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Deterministic policy gradient theorem
The objective function that we tried to maximize until now is :

i.e. we want the returns of all trajectories generated by the stochastic policy  to be maximal.

It is equivalent to say that we want the value of all states
visited by the policy  to be maximal:

The objective function can be rewritten as:

where  is now the state visitation distribution, i.e. how often a state will be visited by the policy .
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Deterministic policy gradient theorem
When introducing Q-values, we obtain the following policy gradient:

This formulation necessitates to integrate overall possible actions:

It is not possible with continuous action spaces (integral).

The stochastic policy adds a lot of variance: sample complexity.

But let’s suppose that the policy is deterministic, i.e. it takes a single action in state .

We can note this deterministic policy , with:
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Deterministic policy gradient theorem
The policy gradient for the deterministic policy  becomes:

We can now use the chain rule to decompose the gradient of :

 means that we differentiate  w.r.t. , and evaluate it in .

 is a variable, but  is a deterministic value (constant).

 tells how the output of the policy network varies with the parameters of NN:

Automatic differentiation frameworks such as tensorflow can tell you that.
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Deterministic policy gradient theorem

As always, you do not know the true Q-value , because you search for the policy .

Silver et al. ( ) showed that you can safely (without introducing any bias) replace the true Q-value with
an estimate , as long as the estimate minimizes the mse with the TD target:

We come back to an actor-critic architecture:

The deterministic actor  selects a single action in state .

The critic  estimates the value of that action.

For any MDP, the deterministic policy gradient is:

∇  J (θ) =θ E  [∇  Q (s, a)∣  ×s∼ρ  θ a
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Deterministic Policy Gradient as an actor-critic architecture

Training the actor:

Training the critic:

∇  J (θ) =θ E  [∇  μ  (s) ×s∼ρ  θ θ θ ∇  Q  (s, a)∣  ]a φ a=μ  (s)θ

L(φ) = E  [(r(s,μ  (s)) +s∼ρ  θ θ γ Q  (s ,μ  (s )) −φ
′

θ
′ Q  (s,μ  (s))) ]φ θ

2
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DPG is off-policy
If you act off-policy, i.e. you visit the states  using a behavior policy , you would theoretically need to
correct the policy gradient with importance sampling:

But your policy is now deterministic: the actor only takes the action  with probability 1, not 
.

The importance weight is 1 for that action, 0 for the other. You can safely sample states from a behavior
policy, it won’t affect the deterministic policy gradient:

The critic uses Q-learning, so it is also off-policy.

DPG is an off-policy actor-critic architecture!

s b
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DDPG: Deep Deterministic Policy Gradient
As the name indicates, DDPG is the deep variant of DPG for continuous control.

It uses the DQN tricks to stabilize learning with deep networks:  

As DPG is off-policy, an experience replay memory
can be used to sample experiences.

The actor  learns using sampled transitions with
DPG.

The critic  uses Q-learning on sampled
transitions: target networks can be used to cope
with the non-stationarity of the Bellman targets.

Contrary to DQN, the target networks are not updated every once in a while, but slowly integrate the
trained networks after each update (moving average of the weights):

Source: https://github.com/stevenpjg/ddpg-
aigym/blob/master/README.md

μ  θ

Q  φ

θ ←′ τθ + (1 − τ) θ′
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DDPG: Deep Deterministic Policy Gradient

A deterministic actor is good for learning (less variance), but not for exploring.

We cannot use -greedy or softmax, as the actor outputs directly the policy, not Q-values.

For continuous actions, an exploratory noise can be added to the deterministic action:

Ex: if the actor wants to move the joint of a robot by , it will actually be moved from  or .
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Ornstein-Uhlenbeck stochastic process
In DDPG, an Ornstein-Uhlenbeck stochastic process is used to add noise to the continuous actions.

It is defined by a stochastic differential equation, classically used to describe Brownian motion:

The temporal mean of  is , its amplitude is  (exploration level), its speed is .

dx  =t θ(μ − x  )dt +t σdW  with dW  =t t N (0, dt)

x  t μ = 0 θ σ

Uhlenbeck and Ornstein ( ) On the Theory of the Brownian Motion. Physical Review 36. doi:10.1103/PhysRev.36.823.1930 12 / 35



Parameter noise
Another approach to ensure exploration is to add
noise to the parameters  of the actor at inference
time.

For the same input , the output  will be
different every time.

The NoisyNet approach can be applied to any deep
RL algorithm to enable a smart state-dependent
exploration (e.g. Noisy DQN).

