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1 - Deterministic policy gradient theorem
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Deterministic policy gradient theorem

e The objective function that we tried to maximize until now is :

T (0) = Ervpy[R(7),

l.e. we want the returns of all trajectories generated by the stochastic policy 7y to be maximal.

e |t is equivalent to say that we want the value of all states Rewards ——— >
visited by the policy 79 to be maximal:
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e The objective function can be rewritten as:

T'(0) = Esup [V (3),

where pg is now the state visitation distribution, i.e. how often a state will be visited by the policy 7.
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Deterministic policy gradient theorem

 When introducing Q-values, we obtain the following policy gradient:

9=V T (0) =Esp[Vo V™ (5)] = Esepy [} Voms(s,a) Q(s,0)

e This formulation necessitates to integrate overall possible actions:

= |t is not possible with continuous action spaces (integral).

= The stochastic policy adds a lot of variance: sample complexity.
e But let's suppose that the policy is deterministic, i.e. it takes a single action in state s.

 We can note this deterministic policy g (s), with:

MQ:S%A

s — po(s)
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Deterministic policy gradient theorem

o The policy gradient for the deterministic policy g (s) becomes:

g — VH j(e) — ﬂswpe [VH Q,ue (87 ,U’H(S))]

state Deterministic action
> >

Q-value

actor a = ”H(Ss a) critic

Q, (S, Hg(5))

 We can now use the chain rule to decompose the gradient of Q" (s, ug(s)):

Vo Q" (s, 1g(8)) = Vo Q" (8,a)|a=py(s) X Vo ug(s)

e Vau QM (8,a)|q=p,(s) means that we differentiate Q** w.r.t. @, and evaluate it in g ().

= ais a variable, but g(s) is a deterministic value (constant).

o Vo g(s) tells how the output of the policy network varies with the parameters of NN:

= Automatic differentiation frameworks such as tensorflow can tell you that.

>
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Deterministic policy gradient theorem

For any MDP, the deterministic policy gradient is:

Vo T (0) = Espy [Va Q" (8, a)|a=py(s) X Vo po(s)]

o As always, you do not know the true Q-value Q"¢ (s, a), because you search for the policy pg.

o Silver et al. (2014) showed that you can safely (without introducing any bias) replace the true Q-value with
an estimate (), (s, a), as long as the estimate minimizes the mse with the TD target:

Q,(s,a) =~ Q" (s, a)
L(p) = Egep, [(7(5, 0 (5)) + v Qo (5", o (")) — Qu(s, 1o (s)))’]

e We come back to an actor-critic architecture:

= The deterministic actor 4 (s) selects a single action in state s.

= The critic (), (s, @) estimates the value of that action.
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Deterministic Policy Gradient as an actor-critic architecture

action
a = puys,a)
state .
S
DPG loss Critic Q-value
Va an(s ’ a) | a=i,(s) Qqa(sv ﬂg(S))
>

A
: critic loss

(r(s, pg(s)) + v O, (8", po(s’)) — O, (s, 760))s

Training the actor:

Vﬁj(e) — 4:8~,09 [VH ,UH(S) X VGQSO(Saa”a:ue(S)]

Training the critic:

L(p) = By [((5, 18(5)) + 7 Qyu (8", o(8")) — Quo (5, 16 (s)))”!
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DPG is off-policy

If you act off-policy, i.e. you visit the states s using a behavior policy b, you would theoretically need to
correct the policy gradient with importance sampling:

Vo (0) = Been [0 25 Vorn(s)  VaQ (sl

a

But your policy is now deterministic: the actor only takes the action a = ,ug(s) with probability 1, not
(s, a).

The importance weight is 1 for that action, 0 for the other. You can safely sample states from a behavior
policy, it won't affect the deterministic policy gradient:

VHJ(H) — 4:SN,0b [VH ,UH(S) X Vano(Saa”a:ue(s)]

The critic uses Q-learning, so it is also off-policy.

DPG is an off-policy actor-critic architecture!
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2 - DDPG: Deep Deterministic Policy Gradient

Published as a conference paper at ICLR 2016
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Google Deepmind

London, UK
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Lillicrap et al. (2015) Continuous control with deep reinforcement learning. CoRR. arXiv:1509.02971.
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DDPG: Deep Deterministic Policy Gradient

e Asthe name indicates, DDPG is the deep variant of DPG for continuous control.

e |t uses the DQN tricks to stabilize learning with deep networks:

e As DPG is off-policy, an experience replay memory
can be used to sample experiences.

fowwellacor o The actor g learns using sampled transitions with

does at time 1

{ﬁ DPG.
e @ e The critic (), uses Q-learning on sampled
Ty pavs x\ Optimized / @ . transitions: target networks can be used to cope
ctions at t . . .
Actor Network AH e etwor with the non-stationarity of the Bellman targets.
~ i

