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1 - Distributed RL



Advantage actor-critic

e Let's consider an n-step advantage actor-critic:

n—1

¢ =Ry — Vi(st) = ZVIC Pkl + 7" Vio(St4n) — Vi (st)

state

k=0
action
a ~ my(s,a)
>
Actor PG actor loss
S Vo F(0) = s~peaa~ﬁg[ Vglog my(s, a) (R” — V‘P(S))]
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Advantage actor-critic

e The advantage actor-critic is strictly on-policy:

= The critic must evaluate actions selected the current version of the actor 7wy, not an old version or
another policy.

= The actor must learn from the current value function V'™ =~ Vgp.

(VT (0) = Es,ppaimy (Vo log T (51, ar) (RY — Vip(81))]

‘C(SO) — 4:Stfv/oe,abtfwm [(R? — VSO(St))z]

e We cannot use an experience replay memory to deal with the correlated inputs, as it is only for off-policy
methods.
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Distributed RL

e We cannot get an uncorrelated batch of transitions by acting sequentially with a single agent.

a A (2A%))
. — \y @ St.|.1 @ St4+2 @ " St+3 ...
i1 Tt42 t+3

e A simple solution is to have multiple actors with the same weights 6 interacting in parallel with different
copies of the environment.

l sample batches

|
|
concat |
Trainer | Rollout Workers

Learner

new weights T

Source: https://ray.readthedocs.io/en/latest/rllib.html

e Each rollout worker (actor) starts an episode in a different state: at any point of time, the workers will be
in uncorrelated states.

e From time to time, the workers all send their experienced transitions to the learner which updates the
policy using a batch of uncorrelated transitions.

e After the update, the workers use the new policy.

5/31


https://ray.readthedocs.io/en/latest/rllib.html

Distributed RL

@ Large-scale data collection with an array of robots
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https://www.youtube.com/watch?v=iaF43Ze1oeI

Distributed RL

e Initialize global policy or value network 6.

e Initialize /N copies of the environment in different states.
e while True:

= for each worker in parallel:

o Copy the global network parameters 6 to each worker:
Hk — 0

o Initialize an empty transition buffer Dy.

o Perform d steps with the worker on its copy of the environment.

o Append each transition (s, a, r, s') to the transition buffer.
= join(): wait for each worker to terminate.

= Gather the IV transition buffers into a single buffer D.

= Update the global network on D to obtain new weights 6.
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2 - A3C: Asynchronous advantage actor-critic

Asynchronous Methods for Deep Reinforcement Learning

Volodymyr Mnih' VMNIH@ GOOGLE.COM
Adria Puigdoménech Badia' ADRIAP@GOOGLE.COM
Mehdi Mirza':? MIRZAMOM @ IRO.UMONTREAL.CA
Alex Graves' GRAVESA @GOOGLE.COM
Tim Harley' THARLEY @ GOOGLE.COM
Timothy P. Lillicrap’ COUNTZERO @ GOOGLE.COM
David Silver! DAVIDSILVER @ GOOGLE.COM
Koray Kavukcuoglu ' KORAYK @GOOGLE.COM

1 Google DeepMind
> Montreal Institute for Learning Algorithms (MILA), University of Montreal

Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C: Asynchronous advantage actor-critic

e Mnih et al. (2016) proposed the A3C algorithm (asynchronous advantage actor-critic).

e The stochastic policy 7y is produced by the actor with weights € and learned using :

VoT (0) = Es,~ppai~my [ Vo log mo(se, ar) (RY — V,(5t))]

action e The value of a state V,,(s) is produced by the critic
a~ mys,a
—+  Actor PG actor oss with weights ¢, which minimizes the mse with the
Yo, VoI O) =By onn] Vlog ms,0) (R" = V,(s)] n-step return:
state T
¢ critic loss "~-..::::: . n 2
L0 = Eoppann R - Vw(S))Z]. .............. R" = Z Y Terr + 7" Vo(Siin) L(SO) — <L'St ~Pg,aAt ~Tg [(Rt - VQO (St )) ]
......... k=0
o TL__]-
— Critic LT n Z k n
value return rewards Rt — Y Tt+k+1 _I_ Y VSO (St_|_n)
V,()
k=0

e Both the actor and the critic are trained on batches of transitions collected using parallel workers.

e Two things are different from the general distributed approach: workers compute partial gradients and
updates are asynchronous.

Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C: Asynchronous advantage actor-critic
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o def worker(8, ©):

= |nitialize empty transition buffer D. Initialize the environment to the last state visited by this worker.

= for n steps:

o Select an action using g, store the transition in the transition buffer.

