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1 - Policy Search



Policy search

Agent
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e Learning directly the Q-values in value-based methods (DQN) suffers from many problems:

= The Q-values are unbounded: they can take any value (positive or negative), so the output layer must

be linear.

= The Q-values have a high variability: some (s, a) pairs have very negative values, others have very
positive values. Difficult to learn for a NN.

= Works only for small discrete action spaces: need to iterate over all actions to find the greedy action.
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Policy search
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e |Instead of learning the Q-values, one could approximate directly the policy 7T9(8, a) with a neural network.

. 7T9(8, a) is called a parameterized policy: it depends directly on the parameters 6 of the NN.

e For discrete action spaces, the output of the NN can be a softmax layer, directly giving the probability of
selecting an action.

e For continuous action spaces, the output layer can directly control the effector (joint angles).
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Policy search

e Parameterized policies can represent continuous policies and avoid the curse of dimensionality.

ala

Policy Gradient

Please wait I've
still 20 890 actions to
calculate their
Q values before
giving you the best
action to take

Deep Q-learning

Source: https://www.freecodecamp.org/news/an-introduction-to-policy-gradients-with-cartpole-and-doom-495b5ef2207f/
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Policy search

Policy search methods aim at maximizing directly Rewards >

the expected return over all possible trajectories P

(episodes) T = (Sg, ag, . .., ST, aT)

T(60) = Eropy [R()] = / po(7) R(7) dr

T

All trajectories 7 selected by the policy 79 should
be associated with a high expected return R(7) in

order to maximize this objective function.

pg (7) is the likelihood of the trajectory 7 unc

This means that the optimal policy should on
what we want.
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Any other possible trajectory

er the policy y.

y select actions that maximizes the expected return: exactly
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Policy search

e Objective function to be maximized:

T(60) = Erop [R()] = / po(7) R(7) dr

e The objective function is however not model-free, as the likelihood of a trajectory does depend on the
environments dynamics:

T

po(T) = pPo(S0, a0, - - -, ST) = Po(So) Hﬂe(st,at)P(Stﬂ\St,at)
t=0

e The objective function is furthermore not computable:

= An infinity of possible trajectories to integrate if the action space is continuous.

= Even if we sample trajectories, we would need a huge number of them to correctly estimate the
objective function (sample complexity) because of the huge variance of the returns.

T(0) = By [R(r)) = 32 > R(m)
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Policy gradient

All we need to find is a computable gradient

. Local maximum Best parameters
V¢ J (0) to apply gradient ascent and
backpropagation.
A = M V@j(@) The policy
Policy Gradient (PG) methods only try to estimate
this gradient, but do not care about the objective
function itself...
g = ng(@) Source: https://www.freecodecamp.org/news/an-introduction-to-policy-

gradients-with-cartpole-and-doom-495b5ef2207f/

In particular, any function j’(@) whose gradient is locally the same (or has the same direction) will do:

TJ0)=aT0)+p = VeIJ (0) x VoJ(0) = A8 =nVeT (6)

This is called surrogate optimization: we actually want to maximize J (6) but we cannot compute it.

We instead create a surrogate objective J' (#) which is locally the same as 7 () and tractable.
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2 - REINFORCE

Simple Statistical Gradient-Following Algorithms for
Connectionist Reinforcement Learning

Ronald J. Williams

College of Computer Science
Northeastern University

Boston, MA 02115

Appears in Machine Learning, 8, pp. 229-256, 1992.

Williams (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 229-256.
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REINFORCE

e The REINFORCE algorithm (Williams, 1992) proposes an unbiased estimate of the policy gradient:

Vo T (0) = Vo /,09 (7) R(T)dT = /(V@ po(7)) R(T)dT

T T

by noting that the return of a trajectory does not depend on the weights @ (the agent only controls its

actions, not the environment).

 We now use the log-trick, a simple identity based on the fact that:

dlog f(z) _ f'(=)

dx f(z)

Or.

