
Deep Reinforcement Learning
Model-based RL, augmentation

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
28

Summary of model-free methods
Model-free methods allow to solve MDPs without knowing anything about the model.

Algorithm Action Space Exploration On- or Off-
Policy

Sample
Efficiency

Learning
Stability

Policy
Optimality

DQN Discrete -greedy Off-policy + - +

A3C Discrete and
Continuous

Gaussian
policy

On-policy - - +

DDPG Continuous Exploration
noise

Off-policy + - +

TD3 Continuous Exploration
noise

Off-policy ++ + +++

PPO Discrete and
Continuous

Gaussian
policy

On-policy + +++ +++

SAC Continuous Soft policy Off-policy +++ - +++

In practice, you should use PPO if you do not really care about sample efficiency and prefer learning
stability (ChatGPT). It works well for both discrete and continuous spaces.

For continuous ction spaces (robotics), you should prefer TD3 or SAC, TD3 being less computationally
expensive, but SAC being more sample efficient.

ϵ

2
/
28

1 - Model-based RL

3
/
28

Model-free vs. model-based RL
In model-free RL (MF) methods, we do not need to know
anything about the dynamics of the environment to start
learning a policy:

We just sample transitions from the environment
and update either Q-values or a policy network.

The main advantage is that the agent does not need to “think”
when acting: just select the action with highest Q-value
(reflexive behavior).

The other advantage is that you can use MF methods on any
MDP: you do not need to know anything about them.

MF methods are very slow (sample complexity): as they make no assumption, they have to learn
everything by trial-and-error from scratch.

MF methods are not safe: it is very hard to use external knowledge to avoid exploring dangerous actions.

Source: Dayan and Niv () Reinforcement learning: The
Good, The Bad and The Ugly. Current Opinion in
Neurobiology, Cognitive neuroscience 18:185–196.
doi:10.1016/j.conb.2008.08.003

2008

p(s ∣s, a) r(s, a, s)′

(s, a, r, s)′

4
/
28

Model-free vs. model-based RL
If you had a model of the environment, you could plan ahead (what would happen if I did that?) and speed
up learning (do not explore stupid ideas): model-based RL (MB).

In chess, players plan ahead the possible moves up
to a certain horizon and evaluate moves based on
their emulated consequences.

In real-time strategy games, learning the
environment (world model) is part of the strategy:
you do not attack right away.

Source: https://www.chess.com/article/view/announcing-the-chess-com-
gif-maker

Source: https://towardsdatascience.com/model-based-reinforcement-
learning-cb9e41ff1f0d

5
/
28

https://www.chess.com/article/view/announcing-the-chess-com-gif-maker
https://towardsdatascience.com/model-based-reinforcement-learning-cb9e41ff1f0d

Two families of deep RL algorithms

Model-Free RL

RL Algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

Source: https://github.com/avillemin/RL-Personnal-Notebook

6
/
28

https://github.com/avillemin/RL-Personnal-Notebook

2 - Learning the world model

7
/
28

Learning the world model
Learning the world model is not complicated in theory.

We just need to collect enough transitions using a random agent (or during learning)
and train a supervised model to predict the next state and reward.

1. Collect transitions using a (random/expert) policy and
create a dataset .

2. Train the model on using supervised learning.

3. Optimize the policy on rollouts generated by the model.

Such a model is called the dynamics model, the transition model or the forward model.

What happens if I do that?

The model can be deterministic (use neural networks) or stochastic (use Gaussian Processes).

Given an initial state and a policy , you can unroll the future using the local model.

s ​, a ​, s ​, r ​t t t+1 t+1

s , r =′ M(s, a) Training in imagination

(s, a, r, s)′ b

D = {(s ​, a ​, r ​s ​} ​k k , k
′

k

M(s, a) = (s , r)′ D

π τ

s ​0 π

8
/
28

Learning from imaginary rollouts
Once you have a good transition model, you can generate
rollouts, i.e. imaginary trajectories / episodes using the model.

Given an initial state and a policy , you can unroll the
future using the model .

You can then feed these trajectories to any optimizer
(classical or model-free RL algorithm) that will learn to
maximize the returns.

The only sample complexity is the one needed to train the model: the rest is emulated.