= for each transition in D:
n—1
o Compute the n-step return in each state R}’ = Z vk Perk+1 T 7" Vio(Stan)
k=0
= Compute policy gradient for the actor on the transition buffer:

1 n
dd =VeJ(0) = - Z Vo logmo(st,at) (Ry — Vip(st))
t=1

= Compute value gradient for the critic on the transition buffer:

dp = V,L(p) = _% Z(R? — Voo (1)) Vi Vi (st)

t=1

= return df, do
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A2C: global networks

o Initialize actor 6 and critic .

e Initialize K workers with a copy of the environment.
o fort € |0, Tiotall:
= for K workers in parallel:
o db, dpyr, = worker(8, ©)
= join()
= Merge all gradients:

1 & 1 &
dH:EZZ;de; dga:E;dgok

= Update the actor and critic using gradient ascent/descent:

0<—0+ndd; o< p—ndp
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A3C: Asynchronous advantage actor-critic

The previous slide depicts A2C, the synchronous version of A3C.

A2C synchronizes the workers (threads), i.e. it waits for the K workers to finish their job before merging
the gradients and updating the global networks.

A3C is asynchronous:

= the partial gradients are applied to the global networks as soon as they are available.
= No need to wait for all workers to finish their job.

As the workers are not synchronized, this means that one worker could be copying the global networks 6
and ¢ while another worker is writing them.

This is called a Hogwild! update: no locks, no semaphores. Many workers can read/write the same data.

It turns out NN are robust enough for this kind of updates.
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A3C: asynchronous updates

e Initialize actor 8 and critic .
e Initialize K workers with a copy of the environment.

o for K workers in parallel:
= fort € |0, Tiotall:
o Copy the global networks 8 and .

o Compute partial gradients:
dy, dyr, = worker(6, ¢)
o Update the global actor and critic using the partial gradients:

0« 0+ ndi

© < @ —ndpy
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A3C: Asynchronous advantage actor-critic
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e A3C does not use an experience replay memory, but

relies on multiple parallel workers to distribute
learning.

Each worker has a copy of the actor and critic
networks, as well as an instance of the
environment.

Weight updates are synchronized regularly though
a master network using Hogwild!-style updates

(every n = 9 steps!).

Because the workers learn different parts of the

state-action space, the weight updates are not very
correlated.

o It works best on shared-memory systems (multi-core) as communication costs between GPUs are huge.

e As an actor-critic method, it can deal with continuous action spaces.

Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C : results
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Figure 1. Learning speed comparison for DQN and the new asynchronous algorithms on five Atan 2600 games. DQN was trained on
a single Nvidia K40 GPU while the asynchronous methods were trained using 16 CPU cores. The plots are averaged over 5 runs. In
the case of DQN the runs were for different seeds with fixed hyperparameters. For asynchronous methods we average over the best 5
models from 50 experiments with learning rates sampled from LogUni form(10™*,10™2) and all other hyperparameters fixed.

Method Training Time Mean | Median e A3C set a new record for Atari games in 2016.
DOQN 8 days on GPU 121.9% | 47.5% . _

Gorila 4 days, 100 machines | 215.2% | 71.3%  The main advantage is that the workers gather
D-DQN 8 days on GPU 332.9% | 110.9% . . o .

Dueling D-DQN |  8dayson GPU | 343.8% | 117.1% experience in parallel: training is much faster than
Prioritized DQN 8 days on GPU 463.6% | 127.6% .

A3C, FF | day on CPU 344.1% | 68.2% with DQN.

A3C, FF 4 days on CPU 496.8% | 116.6% )

A3C, LSTM 4dayson CPU | 623.0% | 112.6% e LSTMs can be used to improve the performance.

Table 1. Mean and median human-normalized scores on 57 Atari
games using the human starts evaluation metric. Supplementary
Table SS3 shows the raw scores for all games.

Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C : results

e Learning is only marginally better with more threads:
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Mnih et al. (2016) Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.01783
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A3C: TORCS simulator

@ Asynchronous Methods for Deep Reinforcement Learning: TORCS
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https://www.youtube.com/watch?v=0xo1Ldx3L5Q

A3C: Labyrinth

Q Asynchronous Methods forDeep Reinforcement Learning: Labyrinth



https://www.youtube.com/watch?v=nMR5mjCFZCw

A3C: continuous control problems

@ Asynchronous Methods for Deep Reinforcement Learning: MuJoCo



https://www.youtube.com/watch?v=Ajjc08-iPx8

Comparison with DQN

e A3C came up in 2016. A lot of things happened since then...

DQN

DDQN

Prioritized DDQN !

