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1 - Distributional learning : Categorical DQN

A Distributional Perspective on Reinforcement Learning

Marc G. Bellemare ™' Will Dabney ! Rémi Munos '

Bellemare et al. (2017) A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887
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Distributional learning

e Until now, we have only cared about the expectation of the returns, i.e. their mean value:

V7 (s) = E[Ri|s; = s

Q”(s,a) — 437T[Rt‘3t — 8,0t — CL]

o We select actions with the highest expected return, which makes sense on the long term.

e Suppose we have two actions a1 and as, which provide different returns with the same probability:
= R(al) — {].OO, 200}
_ R(az) = {—100,400}

o Their Q-value is the same: Q(a1) = Q(az) = 150, so if you play them an infinity of times, they are both
optimal.
e But suppose that, after learning, you can only try a single action. Which one do you chose?

e RL does not distinguish safe from risky actions.
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Distributional learning

e The idea of distributional RL is to learn the distribution of returns Z™ directly instead of its expectation:
Rt ~ ZW(St, Cl,t)

Value distribution

-Ill“llll
0 5

Return

—10 -5 10

e Note that we can always obtain the Q-values back:

Q" (s,a) =E.[Z7(s,a)]
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Categorical DQN

In categorical DQN (Bellemare et al., 2017), we
model the distribution of returns as a discrete
probability distribution.

= categorical or multinouilli distribution.

We first need to identify the minimum and
maximum returns Rmin and Rmax possible in the
problem.

We then split the range | Ry , Rimax| in 1 discrete
bins centered on the atoms { z; } 1 ;.

Value distribution

—10

-Ill‘lllll
0 5 1

Return

0
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Categorical DQN

o The probability that the return obtained the action (s, a) lies in the bin of the atom z; is noted p; (s, a).

o A discrete probability dustribution can be approximated by a neural network F' with parameters 6, using a
softmax output layer:

exp Fi(s, a;0)
i\9) 79 — n
pi(s,0;6) ijl exp F;(s,a;0)

Value distribution

0 5 1

Return

—10 -5 0

Bellemare et al. (2017) A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887
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Categorical DQN

o The n probabilities {p; (s, a; 8) }?_, completely
define the parameterized distribution Z4(s, a).

— Zpi(sa a, 9) 5,2,,;

where 0, is a Dirac distribution centered on the
atom z;.

e The Q-value of an action can be obtained by:

Qo(s,a) = E[Zq(s,a)]

Value distribution

—10 -5

szsaﬁ

5

Return

10
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Categorical DQN

e The only thing we need is a neural network € returning for each action a in the
state s a discrete probability distribution Zy (s, a) instead of a single Q-value

Qo(s,a).

e The NN uses a softmax activation function for each action.

e Action selection is similar to DQN: we first compute the Qg(s, a,) and apply
greedy / e-greedy / softmax over the actions.

Qo(s,a) = 3 pils,030) z
1=1

e The number n of atoms for each action should be big enough to represent the
range of returns.

o A number that works well with Atari games is n = 51:

= Categorical DQN is often noted C51.

Source:
https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf
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Categorical DQN

 How do we learn the distribution of returns Zy (s, a) of parameters {p;(s, a; 0)}"_?

e In Q-learning, we minimize the mse between the prediction QQy (s, a) and the target:

T Qo(s,a) =r+vQu(s',a’)

where T is the Bellman operator.
mgin(TQg(s, a) — Qoy(s,a))’

e We do the same here:

= we apply the Bellman operator on the distribution Z4(s, a).
T Z4(s,a) =r7(s,a) +v2(s',a’)
= we then minimize the statistical “distance” between the distributions Zg(s,a) and T Z¢(s, a).

mein KL(T Zy(s,a)||Z¢(s,a))
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Categorical DQN

e Let's note P™ Z the return distribution of the greedy action in the next state Zy(s', a’).

e Multiplying the returns by the discount factor v < 1 shrinks the return distribution (its support gets
smaller).

