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Trust regions and gradients

Source: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9

e The policy gradient tells you in which direction of the parameter space 6 the return is increasing the
most.

e If you take too big a step in that direction, the new policy might become completely bad (policy collapse).

e Once the policy has collapsed, the new samples will all have a small return: the previous progress is lost.

e This is especially true when the parameter space has a high curvature, which is the case with deep NN.
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Policy collapse

e Policy collapse is a huge problem in deep RL: the network starts learning correctly but suddenly collapses
to a random agent.

e For on-policy methods, all progress is lost: the network has to relearn from scratch, as the new samples
will be generated by a bad policy.

A2C Pacman hunt 16 Environments
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—15.0 -

Average Rewards

—=17.51

—20.0 -

—22.5 1
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Oliver Lange (2019). Investigation of Model-Based Augmentation of Model-Free Reinforcement Learning Algorithms. MSc thesis, TU Chemnitz. 3/ 40



Trust regions and gradients

 Trust region optimization searches in the neighborhood of the current parameters € which new value
would maximize the return the most.

e This is a constrained optimization problem: we still want to maximize the return of the policy, but by
keeping the policy as close as possible from its previous value.

—— B Al 1o

~ Line searc Trust region
(like gradient ascent)

Source: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-abee04eeeee9
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Trust regions and gradients

e The size of the neighborhood determines the safety of the parameter change.

e |In safe regions, we can take big steps. In dangerous regions, we have to take small steps.
e Problem: how can we estimate the safety of a parameter change?

Source: https://medium.com/@jonathan_hui/rl-trust-region-policy-optimization-trpo-explained-a6ee04eeeee9
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2 - PPO: Proximal Policy Optimization
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TRPO: Trust Region Policy Optimization

e We want to maximize the expected return of a policy g, which is equivalent to maximizing the Q-value of
every state-action pair visited by the policy:

IMax j(@) — {"srwp@,a,fvﬂ'g [QT"H (87 a’)]

0

o Let's note 01q the current value of the parameters of the policy 7y, ..

e We search for a new policy 7 with parameters 6 which is always better than the current policy, i.e. where
the Q-value of all actions is higher than with the current policy:

IIlng L(e) — {'srvpg,afvﬂ'e [QH(*S) CL) o Qeold (37 a’)]

e The quantity

A" (s,a) = Qo(s,a) — Qo (s, a)

is the advantage of taking the action (s, a) and thereafter following 7y, compared to following the current

policy mg_, .

Kakade, S., and Langford, J. (2002). Approximately Optimal Approximate Reinforcement Learning. Proc. 19th International Conference on Machine Learning, 267-274. 8 /40



TRPO: Trust Region Policy Optimization

e |If we can estimate the advantages and maximize them, we can find a new policy mg with a higher return
than the current one.

ﬁ(@) = “33Np9,aw779 [Am"ld (3, a)] — ﬂswpe,a/vﬂ'e [Qé’(sa a) — Qo (37 CL)]

o By definition, £(6,1a) = 0, so the policy maximizing £(6) has positive advantages and is at least better
than mg_, .

enew — alI'glllaXg L(e) — j(enew) Z j(eold)

e Maximizing the advantages ensures monotonic improvement: the new policy is always better than the
previous one. Policy collapse is not possible!
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TRPO: Trust Region Policy Optimization

e Let's take the unconstrained objective function of TRPO:

L:(H) = s pp,arm [Awe‘)ld (37 a)]

e In order to avoid sampling action from the unknown policy 79, we can use importance sampling with the
current policy:

’C(H) — ﬂsz@old yA™~T0014 LO(S’ CL) A"l (87 CL)]

mo(s, a)

0014 (87 CL)

with p(s,a) = being the importance sampling weight.

e But the importance sampling weight p(s, a,) introduces a lot of variance, worsening the sample
complexity.

e |s there another way to make sure that 7y is not very different from g _ ., therefore reducing the variance
of the importance sampling weight?

10/40



TRPO: Trust Region Policy Optimization

TRPO introduces a constrained optimization approach (Lagrange optimization):

max L(0) = Esp,  a~my,, [A™00 (5, a)]

such that: Dxy (mg . ||mg) <6

The KL divergence between the distributions 7y, and g must be below a threshold 0.