Dueling DDQN i ,
T

200% |- A3C

Distributional DQN A
Noisy DQN ’
Rainbow *’\f‘

WV

100%

Median human-normalized score

) -'." 1 |
0% 7 100 200
Millions of frames

Figure 1: Median human-normalized performance across
57 Atari games. We compare our integrated agent (rainbow-
colored) to DQN (grey) and six published baselines. Note
that we match DQN’s best performance after 7M frames,
surpass any baseline within 44M frames, and reach sub-
stantially improved final performance. Curves are smoothed
with a moving average over 5 points.

Hessel et al. (2017) Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.02298
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3 - Actor-critic neural architectures
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Actor-critic neural architectures

e We have considered that actor-critic architectures consist of two separate neural networks, both taking

the state s (or observation 0) as an input.

state

e Each of these networks have their own loss function. They share nothing except the “data”.

e Is it really the best option?

action
a ~ mys,a)

Actor PG actor loss
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Early visual features

 When working on images, the first few layers of the CNNs are likely to learn the same visual features
(edges, contours).

e It would be more efficient to share some of the extracted features.
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Mnih et al. (2013) Playing Atari with Deep Reinforcement Learning. http://arxiv.org/abs/1312.5602
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http://arxiv.org/abs/1312.5602

Shared architectures

e Actor-critic architectures can share layers between the actor and the critic, sometimes up to the output

layer.

e A compound loss sums the losses for the actor and the critic. Tensorflow/pytorch know which
parameters influence which part of the loss.

5(9) — Lactor(e) + £critic(0)

o For pixel-based environments (Atari), the networks often share the convolutional layers.

e For continuous environments (Mujoco), separate networks sometimes work better than two-headed
networks.

Separate networks

Actor

b 11K
\ll'.wg

Critic

Shared features

Actor

-
l'om>

Critic

Two-headed network

|

! 7(s)
Vi(s)

Critic
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4 - Continuous stochastic policies
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Continuous action spaces

One of the main advantages of actor-critic / PG methods over
value-based methods is that they can deal with continuous
action-spaces.

Suppose that we want to control a robotic arm with n degrees
of freedom.

An action a could be a vector of joint displacements:

a=[A Af ...A6,]

The output layer of the policy network can very well represent
this vector, but how would we implement exploration?

e-greedy and softmax action selection would not work, as all
neurons are useful.

The most common solution is to use a stochastic Gaussian
policy.

action 3 +-———

action 1

action 4
- / /
|

action 5

» action 2
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Gaussian policies

« A Gaussian policy considers the vector a to be sampled from the normal distribution N (19 (), o9(s)).

« The mean uy(s) and standard deviation o (s) are output vectors of the actor with parameters 6.

e Sampling an action from the normal distribution is done through the reparameterization trick:

a= g(s)+og(s)¢

where £ ~ N (0, I) comes from the standard normal distribution.

Agent

Reward
& e
@(s) DNN 64 He(S)
Reparameterization
trick
State — \
N . 0 Action | Environment

oy(S) /

- €3 a = py(s) + o,(s) €

T

Noise &~ 4(0,1)
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Gaussian policies

e The good thing with the normal distribution is that we know its pdf:

I S (R 0);
V27 a3(s) 2573 (s)

mo(s, a)

o The log-likelihood log 7y( s, a) is a simple differentiable function of wg(s) and og(s):

(@ ;Ulgis)) ; log 2o (s)

log mg(s,a) =

so we can easily compute its gradient w.r.t @ and apply backpropagation:

a— po(s)
ao(s)?

V () 10g mo(s,a) =

(a — po(s))? 1
oo(s)? a9 (s)

VUH(S) log 7T9(8, CL) —
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Gaussian policies

« A Gaussian policy samples actions from the normal distribution N (9(s), g¢(s)), with ug(s) and
oy(s) being the output of the actor.

a = pig(s) + op(s)§

e The score Vy log 779(3, a) can be obtained easily using the output of the actor:

- a o MH(S) Agent
V 1(s) log me(s,a) = 70(5)? - Rewad
] Repara:;;;i;(erization
ﬁf E_, - \‘0 . I _Action_| Environment
(@ mo()? 1 i || [
VJH(S) lOg 7'('9(8, CL) — 0'9(3)3 0‘9(3) N E—»? a = pyls) + o4(s) €
Noise ¢~ #(0,1)

o The rest of the score (Vg (s) and Vyoy(s)) is the problem of tensorflow/pytorch.

e This is the same reparametrization trick used in variational autoencoders to allow backpropagation to
work through a sampling operation.

e Beta distributions are an even better choice to parameterize stochastic policies (Chou et al., 2017).

Chou et al. (2017) Improving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution. ICML.
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