Drawback: This can only work when the model is close to perfect, especially for long trajectories or
probabilistic MDPs. See MPC in the next chapter.

s ​0 π

s , r =′ M(s, a)

τ = s ​ ​0 π
a ​ ​0

M
s ​ ​1 π

a ​ ​1 π
s ​ ​2 … ​

M
s ​T

J (θ) = E ​[R(τ)]τ

Kurutach et al. () Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592.2018 9
/
28

3 - Dyna-Q

10
/
28

Dyna-Q
A simple approach to MB RL is to augment MF
methods with MB rollouts.

The MF algorithm (e.g. Q-learning) learns from
transitions sampled either with:

real experience: interaction with the
environment.

simulated experience: simulation by the model.

If the simulated transitions are good enough, the
MF algorithm can converge using much less real
transitions, thereby reducing its sample
complexity.

The Dyna-Q algorithm is an extension of Q-learning to integrate a model .

The model can be tabular or approximated with a NN.

(s, a, r, s)′

M(s, a) = (s , r)′ ′

Sutton () Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. Machine Learning Proceedings.1990 11
/
28

Dyna-Q
Initialize values and model .

for :

Select using , take it on the real environment and observe and .

Update the Q-value of the real action:

Update the model:

for steps:

Sample a state from a list of visited states.

Select using , predict and using the model .

Update the Q-value of the imagined action:

Q(s, a) M(s, a)

t ∈ [0,T ​]total

a ​t Q s ​t+1 r ​t+1

ΔQ(s ​, a ​) =t t α (r ​ +t+1 γ ​Q(s ​, a) −
a

max t+1 Q(s ​, a ​))t t

M(s ​, a ​) ←t t (s ​, r ​)t+1 t+1

K

s ​k

a ​k Q s ​k+1 r ​k+1 M(s ​, a ​)k k

ΔQ(s ​, a ​) =k k α (r ​ +k+1 γ ​Q(s ​, a) −
a

max k+1 Q(s ​, a ​))k k

12
/
28

Dyna-Q

It is interesting to notice that Dyna-Q is very similar to DQN and its experience replay memory.

In DQN, the ERM stores real transitions generated in the past.

In Dyna-Q, the model generates imagined transitions based on past real transitions.

http://incompleteideas.net/sutton/book/the-book.html 13
/
28

http://incompleteideas.net/sutton/book/the-book.html

4 - I2A - Imagination-augmented agents

https://deepmind.com/blog/article/agents-imagine-and-plan

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 14
/
28

https://deepmind.com/blog/article/agents-imagine-and-plan

I2A - Imagination-augmented agents
I2A is a model-based augmented model-free method: it trains a MF algorithm (A3C) with the help of
rollouts generated by a MB model.

They showcase their algorithm on the puzzle environment Sokoban, where you need to move boxes to
specified locations.

Sokoban is a quite hard game, as actions are irreversible (you can get stuck) and the solution requires
many actions (sparse rewards).

MF methods are bad at this game as they learn through trials-and-(many)-errors.

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 15
/
28

Sokoban

Sokoban: Level 2 solutionSokoban: Level 2 solution
ShareShare

16
/
28

https://www.youtube.com/watch?v=fg8QImlvB-k

I2A - Imagination-augmented agents
The model learns to predict the next frame and the next reward based on the four last frames and the
chosen action.

It is a convolutional autoencoder, taking additionally an action as input and predicting the next reward.

It can be pretrained using a random policy, and later fine-tuned during training.

a

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 17
/
28

I2A - Imagination-augmented agents

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 18
/
28

I2A - Imagination-augmented agents
The imagination core is composed of the environment model

 and a rollout policy .

As Sokoban is a POMDP (partially observable), the notation
uses observation instead of states , but it does not really
matter here.

The rollout policy is a simple and fast policy. It does not
have to be the trained policy .

It could even be a random policy, or a pretrained policy using
for example A3C directly.

In I2A, it is a distilled policy from the trained policy (see
later).

Take home message: given the current observation and a
policy , we can predict the next observation and the
next reward .

M(s, a) π̂

o ​t s ​t

π̂

π

π

o ​t

π̂ ​ôt+1

​r̂t+1

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 19
/
28

I2A - Imagination-augmented agents
The imagination rollout module uses the
imagination core to predict iteratively the next
frames and rewards using the current frame and
the rollout policy:

The frames and rewards are passed backwards
to a convolutional LSTM (from to) which
produces an embedding / encoding of the rollout.

