
Deep Reinforcement Learning
Advantage actor-critic (A2C, A3C)

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
31

1 - Distributed RL

2
/
31

Advantage actor-critic
Let’s consider an n-step advantage actor-critic:

A ​ =t
n R ​ −t

n V ​(s ​) =φ t ​γ r ​ +
k=0

∑
n−1

k
t+k+1 γ V ​(s ​) −n

φ t+n V ​(s ​)φ t

3
/
31

Advantage actor-critic
The advantage actor-critic is strictly on-policy:

The critic must evaluate actions selected the current version of the actor , not an old version or
another policy.

The actor must learn from the current value function .

We cannot use an experience replay memory to deal with the correlated inputs, as it is only for off-policy
methods.

π ​θ

V ≈π ​θ V ​φ

​ ​⎩⎨
⎧∇ ​J (θ) = E ​[∇ ​ log π ​(s ​, a ​) (R ​ − V ​(s ​))]θ s ​∼ρ ​,a ​∼π ​t θ t θ θ θ t t t

n
φ t

L(φ) = E ​[(R ​ − V ​(s ​))]s ​∼ρ ​,a ​∼π ​t θ t θ t
n

φ t
2

4
/
31

Distributed RL
We cannot get an uncorrelated batch of transitions by acting sequentially with a single agent.

A simple solution is to have multiple actors with the same weights interacting in parallel with different
copies of the environment.

Each rollout worker (actor) starts an episode in a different state: at any point of time, the workers will be
in uncorrelated states.

From time to time, the workers all send their experienced transitions to the learner which updates the
policy using a batch of uncorrelated transitions.

After the update, the workers use the new policy.

θ

Source: https://ray.readthedocs.io/en/latest/rllib.html

5
/
31

https://ray.readthedocs.io/en/latest/rllib.html

Distributed RL

Large-scale data collection with an array of robotsLarge-scale data collection with an array of robots
ShareShare

6
/
31

https://www.youtube.com/watch?v=iaF43Ze1oeI

Distributed RL
Initialize global policy or value network .

Initialize copies of the environment in different states.

while True:

for each worker in parallel:

Copy the global network parameters to each worker:

Initialize an empty transition buffer .

Perform steps with the worker on its copy of the environment.

Append each transition to the transition buffer.

join(): wait for each worker to terminate.

Gather the transition buffers into a single buffer .

Update the global network on to obtain new weights .

θ

N

θ

θ ​ ←k θ

D ​k

d

(s, a, r, s)′

N D

D θ

7
/
31

2 - A3C: Asynchronous advantage actor-critic

Mnih et al. () Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.017832016 8
/
31

A3C: Asynchronous advantage actor-critic
Mnih et al. () proposed the A3C algorithm (asynchronous advantage actor-critic).

The stochastic policy is produced by the actor with weights and learned using :

The value of a state is produced by the critic
with weights , which minimizes the mse with the
n-step return:

Both the actor and the critic are trained on batches of transitions collected using parallel workers.

Two things are different from the general distributed approach: workers compute partial gradients and
updates are asynchronous.

2016

π ​θ θ

∇ ​J (θ) =θ E ​[∇ ​ log π ​(s ​, a ​) (R ​ −s ​∼ρ ​,a ​∼π ​t θ t θ θ θ t t t
n V ​(s ​))]φ t

V ​(s)φ

φ

L(φ) = E ​[(R ​ −s ​∼ρ ​,a ​∼π ​t θ t θ t
n V ​(s ​))]φ t

2

R ​ =t
n

​γ r ​ +
k=0

∑
n−1

k
t+k+1 γ V ​(s ​)n

φ t+n

Mnih et al. () Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.017832016 9
/
31

A3C: Asynchronous advantage actor-critic

10
/
31

def worker(,):

Initialize empty transition buffer . Initialize the environment to the last state visited by this worker.

for steps:

Select an action using , store the transition in the transition buffer.

for each transition in :

Compute the n-step return in each state

Compute policy gradient for the actor on the transition buffer:

Compute value gradient for the critic on the transition buffer:

return ,

θ φ

D

n

π ​θ

D

R ​ =t
n

​γ r ​ +
k=0

∑
n−1

k
t+k+1 γ V ​(s ​)n

φ t+n

dθ = ∇ ​J (θ) =θ ​ ​ ∇ ​ log π ​(s , a ​) (R ​ −
n

1

t=1

∑
n

θ θ t t t
n V ​(s ​))φ t

dφ = ∇ ​L(φ) =φ − ​ ​(R ​ −
n

1

t=1

∑
n

t
n V ​(s ​)) ∇ ​V ​(s ​)φ t φ φ t

dθ dφ

11
/
31

A2C: global networks
Initialize actor and critic .