(@) = fa) x 2o8112)

to rewrite the gradient of the likelihood of a single trajectory:

Vo po(T) = po(T) X Vglog py(T)
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REINFORCE

e The policy gradient becomes:

Ve J(0) = / (Vo pa(7)) R(T)dT = / po(T) Vg log pg(T) R(T) dT

T

which now has the form of a mathematical expectation:

VH j(e) — €T~pe [VH log Po (7-) R(T)]

e The policy gradient is, in expectation, the gradient of the log-likelihood of a trajectory multiplied by its
return.
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REINFORCE

e The advantage of REINFORCE is that it is model-free:

T

po(T) = po(S0, a0, - - -, 87) = Po(S0) Hﬂe(st,at)P(StH\St,at)
t=0
T T
lOg :06’(7—) — lngo(S()) + Z lOg 7Tt9(8t7 at) T Z 1ng(8t—|—1‘st7 at)
t=0 t=0

T
Vg log pg(7) = Z Vg log mg(st, at)
=0

e The transition dynamics p(s¢+1|st, a:) disappear from the gradient.

e The Policy Gradient does not depend on the dynamics of the environment:

VoT(0) =Erwp,[Y Vologms(st,ar) R(T)

t=0
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REINFORCE algorithm

The REINFORCE algorithm is a policy-based variant of Monte Carlo control:

e while not converged:

= Sample M trajectories {; } using the current policy g and observe the returns { R(7;) }.

= Estimate the policy gradient as an average over the trajectories:

M T

]. A\ A\
Vo T (0) ~ — Y ) Vglogm(se,ar) R(m:)

=1 t=0

= Update the policy using gradient ascent:

0—0+nVeT(0)

Williams (1992) Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine Learning 8, 229-256.
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REINFORCE

VoJ (0) = Ervp,[Y  Vologms(st,ar) R(7)]

t=0

Advantages

e The policy gradient is model-free.

o Works with partially observable problems (POMDP): as the return is computed over complete trajectories,
it does not matter whether the states are Markov or not.

Inconvenients

e Only for episodic tasks.
e The gradient has a high variance: returns may change a lot during learning.

e |t has therefore a high sample complexity: we need to sample many episodes to correctly estimate the
policy gradient.

e Strictly on-policy: trajectories must be frequently sampled and immediately used to update the policy.
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REINFORCE with baseline

e To reduce the variance of the estimated gradient, a baseline is often subtracted from the return:

Vo (0) = Ervp[ Y Vologms(st,ar) (R(1) — b)]

e Aslong as the baseline b is independent from 6, it does not introduce a bias:

U py [V log po(7) b] = / po(T)Vglog po(T)bdr
— /Vgpg(T)de

— bV@/pg(T) dr

= bVyl
=0
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REINFORCE with baseline

e In practice, a baseline that works well is the value of the encountered states:

VoJ(0) =

e Y Vologmo(se, ai) (R(T) — V™ (st)))

o R(7) — V™ (s;) becomes the advantage of the action a; in s;: how much return does it provide

compared to what can be expected in s; generally:

A

Good state

actions matter

Q" (s,a)

V7(s)
Good state

Bad state

] [ ] actions do not matter

Bad state

- __-___I_- -

A7 (s,a)

e As in dueling networks, it reduces the variance of the returns.

e Problem: the value of each state has to be learned separately (see actor-critic architectures).
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Application of REINFORCE to resource management

Resource

(D)
Ig‘ Cluster Job Slot 1 Job Slot 2 Job Slot 3

‘I

CPU

-
Q Backlog
-
[0)
=
25 T | I T T | T T T T
EZD | -©-DeepRM |
3 E-Tetris*
215 | ASIF )
“ “-Pack
210 | acker z -
© F 1
25T = Iv-——“ﬁ‘__"x'_’g:j i
= —it— ____—_-,.ir—-'-‘_’%'____'a & o -
D | | 1 1 1 | | | | 1 | | 1

10% 30% 50% 70% 90% 110% 130% 150% 170% 190%
Average cluster load

Figure 4: Job slowdown at different levels of load.

REINFORCE with baseline can be used to allocate
resources (CPU cores, memory, etc) when
scheduling jobs on a cloud of compute servers.

The policy is approximated by a shallow NN (one
hidden layer with 20 neurons).

The state space is the current occupancy of the
cluster as well as the job waiting list.

The action space is sending a job to a particular
resource.

The reward is the negative job slowdown: how
much longer the job needs to complete compared
to the optimal case.

DeepRM outperforms all alternative job schedulers.

Mao et al. (2016) Resource Management with Deep Reinforcement Learning. HotNets '16 doi:10.1145/3005745.3005750.