» The atoms z; of Z4(s’, a’) now have the position v z;, but the probabilities stay the same.
; Y

P"Z

Source: https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf
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Categorical DQN

e Adding a reward 7 translates the distribution. The new position of the atoms is:

I
i — T T &

e The corresponding probabilities have not changed.

P"Z

Source: https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf
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Categorical DQN

e But now we have a problem: the atoms z; of 7 Z4(s, a) do not match with the atoms z; of Zy(s, a).

e We need to interpolate the target distribution to compare it with the predicted distribution.

P Z

Source: https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

12/55


https://physai.sciencesconf.org/data/pages/distributional_RL_Remi_Munos.pdf

Categorical DQN

e We need to apply a projection ® so that the bins of TZg(s, a) are the same as the ones of Zg(s, a,).

e The formula sounds complicated, but it is basically a linear interpolation:

n R
T 2]z — zi| ;1
(BT Zo(s,a))i = > _[1 o] p;(s',d’;6)
j=1
Value distribution Value distribution
. f(s,a) . f(s,a)

=TS a) . eriis.a)

0 5 10 -10 =5 0 5

Return Return

—-10 -5 10
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Categorical DQN

 We now have two distributions Z4(s,a) and ® T Zy(s, a) sharing the same support.

« We now want to have the prediction Zy(s, a) close from the target ® T Z4(s, a).

e These are probability distributions, not numbers, so we cannot use the mse.

e We instead minimize the Kullback-Leibler (KL) divergence between the two distributions.

Value distribution

Zis,a)
||‘\ . oriis,a)

—10 10
Fletu rn
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Kullback-Leibler (KL) divergence

e Let's consider a parameterized discrete distribution Xy and a discrete target distribution 1"
e The KL divergence between the two distributions is:
Xo

KL(T||Xy) = Eqr[~log 7]

e It can be rewritten as the sum of the cross-entropy and the entropy of 1":

KL(Xg||T) = Etor|—log Xo 4+ logT| = H(Xp,T) — H(T)

e As T does not depend on @, the gradient of the KL divergence w.r.t to 8 is the same as the gradient of the
cross-entropy.

Vo KL(Xy||T) = Esor|— Vg log X

e Minimizing the KL divergence is the same as minimizing the cross-entropy.

e Neural networks with a softmax output layer and the cross-entropy loss function can do that.

15/55



Cross-entropy

e |n supervised learning, the targets t are fixed one-hot encoded vectors.

L(0) = Ep[—t logy]

e But it could be any target distribution, as long as t and y share the same support.

16 /55



Reminder: DQN

e Initialize value network ()¢ and target network Qg .

e Initialize experience replay memory D of maximal size V.
o fort € |0, Tiotall:
= Select an action a; based on Qg(st, a), observe s 1 and 74 1.
= Store (8¢, az, Te11, St+1) in the experience replay memory.
= Every 1}..in Steps:
o Sample a minibatch D, randomly from D.

o For each transition (s, ax, 7't, S}, ) in the minibatch:

o Compute the target value t, = r; + v maxy Qg (s}c, a’) using the target network.

o Update the value network (g on D, to minimize:

L(0) = Ep, [(tr — Qo(sk,ar))’]

= Every Tiarget Steps:

o Update target network: 8’ < 6.

17 /55



Categorical DQN

e Initialize distributional value network Zy and target network Zy, experience replay memory D.
o Every 1irain Steps:

= Sample a minibatch D randomly from D.

