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1 - Maximum Entropy RL



Hard RL

e All methods seen so far search the optimal policy that maximizes the return:

I arg mﬁmx “:ﬂ- [Z 'yt T(Sta at, St—l—l)]
t

e The optimal policy is deterministic and greedy by definition.
7*(s) = argmax Q*(s, a)
a

e Exploration is ensured externally by :

= applying e-greedy or softmax on the Q-values (DQN),
= adding exploratory noise (DDPG),

= |earning stochastic policies that become deterministic over time (A3C, PPO).

e |Is “hard” RL, caring only about exploitation, always the best option?
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Need for soft RL

e The optimal policy is only greedy for a MDP, not
obligatorily for a POMDP.

e Games like chess are POMDPs: you do not know
what your opponent is going to play (missing
information).

o If you always play the same moves (e.g. opening

moves), your opponent will adapt and you will end
up losing systematically.

e Variety in playing is beneficial in POMDPs: it can
counteract the uncertainty about the environment.

Source: https://www.chess.com/article/view/announcing-the-chess-com-
gif-maker
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https://www.chess.com/article/view/announcing-the-chess-com-gif-maker

Need for soft RL

e There are sometimes more than one way to collect rewards, especially with sparse rewards.
o |f exploration decreases too soon, the RL agent will “overfit” one of the paths.

e If one of the paths is suddenly blocked, the agent would have to completely re-learn its policy.

e |t would be more efficient if the agent had learned all possibles paths, even if some of them are less
optimal.

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning/
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https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Soft policies

e Softmax policies allow to learn multimodal policies, but only for discrete action spaces.

_expQ(s,a)/7
Zb exp Q(s,b)/T

m(s,a)

e Continuous Gaussian policies are still unimodal policies: they mostly sample actions around the mean
e (s) and the variance oy (s) decreases to 0 with learning.

e |f we want a multimodal policy that learns different solutions, we would need to learn a softmax
distribution (Gibbs / Boltzmann) over the continuous action space: untractable

m(atlse) = N (u(se), ¥)
<’ A
Q(Sia aﬁ) Q(Sia af)

) ) m(at|st) o< exp Q(s¢, ar)

VAR VARV

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning/
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https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Maximum Entropy RL

e A solution to force the policy to be multimodal is to force it to be as stochastic as possible by maximizing
its entropy.

e Instead of searching for the policy that “only” maximizes the returns:

I arg m;],X ‘Eﬂ- [Z ’Yt T(Sta At , 3t-|—1)]
t

we search for the policy that maximizes the returns while being as stochastic as possible:

s

m° = argmax [, [Z V' (e, ar, se01) + o H(m(s))]
t

e This new objective function defines the maximum entropy RL framework.

e The entropy of the policy regularizes the objective function: the policy should still maximize the returns,
but stay as stochastic as possible depending on the parameter «.

e Entropy regularization can always be added to PG methods such as A3C.

e |tis always possible to fall back to hard RL by setting « to O.

Haarnoja et al. (2017) Reinforcement Learning with Deep Energy-Based Policies. arXiv:1702.08165
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Entropy of a policy

e The entropy of a policy in a state s; is defined by the expected negative log-likelihood of the policy:

H(mg(s:)) =

e For a discrete action space:

E Uy’ 8t7

e For a continuous action space:

H(mg(s¢)) ) log mg(s¢, a)

H(mg(s;)) = — / ro(st, a) log mo(s:, a) da

a

e The entropy necessitates to sum or integrate the
self-information of each possible action in a given
state.
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Entropy of a policy

o A deterministic (greedy) policy has zero entropy, ¢ A random policy has a high entropy, you cannot

the same action is always taken: exploitation. predict which action will be taken: exploration.
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e Maximum entropy RL embeds the exploration-exploitation trade-off inside the objective function instead
of relying on external mechanisms such as the softmax temperature.
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Soft Q-learning

e |In soft Q-learning, the objective function is defined over complete trajectories:

J(0) = ZVt (T (8t,at, 8t+1) + a H(mw(st)))

e The goal of the agent is to generate trajectories associated with a lot of rewards (high return) but only
visiting states with a high entropy, i.e. where the policy is random (exploration).

e The agent can decide how the trade-off is solved via Rewards >

regularization: i

f a single action leads to high rewards, the policy may
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Soft Q-learning

e In soft Q-learning, the policy is implemented as a softmax over

soft Q-values:

A

Q(Sf:at)
soft
6 (S,CL) T af\sf X CXpQ Sf,af
=P « QZ»"& (s,a)
770(3,61) — oft (5 1 X €xXp
D _p €XP Q5" (s,0) — at
87

e « plays the role of the softmax temperature parameter 7.

learning/

Q" (s, a)

e Soft Q-learning belongs to energy-based models, as

represents the energy of the
Q

Boltzmann distribution (see restricted Boltzmann machines).

Q7" (s,b)

!
need to integrate over the whole action space, but it wi

e The partition function ) ,, exp is untracta

ole for continuous action spaces, as one would

| disappear from the equations anyway.

Haarnoja et al. (2017) Reinforcement Learning with Deep Energy-Based Policies. arXiv:1702.08165

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-g-
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What are soft values?

e SoftV and Q values are the equivalent of the hard value functions, but for the new objective:

TO) = 2 Exlr(se, ar, s601) + a H(n(s,))]

e The soft value of an action depends on the immediate reward and the soft value of the next state (soft
Bellman equation):

zOft(Sta a't) — <E8t+1 Syl [T(Sh g, 8t+1) T Y ‘/HSOft(StJrl)]

e The soft value of a state is the expected value over the available actions plus the entropy of the policy.

V5% (81) = Eo,ex (@3 (81, a1)] + H(mg(8t)) = Eayen[Q5 (8¢5 at) — log mo (s, ar)]

e Haarnoja et al (2017) showed that these soft value functions are the solution of the entropy-regularized
objective function.

e All we need is to be able to estimate them... Soft Q-learning uses complex optimization methods
(variational inference) to do it, but SAC is more practical.

Haarnoja et al. (2017) Reinforcement Learning with Deep Energy-Based Policies. arXiv:1702.08165 12 /24



2 - Soft Actor-Critic (SAC)

Soft Actor-Critic Algorithms and Applications

Tuomas Haarnoja*'*  Aurick Zhou*'  Kristian Hartikainen*"  George Tucker’
Sehoon Ha® Jie Tan' Vikash Kumar?* Henry Zhu' Abhishek Gupta'

Pieter Abbeel' Sergey Levine'*

Haarnoja et al. (2018) Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905
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Soft Actor-Critic (SAC)

e Putting these equations together:

EOft(St, at) — ﬂsm € py [T(St, at , St+1) + 7y VQSO&(StH)]

‘/HSOft(St) — <l:at@T[ ZOft(Sta a’t) T log 7T9(8t7 a't)]

we obtain:

zgft(st, at) — 43st+1€pe [T(Sta a¢ , 3t+1) + 7y 43at+167r[ ZOft(StH, Clt+1) — log 779(St+1, CLt+1)H

« If we want to train a critic (s, a) to estimate the true soft Q-value of an action Q5 (s, a), we just

need to sample (8¢, as, 411, Qz11) transitions and minimize:

‘C(QO) — <I:=9t,67n:>=‘>’t+1N,Oe [(TtJrl Ty Q90(8t+17 a’t—l-l) o log 7T9(8t+17 a't+1) IR Q90(8t7 a't))z]

e The only difference with a SARSA critic is that the negative log-likelihood of the next action is added to
the target.

e In practice, 8¢, a; and 411 can come from a replay buffer, but a;, ; has to be sampled from the current
policy g (but not taken!).