We can neglect the importance sampling weight as long as the two policies are not very different (trust
region).

However, TRPO is very computationally expensive, as the constrained optimization problem involves
conjugate gradients optimization, the Fisher Information matrix and natural gradients.

The major interest of TRPO is the monotonic improvement guarantee.
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PPO: Proximal Policy Optimization

e The alternative solution introduced by PPO is simply to clip the importance sampling weight when it is
too different from 1:

L(0) = Esvpy  a~m , [min(p(s,a) A™u (s, a),clip(p(s,a),1 — €1+ ¢€) A™u(s,a))]

e For each sampled action (s, a), we use the minimum between:

= the TRPO unconstrained objective with IS p(s,a) A™d (s, a).

= the same, but with the IS weight clipped between1 — eand 1 + «.

clip(p(s,a),1 —€,1+¢€)
A

"‘
"‘
K
.
"‘
5
0
8
.
0
0
K
K
--------------------------------------------------------------------------

1l — €
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PPO: Proximal Policy Optimization

A>0 A<(

1—€1
2 LELIP — T

LG‘LIF

o If the advantage A™u (s, a) is positive (better ~ * If the advantage A" (s, a) is negative (worse

action than usual) and: action than usual) and:
= the ISis higher than 1 + ¢, we use (1 + = the ISis lower than 1 — ¢, we use (1 —
€) A™a (3, a). €) AT (s, a).
» otherwise, we use p(37 a) A™1a (3, a,), = otherwise, we use ,0(8, CL) Aol (S, a).

Schulman et al. (2017) Proximal Policy Optimization Algorithms. arXiv:1707.06347.
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PPO: Proximal Policy Optimization

,hLCLIP

A>0

A<(

l1—€1

LGLIF

e This avoids changing too much the policy between two updates:

= Good actions (A™ (s,a) > 0) do not become much more likely than before.

= Bad actions (A™u (s,a) < 0) do not become much less likely than before.

Schulman et al. (2017) Proximal Policy Optimization Algorithms. arXiv:1707.06347.
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PPO: Proximal Policy Optimization

 The PPO clipped objective ensures than the importance sampling weight stays around one, so the new
policy is not very different from the old one. It can learn from single transitions.

L(0) = Espy , a~m,, (min(p(s,a) A™u (s, a),clip(p(s,a),1 — €1+ ¢€) A™u(s,a))]

e The advantage of an action can be learned using any advantage estimator, for example the n-step
advantage:

n—1

A" (84, a4) = Z v rek + " Vo(stin) — Vo(st)
k=0

e Most implementations use Generalized Advantage Estimation (GAE, Schulman et al., 2015).
e PPO is therefore an actor-critic method (as TRPO).

e PPO is on-policy: it collects samples using distributed learning (as A3C) and then applies several
updates to the actor and critic.

Schulman et al. (2017) Proximal Policy Optimization Algorithms. arXiv:1707.06347. 15/ 40



PPO: Proximal Policy Optimization

e Initialize an actor g and a critic V,, with random weights.

e while not converged :
= for N workers in parallel:
o Collect I’ transitions using 7g.
o Compute the advantage A, (s, a) of each transition using the critic V,.

= for K epochs:

o Sample M transitions D from the ones previously collected.

o Train the actor to maximize the clipped surrogate objective.

L(Q) — <I38,6WD [min(p(s, a) A@(Sa CL), Clip(p(s, a’)a 1 — €, 1 + 6) ASO(Sa a’))]

o Train the critic to minimize the advantage.

L(¢) = Esap[(Ap(s,a))’]
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PPO: Proximal Policy Optimization

PPO is an on-policy actor-critic PG algorithm, using distributed learning.

Clipping the importance sampling weight allows to avoid policy collapse, by staying in the trust region
(the policy does not change much between two updates).

The monotonic improvement guarantee is very important: the network will always find a (local) maximum
of the returns.

PPO is much less sensible to hyperparameters than DDPG (brittleness): works often out of the box with
default settings.

It does not necessitate complex optimization procedures like TRPO: first-order methods such as SGD
work (easy to implement).