= For each transition (s, ag, 7'x, S; ) in the minibatch:

o Select the greedy action in the next state using the target network:

a, = argmax, E[Zy (s}, a)]
o Apply the Bellman operator on the distribution of the next greedy action:
TZy, =+ Zo (5}, ay,)
o Project this distribution to the support of Zy(sg, ax).
t,. = Projection(T'Zy, Zy(sg, ax))

= Update the value network (09 on D, to minimize the cross-entropy:

L(Q) — “JDS [—tk 10g Zg(sk, ak)]
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Categorical DQN

Algorithm 1 Categorical Algorithm

input A transition x¢, az, ¢, Te41, V¢ € [0, 1]
Q(iﬁtﬂz ﬂ) = ZE Zipi(fljt—l—l:n fil)
a* + argmax, Q(xs11,a)
m; =0, 2€0,...,N—1
for j €0,..., N —1do
# Compute the projection of Tf onto the support { z; }
TE’Ij N [’Ft -+ ’}’tEj:VM'm
b; (T2 — Van)/Az #b; € [0,N — 1]
L <= 1bj], u < [b;]
# Distribute probability of 7 z,
my <— 1y —|—ﬁj($t+1?ﬂf$)(ﬂ — bj)
My, <— My, +pj (.I‘t_|_1,, {I*)(bj — l)
end for
output — Zi m; log p; (x4, a;) # Cross-entropy loss

Bellemare et al. (2017) A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887
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Categorical DQN

0.5

/

Probability

Noop

0.0

Laser
Left+Laser
Right+Laser

Right

Return

|

Left me

i,

Figure 4. Learned value distribution during an episode of SPACE
INVADERS. Different actions are shaded different colours. Re-
turns below O (which do not occur in SPACE INVADERS) are not
shown here as the agent assigns virtually no probability to them.

Bellemare et al. (2017) A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887
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Categorical DQN

e Having the full distribution of returns allow to deal with uncertainty.
e For certain actions in critical states, one could get a high return (killing an enemy) or no return (death).

e The distribution reflects that the agent is not certain of the goodness of the action. Expectations would
not provide this information.

0.5

Probability

0.0

Return

Source: https://deepmind.com/blog/article/going-beyond-average-reinforcement-learning
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Categorical DQN

57
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G

C51 vs. DQN

C51 vs. HUMAN

DQN vs. HUMAN
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Training Frames (millions)

Bellemare et al. (2017) A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887 20 / 55



Categorical DQN

% Improvement (Log Scale)

Figure 7. Percentage improvement, per-game, of C51 over Dou-
ble DQN, computed using van Hasselt et al.’s method.

Bellemare et al. (2017) A Distributional Perspective on Reinforcement Learning. arXiv:1707.06887
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Categorical DQN

%g) Learning Space Invaders Value Distributions

| T\glliiklllm

Hgfum

Watch on {3 YouTube
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Categorical DQN

dm
ﬁg) Learning Seaquest Value Distributions

c:L:-Tm— — -ﬁﬂﬂln

Rgurn

Watch on {3 YouTube
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Other variants of distributional learning

e QR-DQN:

Dabney et al. (2017) Distributional Reinforcement Learning with Quantile Regression.
arXiv:1710.10044

e |QN:

Dabney et al. (2018) Implicit Quantile Networks for Distributional Reinforcement Learning.
arXiv:1806.06923.

e The Reactor:

Gruslys et al. (2017) The Reactor: A fast and sample-efficient Actor-Critic agent for Reinforcement
Learning. arXiv:1/704.04651.
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2 - Noisy DQN

Published as a conference paper at ICLR 2018

NOISY NETWORKS FOR EXPLORATION

Meire Fortunato® Mohammad Gheshlaghi Azar® Bilal Piot ~
Jacob Menick Matteo Hessel Ian Osband Alex Graves Volodymyr Mnih

Remi Munos Demis Hassabis Olivier Pietquin Charles Blundell Shane Legg
DeepMind {meirefortunato,mazar,piot,

jmenick,mtthss, iosband, gravesa,vmnih,
munos, dhcontact,pietquin, cblundell, legg}Rgoogle.com

Fortunato et al. (2017) Noisy Networks for Exploration. arXiv:170610295
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Noisy DQN

e DQN and its variants rely on e-greedy action selection over the Q-values to explore.
e The exploration parameter € is annealed during training to reach a final minimal value.

e |tis preferred to softmax action selection, where 7 scales with the unknown Q-values.

e The problem is that it is a global exploration mechanism: well-learned states do not need as much

exploration as poorly explored ones.