Goal: Learn parameters of actor and critic online
ta improve actor performance

Source: https://github.com/stevenpjg/ddpg-
aigym/blob/master/README.md

e Contrary to DQN, the target networks are not updated every once in a while, but slowly integrate the
trained networks after each update (moving average of the weights):

0 <10+ (1—71)0

P =T+ (1-7)¢
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https://github.com/stevenpjg/ddpg-aigym/blob/master/README.md

DDPG: Deep Deterministic Policy Gradient

exploration noise
€

action
a = py(s,a)+e€

>

- . .. Ho(S, Q)
state Deterministic >
>

A
actor DPG loss

Q-value
Critic >
Q, (S, Uo($))

A
i critic loss

(s, pg(5)) + 7 Q (5", pg(5")) — O, (5, (5)))

e We cannot use e-greedy or softmax, as the actor outputs direct

e For continuous actions, an exploratory noise can be added to t

a; = ,Ue(st) + &

A deterministic actor is good for learning (less variance), but not for exploring.

y the policy, not Q-values.

ne deterministic action:

Ex: if the actor wants to move the joint of a robot by 2°, it will actually be moved from 2.1° or 1.9°.

Lillicrap et al. (2015) Continuous control with deep reinforcement learning. arXiv:1509.02971
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Ornstein-Uhlenbeck stochastic process

e In DDPQG, an Ornstein-Uhlenbeck stochastic process is used to add noise to the continuous actions.

e |t is defined by a stochastic differential equation, classically used to describe Brownian motion:

dr; = 0(u — x;)dt + odW, with dW; = N(0, dt)

e The temporal mean of x; is y = 0, its amplitude is € (exploration level), its speed is 7.

Ornstein-Uhlenbeck Process

Uhlenbeck and Ornstein (1930) On the Theory of the Brownian Motion. Physical Review 36. doi:10.1103/PhysRev.36.823.
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Parameter noise

Action Action e Another approach to ensure exploration is to add
. ' noise to the parameters 6 of the actor at inference

{.} Noise time.
o For the same input s;, the output g (s ) will be
different every time.

e The NoisyNet approach can be applied to any deep
RL algorithm to enable a smart state-dependent
exploration (e.g. Noisy DQN).

Noise < .

Input Input

Source: https://towardsdatascience.com/whats-new-in-deep-learning-
research-knowledge-exploration-with-parameter-noise-98aef7ce84b2

Plappert et al. (2018) Parameter Space Noise for Exploration. arXiv:1706.01905. 13/35


https://towardsdatascience.com/whats-new-in-deep-learning-research-knowledge-exploration-with-parameter-noise-98aef7ce84b2

DDPG: Deep Deterministic Policy Gradient

e Initialize actor network pg and critic @), target networks pg and )7, ERM D of maximal size N,

random process &.

o fort € [0, Tinax]:

= Select the action a; = ug(s;) + & and store (s¢, @z, 7411, S¢11) in the ERM.

For each transition (s, ak, Tk, S}, ) in a minibatch of K transitions randomly sampled from D:

o Compute the target value using target networks ty, = ri + v Qo (S}, e (83,))-

Update the critic by minimizing:

L{p) = % D (tr — Qu(sk,ax))’

k

Update the actor by applying the deterministic policy gradient:

1
Vej(e) — E E VH,UH(Sk) X VaQso(Skaa)|a=ue(Sk)
k

Update the target networks: @' < 70 + (1 —7)0" ; @' < 10+ (1 —7) ¢’
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DDPG: Deep Deterministic Policy Gradient

exploration noise

€
action
po(s, @) @ = pyfs,a) +€
state Deterministic > >
P
S
actor Q-value
S DPGloss . Critic .
S, S
VaQq)(Sa a) |a=y9(s) qu( ”9( ))
>

A
i critic loss

(s, pe(8)) + ¥ Q,, (5", tg(5) = O, (5, pg(5)))*

e DDPG allows to learn continuous policies: there can be one tanh output neuron per joint in a robot.

e The learned policy is deterministic: this simplifies learning as we do not need to integrate over the action
space after sampling.

o Exploratory noise (e.g. Ohrstein-Uhlenbeck) has to be added to the selected action during learning in
order to ensure exploration.

e Allows to use an experience replay memory, reusing past samples (better sample complexity than A3C).