Source: https://towardsdatascience.com/whats-new-in-deep-learning-
research-knowledge-exploration-with-parameter-noise-98aef7ce84b2
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DDPG: Deep Deterministic Policy Gradient
Initialize actor network  and critic , target networks  and , ERM  of maximal size ,
random process .

for :

Select the action  and store  in the ERM.

For each transition  in a minibatch of  transitions randomly sampled from :

Compute the target value using target networks .

Update the critic by minimizing:

Update the actor by applying the deterministic policy gradient:

Update the target networks: 
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DDPG: Deep Deterministic Policy Gradient

DDPG allows to learn continuous policies: there can be one tanh output neuron per joint in a robot.

The learned policy is deterministic: this simplifies learning as we do not need to integrate over the action
space after sampling.

Exploratory noise (e.g. Ohrstein-Uhlenbeck) has to be added to the selected action during learning in
order to ensure exploration.

Allows to use an experience replay memory, reusing past samples (better sample complexity than A3C).

Lillicrap et al. ( ) Continuous control with deep reinforcement learning. arXiv:1509.029712015 15 / 35



DDPG: continuous control

Learning to move: DDPG Algorithm on Gym MuJoCoLearning to move: DDPG Algorithm on Gym MuJoCo
ShareShare
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DDPG: learning to drive in a day

Learning to drive in a dayLearning to drive in a day
ShareShare
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DDPG: learning to drive in a day

The algorithm is DDPG with prioritized experience replay
Kendall et al. ( ) Learning to Drive in a Day. arXiv:1807.004122018 19 / 35



Autoencoders in deep RL
A variational autoencoder (VAE) is optionally use to pretrain the convolutional layers on random episodes.
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Latent space
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Reconstructed
state
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DDPG: learning to drive in a day

Kendall et al. ( ) Learning to Drive in a Day. arXiv:1807.004122018 21 / 35



Skipped

22 / 35



4 - TD3 - Twin Delayed Deep Deterministic policy gradient
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TD3 - Twin Delayed Deep Deterministic policy gradient
As any Q-learning-based method, DDPG overestimates Q-
values.

The Bellman target  uses a
maximum over other values, so it is increasingly
overestimated during learning.

After a while, the overestimated Q-values disrupt training in
the actor.

Double Q-learning solves the problem by using the target network  to estimate Q-values, but the value
network  to select the greedy action in the next state:

The idea is to use two different independent networks to reduce overestimation.

This does not work well with DDPG, as the Bellman target  uses a target actor
network that is not very different from the trained deterministic actor.

t = r + γ max  Q(s , a )a′
′ ′

θ′

θ

L(θ) = E  [(r +D γ Q  (s´, argmax  Q  (s , a )) −θ′ a′ θ
′ ′ Q  (s, a)) ]θ

2

t = r + γ Q  (s ,μ  (s ))φ′
′

θ′
′
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TD3 - Twin Delayed Deep Deterministic policy gradient
TD3 uses two critics  and  (and target critics):

the Q-value used to train the actor will be the lesser of two evils, i.e. the minimum Q-value:

One of the critic will always be less over-estimating than the other. Better than nothing…

Using twin critics is called clipped double learning.

Both critics learn in parallel using the same target:

The actor is trained using the first critic only:

φ  1 φ  2

t = r + γ min(Q  (s ,μ  (s )),Q  (s ,μ  (s )))φ  1
′

′
θ′

′
φ  2

′
′
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′

L(φ  ) =1 E[(t − Q  (s, a)) ] ; L(φ  ) =φ  1
2

2 E[(t − Q  (s, a)) ]φ  2
2

∇  J (θ) =θ E[∇  μ  (s) ×θ θ ∇  Q  (s, a)∣  ]a φ  1 a=μ  (s)θ
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TD3 - Twin Delayed Deep Deterministic policy gradient
Another issue with actor-critic architecture in general is that the critic is
always biased during training, what can impact the actor and ultimately
collapse the policy:

The critic should learn much faster than the actor in order to provide
unbiased gradients.

Increasing the learning rate in the critic creates instability, reducing the learning rate in the actor slows
down learning.

The solution proposed by TD3 is to delay the update of the actor, i.e. update it only every  minibatches:

Train the critics  and  on the minibatch.

every  steps:

Train the actor  on the minibatch.

This leaves enough time to the critics to improve their prediction and provides less biased gradients to
the actor.

∇  J (θ) =θ E[∇  μ  (s) ×θ θ ∇  Q  (s, a)∣  ]a φ  1 a=μ  (s)θ

Q  (s, a) ≈φ  1 Q (s, a)μ  θ

t
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y
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t *

d

φ  1 φ  2

d

θ
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TD3 - Twin Delayed Deep Deterministic policy gradient
A last problem with deterministic policies is that they tend to always select the same actions 
(overfitting).