Epsilon greedy method

Epsilon

Exploration area

Exploitation area

0.0 .

0 200 400 600 800

Source: https://www.researchgate.net/publication/334741451/figure/fig2/AS:786038515589120@1564417594220/Epsilon-greedy-method-At-each-step-

a-random-number-is-generated-by-the-model-If-the_W640.jpg

Step

1000
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Noisy DQN

e e-greedy and softmax add exploratory noise to the
output of DQN:

Action Action

» The Q-values predict a greedy action, but {0} Noise
another action is taken.

e What about adding noise to the parameters
(weights and biases) of the DQN, what would

Noise
change the greedy action everytime? < e

e Controlling the level of noise inside the neural
network indirectly controls the exploration level.

Input Input

Source: https://openai.com/blog/better-exploration-with-parameter-noise/

e Note: a very similar idea was proposed by OpenAl at the same ICLR conference:

Plappert et al. (2018) Parameter Space Noise for Exploration. arXiv:1706.01905.
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Noisy DQN

e Parameter noise builds on the idea of Bayesian deep learning. Bayesian

e Instead of learning a single value of the parameters:

y:(91£B—|—t90

we learn the distribution of the parameters, for example by assuming they
come from a normal distribution:

0 ~ N(,ng,O'g)

e For each new input, we sample a value for the parameter: %
— e + 09 €
with € ~ N(O’ ]_) a random variable. Source: https://ericmijl.github.io/bayesian-

deep-learning-demystified

o The prediction y will vary for the same input depending on the variances:

Y — (:u91 - Op, e1) T+ Mg, T Og, €0

e The mean and variance of each parameter can be learned through backpropagation!
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Noisy DQN

e Probabilistic weights:

Bayesian

0 ~ N(/Wao'g)

e As the random variables €; ~ N (0, 1) are not correlated with anything,
the variances o should decay to 0.

e The variances ag represent the uncertainty about the prediction y.

e Applied to DQN, this means that a state which has not been visited very
often will have a high uncertainty:

= The predicted Q-values will change a lot between two evaluations. %AA
= The greedy action might change: exploration.

e Conversely, a well-explored state will have a low uncertainty:

Source: https://ericmjl.github.io/bayesian-

= The greedy action stays the same: exploitation. deep-learning-demystified
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Noisy DQN

e Noisy DQN uses greedy action selection over noisy Q-values.
e The level of exploration is learned by the network on a per-state basis. No need for scheduling!

e Parameter noise improves the performance of e-greedy-based methods, including DQN, dueling DQN,
A3C, DDPG (see later), etc.

Median score over games

160 Median score over games
80
140
Y 60 o 120
O S 100
n N
c 40 -~ 80
© ', ©
b5 J T 60 |
— { Q
=20 4 = 40
f — DON —— Dueling
0 — NoisyNet-DQN 20 —— NoisyNet-Dueling
0
0 50 100 150 200 0 50 100 150 200

Million frames Million frames

Fortunato et al. (2017) Noisy Networks for Exploration. arXiv:170610295
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3 - Rainbow network

Rainbow: Combining Improvements in Deep Reinforcement Learning

Matteo Hessel Joseph Modayil Hado van Hasselt Tom Schaul Georg Ostrovski
DeepMind DeepMind DeepMind DeepMind DeepMind
Will Dabney Dan Horgan Bilal Piot Mohammad Azar David Silver

DeepMind DeepMind DeepMind DeepMind DeepMind

Hessel et al. (2017) Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298
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Raindow network

We have seen various improvements over a few years (2013-2017):

e Original DQN (Mnih et al., 2013)