Lillicrap et al. (2015) Continuous control with deep reinforcement learning. arXiv:1509.02971 15/ 35



DDPG: continuous control

N Learning to move: %WW

’-—.

|~



https://www.youtube.com/watch?v=iFg5lcUzSYU

3 - DDPG: learning to drive in a day

Alex Kendall

Learning to Drive in a Day

Jeffrey Hawke David Janz  Przemyslaw Mazur Daniele Reda

John-Mark Allen  Vinh-Dieu Lam  Alex Bewley = Amar Shah

Kendall et al. (2018) Learning to Drive in a Day. arXiv:1807.00412
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DDPG: learning to drive in a day

Learnlng to drlve in a day

(( EY:

https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning
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https://www.youtube.com/watch?v=eRwTbRtnT1I
https://wayve.ai/blog/learning-to-drive-in-a-day-with-reinforcement-learning

DDPG: learning to drive in a day

0

Steering & Speed Q Value

Measurement

Reward

== — | Conv Layers

Critic

+

State Vector

Actor

State Action
Vector

Kendall et al. (2018) Learning to Drive in a Day. arXiv:1807.00412
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Steering & Speed
Command
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Autoencoders in deep RL

A variational autoencoder (VAE) is optionally use to pretrain the convolutional layers on random episodes.
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Reconstructed
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~
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DDPG: learning to drive in a day

Fig. 3: Examples of different road environments randomly
generated for each episode in our lane following simulator.
We use procedural generation to randomly vary road texture,
lane markings and road topology each episode. We train

using a forward facing driver-view image as input.

—— ddpg = ddpg + vae

250 - e — = — sk solved

200

150

100 =

gl
=
1

30 40

Autonomous distance (metres)
=

Training episodes

(a) Algorithm results (b) Route

Fig. 4. Using a VAE with DDPG greatly improves data
efficiency 1n training over DDPG from raw pixels, suggesting
that state representation 1s an important consideration for
applying reinforcement learning on real systems. The 250m
driving route used for our experiments is shown on the right.

Training Test
Model Episodes  Distance Time Meters per Disengagement  # Disengagements
Random Policy - 7.35 34
Zero Policy - - - 22.7 11
Deep RL from Pixels 35 2988 m 37 min 143.2 1
Deep RL from VAE 11 1955 m 15 min - 0

TABLE I: Deep reinforcement learning results on an autonomous vehicle over a 250m length of road. We report the best
performance for each model. We observe the baseline RL agent can learn to lane follow from scratch, while the VAE variant
1s much more efficient, learning to succesfully drive the route after only 11 training episodes.

Kendall et al. (2018) Learning to Drive in a Day. arXiv:1807.00412
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4 - TD3 - Twin Delayed Deep Deterministic policy gradient

Addressing Function Approximation Error in Actor-Critic Methods

Scott Fujimoto'! Herke van Hoof > David Meger

Fujimoto et al. (2018) Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477
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TD3 - Twin Delayed Deep Deterministic policy gradient

As any Q-learning-based method, DDPG overestimates Q- 400
values.
300
The Bellman targett = r + v maxy Q(s',a’) uses a 3
48]
maximum over other values, so it is increasingly = 200
overestimated during learning. g
=
After a while, the overestimated Q-values disrupt training in < 100 m CDQ -e True CDQ
the actor. DDPG True DDPG
0

0.0 0.2 0.4 0.6 0.8 1.0
Time steps (1€6)

Double Q-learning solves the problem by using the target network 8’ to estimate Q-values, but the value
network 6 to select the greedy action in the next state:

L(0) = Ep[(r + v Qe (s’,argmax, Qy(s',a’)) — Qo(s,a))’]

The idea is to use two different independent networks to reduce overestimation.

This does not work well with DDPG, as the Bellman targett = r 4+ v Q. (s, o' (8') ) uses a target actor
network that is not very different from the trained deterministic actor.

Fujimoto et al. (2018) Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477
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TD3 - Twin Delayed Deep Deterministic policy gradient

e TD3 uses two critics 1 and - (and target critics):

= the Q-value used to train the actor will be the lesser of two evils, i.e. the minimum Q-value:

t =7+ min(Qy (s, o (s')), Quy (5, por (')

e One of the critic will always be less over-estimating than the other. Better than nothing...
e Using twin critics is called clipped double learning.

e Both critics learn in parallel using the same target:

L(p1) =E[(t - Qu(s,a)’] 5 L(p2) = E[(t — Quu(s,0))°]

e The actor is trained using the first critic only:

VHj(e) — 4:[V9:“9(3) X VCLQ%(S?CLMCL:M)(S)]
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TD3 - Twin Delayed Deep Deterministic policy gradient

Another issue with actor-critic architecture in general is that the criticis target networks
always biased during training, what can impact the actor and ultimately ¢
collapse the policy:

VT (0) = E[Voua(s) x VGQ%(Saa)‘a:ue(S)] d
Q901(87a’) ~ Que (saa) PR
The critic should learn much faster than the actor in order to provide training ]

unbiased gradients.