e SAC is therefore an off-policy actor-critic algorithm, but with stochastic policies!
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Soft Actor-Critic (SAC)

e But how do we train the actor? The policy is defined by a softmax over the soft Q-values, but the log-
partition Z is untractable for continuous spaces:

eEXP Qw(sja) 1 Q ( )
mo(s,a) = Q = — exp ¥ i
25 €XD Qlsb) 2 )

e The trick is to make the parameterized actor ¢ learn to be close from this softmax, by minimizing the KL
divergence:

1 Q,(s,a)

1 Qu(s,a), z "7
L(0) = Dxu(ms(s, )l exp =) = Eoaum(s.0) [~ l0g ” (s, a)

|

e As Z does not depend on 6, it will automagically disappear when taking the gradient!

Vo L(0) =E;.|aVglogm(s,a) — Qy,(s,a)]

e So the actor just has to implement a Gaussian policy and we can train it using soft-Q-value.
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Soft Actor-Critic (SAC)

o Soft Actor-Critic (SAC) is an off-policy actor-critic architecture for maximum entropy RL:

T0) = > 7 Exlr(st,ar, s011) + a H(m(s:))]

e Maximizing the entropy of the policy ensures an efficient exploration. It is even possible to learn the value
of the parameter a.

e The critic learns to estimate soft Q-values that take the entropy of the policy into account:

‘C(Qp) — 4:3taat73t+1“’/00 [(Tt+1 + Y QSO(St—Ha at+1) o log 779(8t+17 a’H—l) o Q90(8t7 a’t))z]

e The actor learns a Gaussian policy that becomes close to a softmax over the soft Q-values:

QSO(Saa)
8

Vo L(0) =E;,|aVglogmg(s,a) — Qu,(s,a))

mo(s,a) o< exp

Haarnoja et al. (2018) Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905
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SAC vs. TD3

e |In practice, SAC uses clipped double learning like TD3: it takes the lesser of two evils between two critics
Ry and Q.

e The next action a+41 comes from the current policy, no need for target networks.

e Unlike TD3, the learned policy is stochastic: no need for target noise as the targets are already stochastic.

e See https://spinningup.openai.com/en/latest/algorithms/sac.html for a detailed comparison of SAC and
TD3.

e The initial version of SAC additionally learned a soft V-value critic, but this turns out not to be needed.

Haarnoja et al. (2018) Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 17 /24


https://spinningup.openai.com/en/latest/algorithms/sac.html
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Figure 1: Training curves on continuous control benchmarks. Soft actor-critic (blue and yellow) performs
consistently across all tasks and outperforming both on-policy and off-policy methods in the most challenging

tasks.

Haarnoja et al. (2018) Soft Actor-Critic Algorithms and Applications. arXiv:1812.05905 18/ 24



SAC results

 The enhanced exploration strategy through maximum entropy RL allows to learn robust and varied
strategies that can cope with changes in the environment.

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning/
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https://bair.berkeley.edu/blog/2017/10/06/soft-q-learning/

Real-world robotics

e The low sample complexity of SAC allows to train a real-world robot in less than 2 hours!
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https://www.youtube.com/watch?v=FmMPHL3TcrE

Real-world robotics

e Although trained on a flat surface, the rich learned stochastic policy can generalize to complex terrains.

(@) SAC.on:Minitaur-Testing - | | | _ 2

| Share
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https://www.youtube.com/watch?v=KOObeIjzXTY

Real-world robotics

 When trained to stack lego bricks, the robotic arm learns to explore the whole state-action space.

Source: https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning/
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Additional reading

e https://ai.googleblog.com/2019/01/soft-actor-critic-deep-reinforcement.html

e https://towardsdatascience.com/in-depth-review-of-soft-actor-critic-91448aba63d4

e https://towardsdatascience.com/soft-actor-critic-demystified-b8427df61665

e https://bair.berkeley.edu/blog/2017/10/06/soft-g-learning
e https://arxiv.org/abs/1805.00909
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