L(#) = Ep[(r + v Qe (s’,argmax, Qu(s',a")) — Qa(s,a))’]

e Double DQN (van Hasselt et a

., 2015)

L(#) =Ep|[(r +vQo(s’,argmax, Qs(s',a")) — Qa(s,a))’]

o Prioritized Experience Replay (Schaul et al., 2015)

(|0k| + €)®
P(k) =
K= 5 (6 + o)
e Dueling DQN (Wang et al., 2016)

Qo(s,a) = Va(s) + As(s,a)

Which of these improvements s

hould we use?

e Categorical DQN (Bellemare et al., 2017)

E(@) — 43735 [—tk 10g Zg(sk, ak)]

e NoisyNet (Fortunato et al., 2017)

0 =g+ oge
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Rainbow network

DQN

DDQN
Prioritized DDQN
-00% L E;Ehng DDQN ;\f \,\J
Distributional DQN A,

Noisy DQN

Rainbow {\f‘

Median human-normalized score
R =
| >
:
2

100% - F.H'

| |
7 44 100 200
Millions of frames

Figure 1: Median human-normalized performance across
57 Atar1 games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.

e Answer: all of them.

e The rainbow network combines :

= double dueling DQN with PER.
= categorical learning of return distributions.
= parameter noise for exploration.

= n-step return (n=3) for the bias/variance trade-

off:
n—1

R; = Zﬁ’krwkﬂ + " max Q(S¢4n,a)
k=0 *

e |t outperforms any of the single improvements.

Hessel et al. (2017) Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298 35/55



Rainbow network

DQN
— No double

no priority

no dueling
200% - no multi-step

no distribution
— N0 NOisy
== Rainbow

100%

Median normalized score

0%

| | |
50 100 150 200
Millions of frames

Figure 3: Median human-normalized performance across
57 Atar1 games, as a function of time. We compare our 1n-
tegrated agent (rainbow-colored) to DQN (gray) and to six
different ablations (dashed lines). Curves are smoothed with
a moving average over 3 points.

Most of these mechanisms are necessary to
achieve optimal performance (ablation studies).

n-step returns, PER and distributional learning are
the most critical.

Interestingly, double Q-learning does not have a
huge effect on the Rainbow network:

= The other mechanisms (especially
distributional learning) already ensure that Q-
values are not over-estimated.

You can find good implementations of Rainbow

DQN on all major frameworks, for example on
rilib:

https://docs.ray.io/en/latest/rllib-
algorithms.html#deep-g-networks-dgn-rainbow-
parametric-dgn

Hessel et al. (2017) Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298 36 /55
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4 - DRQN: Deep Recurrent Q-network

Deep Recurrent Q-Learning for Partially Observable MDPs

Matthew Hausknecht and Peter Stone

Department of Computer Science
The University of Texas at Austin
{mhauskn, pstone } @cs.utexas.edu

Hausknecht and Stone (2015) Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527
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DRQN: Deep Recurrent Q-network

e Atari games are POMDP: each frame is a partial observation, not a Markov state.

e One cannot infer the velocity of the ball from a single frame.

m a

(a) Pong (b) Frostbite (¢) Double Dunk

Figure 1: Nearly all Atari 2600 games feature moving ob-
jects. Given only one frame of input, Pong, Frostbite, and
Double Dunk are all POMDPs because a single observation
does not reveal the velocity of the ball (Pong, Double Dunk)
or the velocity of the 1icebergs (Frostbite).

