ocus on 2 things:
- The horizon
where new cars

appear
- On the score

VALUE ADVANTAGE

No car 1n front,
does not pay
much attention
because action
choice making 1s
not relevant

VALUE ADVANTAGE

Pays attention to
the front car, in this

case choice
making is crucial
to survive

Wang et al. (2016) Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581.
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Improvement over prioritized DDQN

Asterix 1067.02%
Space Invaders 457.93%
Phoenix 281.56%
i Gopher 223.03%
Wizard Of Wor I 17E.13%
Up and Down I 1134 7%
Yars' Revenge I 113.16%
Star Gunner T ECRE
Berzerk I C: . 01%
Frosthite I 7 0.2 9%
Video Pinball B G20 2%
Chopper Command 58.67%
Assault B 51.07%
Bank Heist B 43 11%
River Raid B 38.56%
Defender I 35.33%
Mame This Game B 33.09%
Zaxxon B G2 74%
Centipede B 22 498%
Beam Rider I 20.%4%
Amidar B 24 .98%
Kung-Fu Master Bl 22.36%
utankham Bl 21.38%
Crazy Climber W 16.16%
Q*Bert B 15.56%
Battle Zone B 1146%
Atlantis B 11.16%
Enduro B 10.20%
Krull B 7.95%
Road Runner B 7.89%
Pittall! 15.33%
Boxing | 3.46%
Demon Attack | 1.44%
Fishing Derby 11.37%
Pong | 0. 73%
Private Eye 0.01%
Montezuma's Revenge 0.00%
Tennis 0.00%
Venture -0.51%
Bowling |-0.87%
Freewa |-2.08%
Breakou 1-2.12%
Asteroids 1-3.13%
Alien 1-3.81%
H.E.R.O. 1-6.72%
Gravitar W-2.77%
Ice Hockey W -13.60%
Time Pilot B -29.21%
Solaris B -37.65%
Surround . -4 0.7 4%
Ms. Pac-Man I -4 5.03%
Robotank T -G5.11%
Seaquest B -G 0.56%
Skiing IEE—_—— -7 7.99%
Double Dunk I -c3.56%
James Bond [ £ 4.7 0%
Kangaroo I -£9.22%

Wang et al. (2016) Dueling Network Architectures for Deep Reinforcement Learning. arXiv:1511.06581.




Summary of DQN

Convglution Convglution FuIchgnnected FuIchgnnected ® DQN and ItS early VarlantS (dOUbIe duelllng DQN

o The value Qg (s, a) of each possible action in a

given state is approximated by a convolutional
neural network.

— rg
> < ¥ d (5

G

e The NN has to minimize the mse between the
predicted Q-values and the target value
corresponding to the Bellman equation:

Z'bR(—ItslzN-)q
+ I+ +0+0+-0+0+0+
@] (@] (@] (@] (@] (@] (@] (¢

L(0) = Ep[(r + v Qo (s’,argmax, Qy(s',a’)) — Qo(s,a))’]

e The use of an experience replay memory and of target networks allows to stabilize learning and avoid
suboptimal policies.

 The main drawback of DQN is sample complexity: it needs huge amounts of experienced transitions to
find a correct policy. The sample complexity come from the deep network itself (gradient descent is
iterative and slow), but also from the ERM: it contains 1M transitions, most of which are outdated.

e Only works for small and discrete action spaces (one output neuron per action).

with PER) are an example of value-based deep RL.
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