The actor and the critic can share weights (unlike TRPO), allowing to work with pixel-based inputs,
convolutional or recurrent layers.

It can use discrete or continuous action spaces, although it is most efficient in the continuous case. Go-
to method for robotics.

Drawback: not very sample efficient.
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PPO : Mujoco control

HalfCheetah-v1 Hopper-v1 InvertedDoublePendulum-v1 InvertedPendulum-v1
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Figure 3: Comparison of several algorithms on several MuJoCo environments, training for one million
timesteps.

Schulman et al. (2017) Proximal Policy Optimization Algorithms. arXiv:1707.06347. 18/ 40



PPO : Parkour

. DeepMind Learns Parkour

Check more robotic videos at: https://openai.com/blog/openai-baselines-ppo/



https://openai.com/blog/openai-baselines-ppo/
https://www.youtube.com/watch?v=faDKMMwOS2Q

PPO: dexterity learning



https://www.youtube.com/watch?v=jwSbzNHGflM

Step 1

Collect demonstration data
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This datais used to
fine-tune GPT-3.5
with supervised
learning.

~
L

Explain reinforcement

learning to a 6 year old.

&

VA

We give treats and

punishments to teach...

Step 2

PPO: Fine-tuning and alignment of ChatGPT

Collect comparison data and

train a reward model.

A prompt and
several model
outputs are
sampled.

A labeler ranks the
outputs from best
to worst.

This data is used
to train our
reward model.

~
L

Explain reinforcement
learning to a 6 year old.

o O

In machine We give treats and
learning... punishments to
teach...

Source: https://openai.com/blog/chatgpt

Step 3

Optimize a policy against the
reward model using the PPO
reinforcement learning algorithm.

A new prompt is
sampled from
the dataset.

The PPO modelis
initialized from the
supervised policy.

The policy generates
an output.

The reward model
calculates a reward
for the output.

The reward is used
to update the
policy using PPO.

A=

Write a story
about otters.

Once upon atime...
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3 - OpenAl Five: Dota 2

OpenAl Five

<)

1-. |
;\ f

https://openai.com/projects/five/


https://www.youtube.com/watch?v=eHipy_j29Xw
https://openai.com/projects/five/

Why is Dota 2 hard?

Long Time
Horizons

Partially Observed
Stage

Continuous

* Most actions in Dota 2 have minor impact individually but contributed to the team’s strategy.
* The game is about 20,000 moves long(compared to an average 40 moves of a chess match).

® At any given time, a team can only see a small area around them.
* Dota 2 strategies require making inference based on incomplete data.

ACt I O n ® Each hero is face with about 1000 actions each tick (compared to about 35 in chess)
* Actions can have completely different objectives such as targeting an enemy or improving the

S p a ce position on the ground

CO ntl n u O u S * The observation space in Dota 2 includes heterogenous components such as heroes, treesm

Observation Space

buildings, trees, etc

* At any given point, the observations in a Dota 2 game can be quantified as 20,000 floating point
numbers. The same quantifications for Chess and Go are about 70 and 400 numbers respectivey

Feature Chess Go Dota2

Total

number of moves 40 150 20000

Num

oer of possible actions 35 250 1000

Num

oer of inputs 70 400 20000

https://openai.com/projects/five/
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OpenAl Five: Dota 2

e OpenAl Five is composed of 5 PPO networks (one per player), using 128,000 CPUs and 256 V100 GPUs.

https://openai.com/projects/five/
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OpenAl Five: Dota 2

CPUs

GPUs

Experience
collected

Size of observation

Observations per
second of gameplay

Batch size

Batches per minute

OPENAI 1V1
BOT

60,000 CPU
cores on
Azure

256 K80 GPUs
on Azure

~300 years
per day

~3.5 kB

10

8,388,608
observations

~20

OPENAI FIVE

128,000 preemptible CPU cores on
GCP

256 P100 GPUs on GCP

~180 years per day (~900 years per day

counting each hero separately)

~36.8 kB

7.5

1,048,576 observations

https://openai.com/projects/five/
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OpenAl Five: Dota 2