Hausknecht and Stone (2015) Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527
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DRQN: Deep Recurrent Q-network

1st hidden 2nd hidden 3rd hidden

INpAIE layer layer layer output
: L}t Q(s¢,a”)
Gk T Q(SI ) a'l)
fully : fully Q ( S, 2 )

connected :connected :

BxBx4 filter™.™.".  ; . .
stride 4 ™. JESEE Y4 xax16 filter ™. 5
== | stride 2 :l/D/O
84x84x4 20x20x16 9x9x32 256 4~18

Source: https://medium.com/emergent-future/simple-reinforcement-learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-g-
68463e9aeefc

e The trick used by DQN and its variants is to stack
the last four frames and provide them as inputs to

the CNN.
9 neural e The last 4 frames have (almost) the Markov
agent property.

stacked frames

Source: https://medium.com/emergent-future/simple-reinforcement-
learning-with-tensorflow-part-6-partial-observability-and-deep-recurrent-g-
68463e9aeefc
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DRQN: Deep Recurrent Q-network

(h) (hy
= =n I S

Lh
I S

e The alternative is to use a recurrent neural network (e.g. LSTM) to encode the history of single frames.

&

ht — f(Wx X X —I—Wh X ht—l —I—b)

o The output at time ¢ depends on the whole history of inputs (Xg, X1, . . ., X¢).

e Using the output of a LSTM as a state representation, we can make sure that we have the Markov
property, and RL will work:

P(ht—l—l‘ht) — P(ht+1‘ht7 ht—17 I 7h0)
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DRQN: Deep Recurrent Q-network

Conv 1 Conv 2
32 filters 64 filters aaa
Shape Bx B — Shape 4 x 4 || Action scores
Stricle 4 Stride 2 |||—[ . (Slza n for n actions)
| _
—I 5 )
t — EL% R
[ e - N
B = |
— P .
Layer 3
Size 4608
Layer 1 Layer 2 Layer 3
3 fealure maps 32 feature maps 64 feature maps
=hape 60 x 108 Shape 14 x 26 shape 6x12

Source: https://blog.acolyer.org/2016/11/23/playing-fps-games-with-deep-reinforcement-learning/

e Forthe neural network, it is just a matter of adding a LSTM layer before the output layer.

e The convolutional layers are feature extractors for the LSTM layer.

e The loss function does not change: backpropagation (through time) all along.

L(0) = Ep|(r

v Qg (s',argmax,,Qy(s',a')) — Qa(s,a))’]
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DRQN: Deep Recurrent Q-network

VY YE Y IE Y,

Hausknecht and Stone (2015) Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527
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DRQN: Deep Recurrent Q-network

(h) (hy
o= =n I S

Lol
Sl

e The only problem is that RNNs are trained using truncated backpropagation through time (BPTT).

&

®
l

e One needs to provide a partial history of I' = 10 inputs to the network in order to learn one output:

(X1, X1y - - 5 Xt)

e The experience replay memory should not contain single transitions (st, Aty T, st+1), but a partial
history of transitions.

(St—T, At Ty Tt—T+1ySt—T+1y -39Sty Aty Tt41, 3t+1)
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DRQN: Deep Recurrent Q-network

e Using a LSTM layer helps on certain games, where temporal dependencies are longer that 4 frames, but

impairs on others.

DRQN =std DQN =+std
Game Ours Mnih et al.
Asteroids 1020 (+312) 1070 (£345) 1629 (4+542)
Beam Rider 3269 (£1167) 6923 (£1027) | 6846 (£1619)
Bowling 62 (+5.9) 72 (£11) 42 (488)
Centipede 3534 (£1601) 3653 (£1903) | 8309 (£5237)
Chopper Cmd 2070 (£875) 1460 (£976) 6687 (+2916)
Double Dunk -2 (£7.8) -10 (£3.5) -18.1 (£2.6)
Frostbite 2875 (+£535) 519 (£363) | 328.3 (£250.5)
Ice Hockey 4.4 (+1.6) -3.5 (£3.5) -1.6 (£2.5)

Ms. Pacman 2048 (£653) 2363 (£735) | 2311 (+525)

Table 1: On stand

ard Atar1 games, DRQN performance par-

allels DQN, excelling in the games ot Frostbite and Double

Dunk, but strugg
statistical signific

ing on Beam Rider. Bolded font indicates
ance between DRQN and our DQN.”