Initialize workers with a copy of the environment.

for :

for workers in parallel:

, = worker(,)

join()

Merge all gradients:

Update the actor and critic using gradient ascent/descent:

θ φ

K

t ∈ [0,T ​]total

K

dθ ​k dφ ​k θ φ

dθ = ​ ​dθ ​ ; dφ =
K

1

i=1

∑
K

k ​ ​dφ ​

K

1

i=1

∑
K

k

θ ← θ + η dθ ; φ ← φ − η dφ

12
/
31

A3C: Asynchronous advantage actor-critic
The previous slide depicts A2C, the synchronous version of A3C.

A2C synchronizes the workers (threads), i.e. it waits for the workers to finish their job before merging
the gradients and updating the global networks.

A3C is asynchronous:

the partial gradients are applied to the global networks as soon as they are available.

No need to wait for all workers to finish their job.

As the workers are not synchronized, this means that one worker could be copying the global networks
and while another worker is writing them.

This is called a Hogwild! update: no locks, no semaphores. Many workers can read/write the same data.

It turns out NN are robust enough for this kind of updates.

K

θ

φ

13
/
31

A3C: asynchronous updates
Initialize actor and critic .

Initialize workers with a copy of the environment.

for workers in parallel:

for :

Copy the global networks and .

Compute partial gradients:

Update the global actor and critic using the partial gradients:

θ φ

K

K

t ∈ [0,T ​]total

θ φ

dθ ​, dφ ​ =k k worker(θ,φ)

θ ← θ + η dθ ​k

φ ← φ − η dφ ​k

14
/
31

A3C: Asynchronous advantage actor-critic
A3C does not use an experience replay memory, but
relies on multiple parallel workers to distribute
learning.

Each worker has a copy of the actor and critic
networks, as well as an instance of the
environment.

Weight updates are synchronized regularly though
a master network using Hogwild!-style updates
(every steps!).

Because the workers learn different parts of the
state-action space, the weight updates are not very
correlated.

It works best on shared-memory systems (multi-core) as communication costs between GPUs are huge.

As an actor-critic method, it can deal with continuous action spaces.

n = 5

Mnih et al. () Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.017832016 15
/
31

A3C : results

A3C set a new record for Atari games in 2016.

The main advantage is that the workers gather
experience in parallel: training is much faster than
with DQN.

LSTMs can be used to improve the performance.

Mnih et al. () Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.017832016 16
/
31

A3C : results
Learning is only marginally better with more threads:

but much faster!

Mnih et al. () Asynchronous Methods for Deep Reinforcement Learning. ICML. arXiv:1602.017832016 17
/
31

A3C: TORCS simulator

Asynchronous Methods for Deep Reinforcement Learning: TORCSAsynchronous Methods for Deep Reinforcement Learning: TORCS
ShareShare

18
/
31

https://www.youtube.com/watch?v=0xo1Ldx3L5Q

A3C: Labyrinth

Asynchronous Methods for Deep Reinforcement Learning: LabyrinthAsynchronous Methods for Deep Reinforcement Learning: Labyrinth
ShareShare

19
/
31

https://www.youtube.com/watch?v=nMR5mjCFZCw

A3C: continuous control problems

Asynchronous Methods for Deep Reinforcement Learning: MuJoCoAsynchronous Methods for Deep Reinforcement Learning: MuJoCo
ShareShare

20
/
31

https://www.youtube.com/watch?v=Ajjc08-iPx8

Comparison with DQN
A3C came up in 2016. A lot of things happened since then…

Hessel et al. () Rainbow: Combining Improvements in Deep Reinforcement Learning. arXiv:1710.022982017 21
/
31

3 - Actor-critic neural architectures

22
/
31

Actor-critic neural architectures
We have considered that actor-critic architectures consist of two separate neural networks, both taking
the state (or observation) as an input.

Each of these networks have their own loss function. They share nothing except the “data”.

Is it really the best option?

s o

23
/
31

Early visual features
When working on images, the first few layers of the CNNs are likely to learn the same visual features
(edges, contours).

It would be more efficient to share some of the extracted features.

Mnih et al. () Playing Atari with Deep Reinforcement Learning. 2013 http://arxiv.org/abs/1312.5602 24
/
31

http://arxiv.org/abs/1312.5602

Shared architectures
Actor-critic architectures can share layers between the actor and the critic, sometimes up to the output
layer.