For exploration, some additive noise is added to the selected action:

But this is not true for the Bellman targets, which use the deterministic action:

TD3 proposes to also use additive noise in the Bellman targets:

If the additive noise is zero on average, the Bellman targets will be correct on average (unbiased) but will
prevent overfitting of particular actions.

The additive noise does not have to be an Ornstein-Uhlenbeck stochastic process, but could simply be a
random variable:

μ  (s)θ

a = μ  (s) +θ ξ

t = r + γ Q  (s ,μ  (s ))φ
′

θ
′

t = r + γ Q  (s ,μ  (s ) +φ
′

θ
′ ξ)

ξ ∼ N (0, 1)
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Initialize actor , critics , target networks , ERM , random processes .

for :

Select the action  and store  in the ERM.

For each transition  in a minibatch sampled from :

Compute the target .

Update the critics by minimizing:

every  steps:

Update the actor by applying the DPG using :

Update the target networks:
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TD3 - Twin Delayed Deep Deterministic policy gradient
TD3 introduces three changes to DDPG:

twin critics.

delayed actor updates.

noisy Bellman targets.

TD3 outperforms DDPG (but also PPO and SAC) on continuous control tasks.

Fujimoto et al. ( ) Addressing Function Approximation Error in Actor-Critic Methods. arXiv:1802094772018 29 / 35



5 - D4PG: Distributed Distributional DDPG

Barth-Maron et al. ( ) Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.2018 30 / 35



D4PG: Distributed Distributional DDPG
Deterministic policy gradient as in DDPG:

Distributional critic: The critic does not predict single Q-values , but the distribution of returns 
 (as in Categorical DQN):

n-step returns (as in A3C):

Distributed workers: D4PG uses  or  copies of the actor to fill the ERM in parallel.

Prioritized Experience Replay (PER): 

∇  J (θ) =θ E  [∇  μ  (s) ×s∼ρ  b θ θ ∇  E[Z  (s, a)]∣  ]a φ a=μ  (s)θ

Q  (s, a)φ

Z  (s, a)φ

L(φ) = E  [KL(T Z  (s, a)∣∣Z  (s, a))]s∈ρ  b φ φ

T Z  (s  , a  ) =φ t t  γ r  +
k=0

∑
n−1

k
t+k+1 γ Z  (s  ,μ  (s  ))n

φ t+n θ t+n

K = 32 64

P (k) =  

 (∣δ  ∣+ϵ)∑k k
α

(∣δ  ∣+ϵ)k
α
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D4PG: Parkour

D4PG WalkerD4PG Walker
ShareShare
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Parkour networks
For Parkour tasks, the states cover two different informations: the terrain (distance to obstacles, etc.)
and the proprioception (joint positions of the agent).

They enter the actor and critic networks at different locations.

Barth-Maron et al. ( ) Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.2018 34 / 35



References
Barth-Maron, G., Hoffman, M. W., Budden, D., Dabney, W., Horgan, D., TB, D., et al. (2018). Distributed Distributional

Deterministic Policy Gradients. .

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing Function Approximation Error in Actor-Critic Methods.
.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., et al. (2018). Learning to Drive in a Day.
.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., et al. (2015). Continuous control with deep
reinforcement learning. CoRR. .

Plappert, M., Houthooft, R., Dhariwal, P., Sidor, S., Chen, R. Y., Chen, X., et al. (2018). Parameter Space Noise for
Exploration. .

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M. (2014). Deterministic Policy Gradient
Algorithms. in Proc. ICML Proceedings of Machine Learning Research., eds. E. P. Xing and T. Jebara (PMLR),
387–395. .

Uhlenbeck, G. E., and Ornstein, L. S. (1930). On the Theory of the Brownian Motion. Physical Review 36.
doi: .

http://arxiv.org/abs/1804.08617

http://arxiv.org/abs/1802.09477

http://arxiv.org/abs/1807.00412

http://arxiv.org/abs/1509.02971

http://arxiv.org/abs/1706.01905

http://proceedings.mlr.press/v32/silver14.html

10.1103/PhysRev.36.823

35 / 35

http://arxiv.org/abs/1804.08617
http://arxiv.org/abs/1802.09477
http://arxiv.org/abs/1807.00412
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1706.01905
http://proceedings.mlr.press/v32/silver14.html
https://doi.org/10.1103/PhysRev.36.823