Hausknecht and Stone (2015) Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527
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DRQN: Deep Recurrent Q-network

e Beware: LSTMs are extremely slow to train (but not to use).

e Stacking frames is still a reasonable option.

Backwards (ms)

Forwards (ms)

Frames ] 4 10 | 4 10
Baseline 8.82 13.6 267 | 2.0 4.0 9.0
Unroll 1 18.2 22.3 337 | 24 44 94
Unroll 10 77.3 111.3 1805 | 25 44 8.3
Unroll 30 204.5 2634 491.1 | 25 38 94

Table 2: Average milliseconds per backwards/forwards pass.
Frames refers to the number of channels in the input 1m-
age. Baseline 1s a non recurrent network (e.g. DQN). Unroll
refers to an LSTM network backpropagated through time

1/10/30 steps.

Hausknecht and Stone (2015) Deep Recurrent Q-Learning for Partially Observable MDPs. arXiv:1507.06527
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5 - Distributed learning: Gorila, Ape-X, R2D2

Massively Parallel Methods for Deep Reinforcement Learning

Arun Nair, Praveen Srinivasan, Sam Blackwell, Cagdas Alcicek, Rory Fearon, Alessandro De Maria, Vedavyas
Panneershelvam, Mustafa Suleyman, Charles Beattie, Stig Petersen, Shane Legg, Volodymyr Mnih, Koray
Kavukcuoglu, David Silver

{ARUNSNAIR, PRAV, BLACKWELLS, CAGDASALCICEK, RORYF, ADEMARIA, DARTHVEDA, MUSTAFASUL, CBEATTIE,
SVP, LEGG, VMNIH, KORAYK, DAVIDSILVER @ GOOGLE.COM }

Google DeepMind, London

Published as a conference paper at ICLR 2019

RECURRENT EXPERIENCE REPLAY IN
DISTRIBUTED REINFORCEMENT LEARNING

Steven Kapturowski, Georg Ostrovski, John Quan, Rémi Munos, Will Dabney
DeepMind, London, UK

{skapturowski, ostrovski, johnquan, munos, wdabney}@google.com

Nair et al. (2015) ; Horgan et al. (2018) ; Kapturowski et al. (2019)
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Gorila - General Reinforcement Learning Architecture

 The DQN value network Q4(s, a) has
two jobs: DQN Loss

s actor: it interacts with the e s

: / argmax_Q(s,a; 0)
environment to sample (s, a, 7, s') gmax, S
transitions. :

s |earner: it learns from minibatches

out of the replay memory.

e The weights of the value network lie on o
the same CPU/GPU, so the two jobs )
have to be done sequentially:
computational bottleneck.

 DQN cannot benefit from parallel computing: multi-core CPU, clusters of CPU/GPU, etc.

Nair et al. (2015) Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296
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Gorila

e The Gorila framework splits DQN into multiple actors and multiple learners.

e Each actor (or worker) interacts with its copy of the environment and stores transitions in a distributed
replay buffer.

e Each learner samples minibatches from the replay buffer and computes gradients w.r.t the DQN loss.

o The parameter server (master network) applies the gradients on the parameters and frequently
synchronizes the actors and learners.

Sync every

I global N steps
Parameter Server Learner
DQN Loss
Shard 1 Shard 2 Shard K ,
Gradient
wrt loss max_Q(s;a’; 6")
f Gradient

Sync Sync

Bundled

Actor 1

argmax_ Q(s,a; 0)

Environment namssssssssw  Q Network

Nair et al. (2015) Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296
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Gorila

e Gorila allows to train DQN on parallel hardware (e.g. clusters of GPU) as long as the environment can be

copied (simulation).

RiverRaid
Chopper_Command
Hero
Seaquest
Beam_Rider
Enduro
Bowling
Amidar
Alien
Gravitar®
Frosthite
Ms_Pacman
Private_Eye*

Montezuma_Revenge
Asteroids*

(=1

at human-level or above

below human-level

ae— __--....I|I|IIIII|III||

200%

400%

I
600%

Human Score

800%

1,000% 5,000%

e The final performance is not incredibly better than
single-GPU DQN, but obtained much faster in wall-
clock time (2 days instead of 12-14 days on a
single GPU).