Scene 1: Attacking Mid v

Lidplol Bl OBSERVATIONS

Observed Units

BESN NN HE B

&

Team ##t Radiant

Health 1046 / 1046 J Attack 127
Level 11 § Mana B30/ 1020

ltems Abilities
7 K = P~ 9 '
P 7 - 3

Modifiers

On units of type Hero we also observe: absolute position; health
over last 12 frames; attacking or attacked by hero; projectiles time
to impact; movement, attack, and regeneration speed; current
animation; time since last attack; number of deaths; and using or
phasing an ability.

https://openai.com/projects/five/

27 /40


https://openai.com/projects/five/

OpenAl Five: Dota 2

I —

i siabs ihealih.  health over didance = ; i-_h R e o~

altacking/ N
stacitend by e regen, atack ) | bt 12 fomes | from allied  pomibon
fior all allied and oot Embedling] |
enemy heroes h-! m u
| ' 1

dat #{ Softmax |—o{ Sample/Arpmas |—+.  Sclected Action |
(Sotman}—{Semple/Argmas }—+{ Ofwix |
o{Softman }—+{sample/Argman }—  omay |

Softmas }—{ Sample/ Arpmas e Tekepon Dxstieston
3 o(Softmax }—o{ Sample/Argmax |—+  Debsy |
[ Unit Atention Keys |
(e} ) o{Softma }—{sample/ Argmax }—{  Tapet Ve |

https://d4mucfpksywv.cloudfront.net/research-covers/openai-five/network-architecture.pdf
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OpenAl Five: Dota 2

e The agents are trained by self-play. Each worker
plays against:

= the current version of the network 80% of the
time.

= an older version of the network 20% of the
time.

e Reward is hand-designed using human heuristics:

= net worth, kills, deaths, assists, last hits...

Might die soon Will get a kill soon Game Milestones

e The discount factor -y is annealed from 0.998 (valuing future rewards with a half-life of 46 seconds) to
0.9997 (valuing future rewards with a half-life of five minutes).

e Coordinating all the resources (CPU, GPU) is actually the main difficulty:

» Kubernetes, Azure, and GCP backends for Rapid, TensorBoard, Sentry and Grafana for monitoring...
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1 - TRPO: Trust Region Policy Optimization (skipped)

Trust Region Policy Optimization
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Schulman et al. (2015) Trust Region Policy Optimization. 1889-1897. http://proceedings.mir.press/v37/schulman15.html.
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TRPO: Trust Region Policy Optimization

e We want to maximize the expected return of a policy 7y, which is equivalent to the Q-value of every state-

action pair visited by the policy:

J(0) =

4:8”\’/09,61“’779 [Qﬂe (37 a’)]

o Let's note 0,14 the current value of the parameters of the policy 7y, .

o Kakade and Langford (2002) have shown that the expected return of a policy 7y is linked to the expected

return of the current policy g, with:

T (0) = T(0o1a) + Esmpy,ammy [ AT (5, a)]

where

Ao (37 a’) — Q9(37 a) — QHold (37 a)

is the advantage of taking the action (s, a) and thereafter following 7y, compared to following the current

policy mg_, .

e The return under any policy € is equal to the return under 6,14, plus how the newly chosen actions in the
rest of the trajectory improves (or worsens) the returns.

Kakade and Langford (2002) Approximately Optimal Approximate Reinforcement Learning. Proc. 19th International Conference on Machine Learning, 267-274.

31/40



TRPO: Trust Region Policy Optimization

If we can estimate the advantages and maximize them, we can find a new policy g with a higher return

than the current one.

L(0) = Eswpyanm, [A™1 (5, 0),

By definition, £(60,1q) = 0, so the policy maximizing £(6) has positive advantages and is better than

TTOo1q -

Hnew — arginaxy ‘C(e) — j(enew) > j(‘gold)

Maximizing the advantages ensures monotonic improvement: the new policy is always better than the

previous one. Policy col

The problem is that we

apse is not possible!

nave to take samples (s, a) from 7y: we do not know it yet, as it is what we

search. The only policy at our disposal to estimate the advantages is the current policy 7y, .