A compound loss sums the losses for the actor and the critic. Tensorflow/pytorch know which
parameters influence which part of the loss.

For pixel-based environments (Atari), the networks often share the convolutional layers.

For continuous environments (Mujoco), separate networks sometimes work better than two-headed
networks.

L(θ) = L ​(θ) +actor L ​(θ)critic

25
/
31

4 - Continuous stochastic policies

26
/
31

Continuous action spaces
One of the main advantages of actor-critic / PG methods over
value-based methods is that they can deal with continuous
action-spaces.

Suppose that we want to control a robotic arm with degrees
of freedom.

An action could be a vector of joint displacements:

The output layer of the policy network can very well represent
this vector, but how would we implement exploration?

-greedy and softmax action selection would not work, as all
neurons are useful.

The most common solution is to use a stochastic Gaussian
policy.

n

a

a = ​ ​ ​[Δθ ​1 Δθ ​2 … Δθ ​n]
T

ϵ

27
/
31

Gaussian policies
A Gaussian policy considers the vector to be sampled from the normal distribution .

The mean and standard deviation are output vectors of the actor with parameters .

Sampling an action from the normal distribution is done through the reparameterization trick:

where comes from the standard normal distribution.

a N (μ ​(s),σ ​(s))θ θ

μ ​(s)θ σ ​(s)θ θ

a = μ ​(s) +θ σ ​(s) ξθ

ξ ∼ N (0, I)

28
/
31

Gaussian policies
The good thing with the normal distribution is that we know its pdf:

The log-likelihood is a simple differentiable function of and :

so we can easily compute its gradient w.r.t and apply backpropagation:

π ​(s, a) =θ ​ exp − ​

​2πσ ​(s)θ
2

1
2σ ​(s)θ

2
(a − μ ​(s))θ

2

log π ​(s, a)θ μ ​(s)θ σ ​(s)θ

log π ​(s, a) =θ − ​ −
2σ ​(s)θ

2
(a − μ ​(s))θ

2

​ log 2πσ ​(s)
2
1

θ
2

θ

​ ​

⎩
⎨
⎧∇ ​ log π ​(s, a) = ​μ ​(s)θ θ

σ ​(s)θ
2

a − μ ​(s)θ

∇ ​ log π ​(s, a) = ​ − ​σ ​(s)θ θ
σ ​(s)θ

3

(a − μ ​(s))θ
2

σ ​(s)θ

1

29
/
31

Gaussian policies
A Gaussian policy samples actions from the normal distribution , with and

 being the output of the actor.

The score can be obtained easily using the output of the actor:

The rest of the score (and) is the problem of tensorflow/pytorch.

This is the same reparametrization trick used in variational autoencoders to allow backpropagation to
work through a sampling operation.

Beta distributions are an even better choice to parameterize stochastic policies ().

N (μ ​(s),σ ​(s))θ θ μ ​(s)θ

σ ​(s)θ

a = μ ​(s) +θ σ ​(s) ξθ

∇ ​ log π ​(s, a)θ θ

​ ​

⎩
⎨
⎧∇ ​ log π ​(s, a) = ​μ ​(s)θ θ

σ ​(s)θ
2

a − μ ​(s)θ

∇ ​ log π ​(s, a) = ​ − ​σ ​(s)θ θ
σ ​(s)θ

3

(a − μ ​(s))θ
2

σ ​(s)θ

1

∇ ​μ ​(s)θ θ ∇ ​σ ​(s)θ θ

Chou et al., 2017

Chou et al. () Improving Stochastic Policy Gradients in Continuous Control with Deep Reinforcement Learning using the Beta Distribution. ICML.2017 30
/
31

References
Chou, P.-W., Maturana, D., and Scherer, S. (2017). Improving Stochastic Policy Gradients in Continuous Control with

Deep Reinforcement Learning using the Beta Distribution. in International Conference on Machine Learning
.

Hessel, M., Modayil, J., van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W., et al. (2017). Rainbow: Combining
Improvements in Deep Reinforcement Learning. .

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., et al. (2016). Asynchronous Methods for Deep
Reinforcement Learning. in Proc. ICML .

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., et al. (2013). Playing Atari with Deep
Reinforcement Learning. .

http://proceedings.mlr.press/v70/chou17a/chou17a.pdf

http://arxiv.org/abs/1710.02298

http://arxiv.org/abs/1602.01783

http://arxiv.org/abs/1312.5602

31
/
31

http://proceedings.mlr.press/v70/chou17a/chou17a.pdf
http://arxiv.org/abs/1710.02298
http://arxiv.org/abs/1602.01783
http://arxiv.org/abs/1312.5602