Increasing the learning rate in the critic creates instability, reducing the learning rate in the actor slows
down learning.

The solution proposed by TD3 is to delay the update of the actor, i.e. update it only every d minibatches:

= Train the critics o1 and (9 on the minibatch.

= every d steps:

o Train the actor @ on the minibatch.

This leaves enough time to the critics to improve their prediction and provides less biased gradients to
the actor.
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TD3 - Twin Delayed Deep Deterministic policy gradient

o A last problem with deterministic policies is that they tend to always select the same actions g ( s)
(overfitting).

e For exploration, some additive noise is added to the selected action:

a = po(s) +§

e But this is not true for the Bellman targets, which use the deterministic action:

t=r+vQu(s, no(s))

e TD3 proposes to also use additive noise in the Bellman targets:

t=1r4+7Qu(s po(s") + &)

o If the additive noise is zero on average, the Bellman targets will be correct on average (unbiased) but will
prevent overfitting of particular actions.

e The additive noise does not have to be an Ornstein-Uhlenbeck stochastic process, but could simply be a
random variable:

fNN(O,l)
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« Initialize actor g, critics Q, , @, target networks pg, Qo , @, ERM D, random processes &1, &».
o fort € [0, Tinax]:

= Select the action a; = ug(s;) + &1 and store (8¢, a¢, 411, St11) in the ERM.

= For each transition (s, ak, Tk, S}, ) in @ minibatch sampled from D:

o Compute the target tx = 71 + v min(Qy (s, por (8},) + &2), Qg (1, por (s,) + &2)).
» Update the critics by minimizing:

L(p1) = % D (th— Qe (sk,ar))® 5 Llp2) = % > (th — Quy(sk,ar))’

k k

= every d steps:

o Update the actor by applying the DPG using Q%:
1
Vej(e) — E Z V@/”LH(SI'C) X VCLQQKM (Sk7 a)|a:,u9(sk)
k

o Update the target networks:

0 710+ (1—7)0; o1 < To1+(1—7)p1; w5 < Tpa+ (1 —T) s
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TD3 - Twin Delayed Deep Deterministic policy gradient

e TD3 introduces three changes to DDPG:

= twin critics.

= delayed actor updates.

= noisy Bellman targets.

e TD3 outperforms DDPG (but also PPO and SAC) on continuous control tasks.
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Fujimoto et al. (2018) Addressing Function Approximation Error in Actor-Critic Methods. arXiv:180209477
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5 - DAPG: Distributed Distributional DDPG

Published as a conference paper at ICLR 2018

DISTRIBUTED DISTRIBUTIONAL DETERMINISTIC
PoOLICY GRADIENTS

Gabriel Barth-Maron,” Matthew W. Hoffman," David Budden, Will Dabney,
Dan Horgan, Dhruva TB, Alistair Muldal, Nicolas Heess, Timothy Lillicrap
DeepMind

[LLondon, UK

{gabrielbm, mwhoffman, budden, wdabney, horgan, dhruvat,

alimuldal, heess, countzerﬁ}@google.cmm

Barth-Maron et al. (2018) Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.
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D4PG: Distributed Distributional DDPG

e Deterministic policy gradient as in DDPG:

VT (0) = Eevp, [Voro(s) X VaE[Z,(s,a)|]a=p(s).

» Distributional critic: The critic does not predict single Q-values ), ($, @), but the distribution of returns

Z,(s,a) (as in Categorical DQN):

L(p) = Esep, [KL(T Z,(s,a)||Z24(s,a))]

e n-step returns (as in A3C):

n—1

T Z,(8¢,0¢) = Z 'Yk Tirkt1 T Zp(Stan, o (Stin))
k=0

 Distributed workers: D4PG uses K = 32 or 64 copies of the actor to fill the ERM in parallel.
o Prioritized Experience Replay (PER): P(k) = %k |e)"

2 ([0k]Fe)e

Barth-Maron et al. (2018) Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.
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Barth-Maron et al. (2018) Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.
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D4PG: Parkour

A D4APG Walker

.

>

P
Time 00:18.93

Reward 0.0446



https://www.youtube.com/watch?v=9kGdCjJtNls

Parkour networks

e For Parkour tasks, the states cover two different informations: the terrain (distance to obstacles, etc.)
and the proprioception (joint positions of the agent).

e They enter the actor and critic networks at different locations.

Standard Networks Parkour Networks

actor critic actor
network torso =1 hetwork

*
N

}{pruprur

critic
torso

A | P
A
& P

Barth-Maron et al. (2018) Distributed Distributional Deterministic Policy Gradients. arXiv:1804.08617.
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