We could use importance sampling to sample from 7y, but it would introduce a lot of variance:

770(37 a’)
0014 (37 a’)

5(9) — ﬂSNP%ld a~m [ Aol (8, a)]
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TRPO: Trust Region Policy Optimization

e In TRPO, we are adding a constraint instead:

= the new policy 7y . should not be (very) different from mg_, .

(5,0)

= the importance sampling weight %e“’( ) will not be very different from 1, so we can omit it.

7T001d S.a

o Let's define a new objective function Jp_, (6):

T00a (0) = T (0o1a) + Esvpy ammy [A™0 (8, a)]

o The only difference with 7 (8) is that the visitec

states s are now sampled by the current policy 7g_,, -

e This makes the expectation tractable: we know
actions taken by the new policy in those states.

now to visit the states, but we compute the advantage of
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TRPO: Trust Region Policy Optimization

e Previous objective function:

J(0) = T(Oola) + Espyamm, [A™ (8, 0)]

e New objective function:

[ (9) — j(eold) T 4:8“’,0001(1 ATy [AWHOM (37 a’)]

e Itis “easy” to observe that the new objective function has the same value in 0,4:

J0..4(0o1d) = T (Bo1a)

and that its gradient w.r.t. @ is the same in O14:
Vt9~7¢901d (9)‘92901(1 = Vy j(9)|9:901d

o At least locally, maximizing Jy_, (€) is exactly the same as maximizing J (8).

o Jy..(0) is called a surrogate objective function: it is not what we want to maximize, but it leads to the
same result locally.

34 /40



TRPO: Trust Region Policy Optimization

Real objective

a0
\ / Tb014 (0)

Surrogate objective

0 0ol1d



TRPO: Trust Region Policy Optimization

 How big a step can we take when maximizing J3,,, (6)? 7y and g, must be close from each other for
the approximation to stand.

o The first variant explored in the TRPO paper is a constrained optimization approach (Lagrange
optimization):

meax Tboa (0) — j(eold) T <I:sN,Oeold ,A~TTY [Am(’ld (87 a')]

such that: Dy, (7,

‘71'9) S 5

» The KL divergence between the distributions 7g_,, and g must be below a threshold 0.

e This version of TRPO uses a hard constraint:

= We search for a policy mg that maximizes the expected return while staying within the trust region
around 7y, -
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TRPO: Trust Region Policy Optimization

e The second approach regularizes the objective function with the KL divergence:

meax L(Q) — \790101 (9) — C Dkt (77901d ‘ ‘779)

where C is a regularization parameter controlling the importance of the soft constraint.

e This surrogate objective function is a lower bound of the initial objective J (6’):

1. The two objectives have the same value in 0,4:

‘C(Hold) — j901d (‘90101) — C Dgy, (ﬂ-eold

‘ﬂ-eold) — j(eold)

2. Their gradient w.r.t 8 are the same in 0,4:

VHE(Q)‘HZHOM — Vﬁj(e)‘ﬁzﬁom

3. The surrogate objective is always smaller than the real objective, as the KL divergence is positive:

j(e) > jé'old (‘9) — CDKL(,]THOIdHT‘-H)
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TRPO: Trust Region Policy Optimization

Real objective

a0 9
\ / j901d( )

Unconstrained objective

Surrogate objective

L(0)

\

/ 9* 9 éold \



TRPO: Trust Region Policy Optimization

e The policy gy maximizing the surrogate objective L(0) = Jy,,(0) — C Dxx,(7g,,,||70):

1. has a higher expected return than 7g_,: Real objective Unconstrained objective
J(0)
\ j901d (‘9)

J(0) > T (6o1a) /

2. is very close to y_,: /

Surrogate objective
Dx1 (9,4 |m) ~ 0 L)
3. but the parameters 6 are much closer to the /e 9 Oia \ >

optimal parameters 6*.

e The version with a soft constraint necessitates a prohibitively small learning rate in practice.

e The implementation of TRPO uses the hard constraint with Lagrange optimization, what necessitates
using conjugate gradients optimization, the Fisher Information matrix and natural gradients: very complex
to implement...

 However, there is a monotonic improvement guarantee: the successive policies can only get better over
time, no policy collapse! This is the major advantage of TRPO compared to the other methods: it always
works, although very slowly.
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