3 - Policy Gradient Theorem

Policy Gradient Methods for
Reinforcement Learning with Function
Approximation

Richard S. Sutton, David McAllester, Satinder Singh, Yishay Mansour
AT&LT Labs — Research, 180 Park Avenue, Florham Park, NJ 07932

Sutton et al. (1999) Policy gradient methods for reinforcement learning with function approximation. NIPS.
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Policy Gradient

e The REINFORCE gradient estimate is the following:

T T
VoT (0) = Ervpy[ > Vologmo(se,ar) R(T)] = Ervp,| Z Vo log mo(st, ar)) Z’Y re+1)]
H—0

t=0 t—=

o For each state-action pair (s;, a; ) encountered during the episode, the gradient of the log-likelihood of
the policy is multiplied by the complete return of the episode:

a; a1 a0

T nan
t’ Fiv1 475) Tt+3
— E Y Te
t'=0

e The causality principle states that rewards obtained before time t are not caused by that action.

e The policy gradient can be rewritten as:

T
ng(é’) "TN,O@ Z Vg lOg o St, Cl,t Z Y ’rt’+1 :TN,OQ [Z V@ lOg 7T9(8t, CLt) Rt]
t=0

Sutton et al. (1999) Policy gradient methods for reinforcement learning with function approximation. NIPS. 19/133



Policy Gradient

e Thereturn at time ¢ (reward-to-go) multiplies the gradient of

the log-likelihood of the policy (the score) for each transition
in the episode:

T
VoT (0) = Erp,[>  Vologms(ss,ar) Ryl
t=0

e As we have:

Q" (s,a) = E;|Ri|s: = s;a: = a

we can replace R; with Q™ (st, at) without introducing any
bias:

T
VoT (0) = Ervpy[ > Vologm(si,ar) Q™ (st,ar)]

t=0

e This is true on average (no bias if the Q-value estimates are correct) and has a much lower variance!

Sutton et al. (1999) Policy gradient methods for reinforcement learning with function approximation. NIPS. 20 /33



Policy Gradient

e The policy gradient is defined over complete trajectories:

T
VoJ (6) = Erwp[ Y Velogma(s, ar) Q™ (st,az)]

t=0

« However, Vg log my(s:, a;) Q™ (s¢, a;) now only depends on (s, a; ), not the future nor the past.

e Each step of the episode is now independent from each other (if we have the Markov property).

e We can then sample single transitions instead of complete episodes:

Vej(e) X <1:swpg,arwrg [VH 10g 779(87 (1,) Qﬁe (87 (1,)]

o Note that this is not directly the gradient of 7 (), as the value of 7 (6) changes (computed over single
transitions instead of complete episodes, so it is smaller), but the gradients both go in the same direction!

Sutton et al. (1999) Policy gradient methods for reinforcement learning with function approximation. NIPS.
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Policy Gradient Theorem

For any MDP, the policy gradient is:

g — V9~7(0) — 4:8N09,CLN7T9 [Vé’ log 7T9(57 a) Q" (87 a)]

Sutton et al. (1999) Policy gradient methods for reinforcement learning with function approximation. NIPS.
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Policy Gradient Theorem with function approximation

o Better yet, (Sutton et al. 1999) showed that we can replace the true Q-value QQ™ (s, a) by an estimate
Qgp(s, a) as long as this one is unbiased:

Vej(@) = s~ pg,army [VH log 7T9(37 a) QSO(Sa a)]

 We only need to have:

Qu(s,a) =~ Q™ (s,a) Vs,a

e The approximated Q-values can for example minimize the mean square error with the true Q-values:

L(p) = Esuppamm (R (8,0) — Qu(s, a))Q]

e We obtain an actor-critic architecture:

= the actor 7y( s, a) implements the policy and selects an action a in a state s.

= the critic (s, a) estimates the value of that action and drives learning in the actor.

Sutton et al. (1999) Policy gradient methods for reinforcement learning with function approximation. NIPS.
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Policy Gradient : Actor-critic

PG actor loss
ng(@) — [Eswpg,awﬂa[ Vglog ﬂ@(sa a) Q(p(sa a)]

critic loss
Z(@p) = Es. ), 0on [ (s, a) — O, (5, a))’]
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Policy Gradient : Actor-critic

e But how to train the critic? We do not know Q™ (s, a).

e As always, we can estimate it through sampling:

= Monte Carlo critic: sampling the complete episode.

L(p) =

s pg,ang (R(s,a) — Q@(Sa a))z]

= SARSA critic: sampling (s, a,r, s',a’) transitions.

L(p) = Esyppaa~m [(r +7Qu(s';a") — Qu(s,a))’]

= Q-learning critic: sampling (s, a, T, s') transitions.