50
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30
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w
=
<
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+
BEATING
10
_._
HIGHEST
0 |
0 1 2 3 4 5 6

TIME (Days)

Figure 5. The time required by Gorila DQN to surpass single
DQN performance (red curve) and to reach its peak performance
(blue curve).

Nair et al. (2015) Massively Parallel Methods for Deep Reinforcement Learning. arXiv:1507.04296
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Distributed RL

e Having multiple workers interacting with different environments is easy in simulation (Atari games).

e With physical environments, working in real time, it requires lots of money...

@ Large-scale data collection with an array of robots

BT
\ "
o i
a . ¥
/ i
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https://www.youtube.com/watch?v=iaF43Ze1oeI

Ape-X

o With more experience, Deepmind realized that a single learner is better. Distributed SGD (computing
gradients with different learners) is not very efficient.

o What matters is collecting transitions very quickly (multiple workers) but using prioritized experience
replay to learn from the most interesting ones.

Sampled experience

Learner Replay
Updated priorities

Network Experiences

Actor

Network Initial priorities

Generated experience

Network parameters

Environment

Figure 1: The Ape-X architecture in a nutshell: multiple actors, each with its own instance of the environment,
generate experience, add it to a shared experience replay memory, and compute 1nitial priorities for the data.
The (single) learner samples from this memory and updates the network and the priorities of the experience in
the memory. The actors’ networks are periodically updated with the latest network parameters from the learner.

Horgan et al. (2018) Distributed Prioritized Experience Replay. arXiv:180300933



Ape-X

e Using 360 workers (1 per CPU core), Ape-X reaches super-human performance for a fraction of the wall-

clock training time.
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Figure 2: Left: Atari results aggregated across 57 games, evaluated from random no-op starts. Right: Atari
training curves for selected games, against baselines. Blue: Ape-X DQN with 360 actors; Orange: A3C;
Purple: Rainbow; Green: DQN. See appendix for longer runs over all games.

Horgan et al. (2018) Distributed Prioritized Experience Replay. arXiv:180300933
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Ape-X

e The multiple parallel workers can collect much more frames, leading to the better performance.

e The learner uses n-step returns and the double dueling DQN network architecture, so it is not much
different from Rainbow DQN internally.

Algorithm Training  Environment Resources Median Median

Time Frames (per game) (no-op starts) (human starts)
Ape-X DQN 5 days 22800M 376 cores, 1 GPU *° 434 % 358 %
Rainbow 10 days 200M 1 GPU 223% 153%
Distributional (C51) 10 days 200M 1 GPU 178% 125%
A3C 4 days — 16 cores — 117%
Prioritized Dueling 9.5 days 200M 1 GPU 172% 115%
DQN 9.5 days 200M 1 GPU 79% 68%
Gorila DQN © ~4 days — unknown ° 96% 78%
UNREAL ¢ — 250M 16 cores 331% ¢ 250% *

Table 1: Median normalized scores across 57 Atari games. * Tesla P100. ® >100 CPUs, with a mixed number

of cores per CPU machine. ¢ Only evaluated on 49 games. ¢ Hyper-parameters were tuned per game.

Horgan et al. (2018) Distributed Prioritized Experience Replay. arXiv:180300933
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R2D2: Recurrent Replay Distributed DQN

e R2D2 builds on Ape-X and DRQN:

= double dueling DQN with n-step returns (n=5) and prioritized experience replay.

= 256 actors, 1 learner.

= 1 LSTM layer after the convolutional stack.

o Additionally solving practical problems with LSTMs (initial state), it became the state of the art on Atari-

57 until 2019.
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Kapturowski et al. (2019) Recurrent experience replay in distributed reinforcement learning. ICLR.
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