L(p) = L5, 8" ~ g arg (r + v max Qw(slv al) — Q¢(S, a))2]

(l/
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Policy Gradient : reducing the variance

o As with REINFORCE, the PG actor suffers from the high variance of the Q-values.

e Itis possible to use a baseline in the PG without introducing a bias:

Vo (0) = Espya~m [Vologme(s,a) (@™ (s,a) — b)]

e In particular, the advantage actor-critic uses the value of a state as the baseline:

Vé’j(e) — <Esw,oer,a,rwre [VH 1Og 7"9(37 CL) (Qm (37 a’) — V" (S))]

= s~ pg,anmy [VH log 7T9(37 CL) A" (37 a)]

e The critic can either:

= learn to approximate both Q™ (s, a) and V™ (s) with two different NN (SAC).
= replace one of them with a sampling estimate (A3C, DDPG)

= learn the advantage A™ (s, a) directly (GAE, PPO)
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Many variants of the Policy Gradient

e Policy Gradient methods can take many forms :

VHJ(H) — 438t~ﬂ9,atfv779 [Vﬁ 1Og 779(3757 at) wt]

where:

e Yy = R;isthe REINFORCE algorithm (MC sampling).

e 1y = R; — bisthe REINFORCE with baseline algorithm.

o Y = Q" (s8¢, az) is the policy gradient theorem.

o Py = A" (s¢,a¢) = Q7 (s¢,a;) — V™ (s;) is the advantage actor-critic.
o Y =7Tir1 + YV (8eh1) — V7 (s¢) is the TD actor-critic.

n—1

Z »yk Piaks1 + V" V”(an) — V”(st) is the n-step advantage.
k=0

.« Py

and many others...
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Bias and variance of Policy Gradient methods

e The different variants of PG deal with the bias/variance trade-off.

VHJ(Q) — 4:StN,09,atN779 [VG 1Og 779(3757 at) djt]

Low Variance High Variance 1. the more 1); relies on sampled rewards (e.g. R;), the more the

gradient will be correct on average (small bias), but the more it
will vary (high variance).

e This increases the sample complexity: we need to average
more samples to correctly estimate the gradient.

Low Bias

2. the more 1), relies on estimations (e.g. the TD error), the more

stable the gradient (small variance), but the more incorrect it
is (high bias).

e This can lead to suboptimal policies, i.e. local optima of
the objective function.

High Bias

o All the methods we will see in the rest of the course are attempts at finding the best trade-off.
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4 - Generalized advantage estimation
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Generalized advantage estimation (GAE)

e The n-step advantage at time ¢:

n—1

¢ = Z’)’k Terk1 T 7" V(Sten) — V(st)
k=0

can be written as function of the TD error of the next n transitions:
n—1
l
? — Z”Y 5t+l
1=0

Proof with n = 2:

A? = e+ yree 7 V(si2) — V(st)
= (rer1 — V(8¢)) + v (T2 + 7V (842))
= (re1 YV (8e41) =V (8)) + 7 (re2 + YV (st12) — V(8¢41))

= 0t + ¥ 0t+1

Schulman et al. (2015) High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438.
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Generalized advantage estimation (GAE)

TD (1-step) z-gep s_arep &gp Monrg:aﬂo  The n-step advantage realizes a bias/variance trade-off, but
E I Il I I which value of n should we choose?

O O eee O ees O
® > > ® n—l

O O O k

. . . Al = Z’Y Tirkt1 T V(Stin) — V(8t)

O E O k=0

é ®
e Schulman et al. (2015) proposed a generalized advantage
AE(y,\ . .
; estimate (GAE) AG (1) summing all possible n-step

advantages with a discount parameter A:
GAE(v,\) n AN
A, — Z A" A

e This is just a forward eligibility trace over distant n-step advantages: the 1-step advantage is more
important the the 1000-step advantage (too much variance).

e We can show that the GAE can be expressed as a function of the future 1-step TD errors:

O

GAE (72 Z )" Ot ik

k=0

Schulman et al. (2015) High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438. 31/33



Generalized advantage estimation (GAE)

e Generalized advantage estimate (GAE) :

@)
GAE(~,
AP = (1= YN A7 =Y
k=0
e The parameter A\ controls the bias-variance trade-off.
e When A = 0, the generalized advantage is the TD error:
GAE(~,0
A, 9 = rev1 + Y V(ser1) — V(s) = o

e When A = 1, the generalized advantage is the MC advantage:

GAE (1) ZW’ Tevk+1 — V(st) = Ry — V(s¢)

e Any value in between controls the bias-variance trade-off: from the high bias / low variance of TD to the
small bias / high variance of MC.

e In practice, it leads to a better estimation than n-step advantages, but is more computationally expensive.

Schulman et al. (2015) High-Dimensional Continuous Control Using Generalized Advantage Estimation. arXiv:1506.02438.
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