The output of the imagination rollout module is a
vector (the final state of the LSTM) representing
the whole rollout, including the (virtually) obtained
rewards.

Note that because of the stochasticity of the rollout
policy , different rollouts can lead to different
encoding vectors.

τ

o ​t

o →t ​ →ôt+1 ​ →ôt+2 … → ​ôt+τ

τ

t + τ t

e ​i

π̂

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 20
/
28

I2A - Imagination-augmented agents
For the current observation , we then generate one rollout
per possible action (5 in Sokoban):

What would happen if I do action 1?

What would happen if I do action 2?

etc.

The resulting vectors are concatenated to the output of
model-free path (a convolutional neural network taking the
current observation as input).

Altogether, we have a huge NN with weights (model,
encoder, MF path) producing an input to the A3C module.

We can then learn the policy and value function based on this input to maximize the returns:

o ​t

θ

s ​t

π V

∇ ​J (θ) =θ E ​[∇ ​ log π ​(s ​, a ​) (​γ r ​ +s ​∼ρ ​,a ​∼π ​t θ t θ θ θ t t

k=0

∑
n−1

k
t+k+1 γ V ​(s ​) −n

φ t+n V ​(s ​))]φ t

L(φ) = E ​[(​γ r ​ +s ​∼ρ ​,a ​∼π ​t θ t θ

k=0

∑
n−1

k
t+k+1 γ V ​(s ​) −n

φ t+n V ​(s ​))]φ t
2

21
/
28

I2A - Imagination-augmented agents
The complete architecture may seem complex, but everything is differentiable so we can apply
backpropagation and train the network end-to-end using multiple workers.

It is the A3C algorithm (MF), but augmented by MB rollouts, i.e. with explicit information about the future.

Weber et al. () Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.2017 22
/
28

Policy distillation
The rollout policy is trained using policy distillation of the trained policy . The small rollout policy
network with weights tries to copy the outputs of the bigger policy network (A3C).

This is a supervised learning task: just minimize the KL divergence between the two policies:

As the network is smaller, it won’t be as good as , but its learning objective is easier.

π̂ π

θ̂ π(s, a)

L() =θ̂ E ​[D ​((s, a)∣∣π(s, a))]s,a KL π̂

π

Rusu et al. () Policy Distillation. arXiv:1511.06295.2016 23
/
28

Distral : distill and transfer learning
FYI: distillation can be used to ensure generalization over different environments.

Each learning algorithms learns its own task, but tries not to diverge too much from a shared policy,
which turns out to be good at all tasks.

Teh et al. () Distral: Robust Multitask Reinforcement Learning. arXiv:1707.041752017 24
/
28

I2A - Imagination-augmented agents
Unsurprisingly, I2A performs better than A3C on Sokoban.

The deeper the rollout, the better.

Teh et al. () Distral: Robust Multitask Reinforcement Learning. arXiv:1707.041752017 25
/
28

I2A - Imagination-augmented agents
The model does not even have to be perfect: the MF path can compensate for imperfections.

Teh et al. () Distral: Robust Multitask Reinforcement Learning. arXiv:1707.041752017 26
/
28

I2A - Sokoban

Imagination-augmented agent plays SokobanImagination-augmented agent plays Sokoban
ShareShare

27
/
28

https://www.youtube.com/watch?v=llwAwE7ItdM

References
Dayan, P., and Niv, Y. (2008). Reinforcement learning: The Good, The Bad and The Ugly. Current Opinion in

Neurobiology 18, 185–196. doi: .

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-Ensemble Trust-Region Policy Optimization.
.

Rusu, A. A., Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R., et al. (2016). Policy
Distillation. .

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic
Programming. Machine Learning Proceedings 1990, 216–224. doi: .

Teh, Y. W., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask
Reinforcement Learning. .

Weber, T., Racanière, S., Reichert, D. P., Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented
Agents for Deep Reinforcement Learning. .

10.1016/j.conb.2008.08.003

http://arxiv.org/abs/1802.10592

http://arxiv.org/abs/1511.06295

10.1016/B978-1-55860-141-3.50030-4

http://arxiv.org/abs/1707.04175

http://arxiv.org/abs/1707.06203

28
/
28

https://doi.org/10.1016/j.conb.2008.08.003
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1511.06295
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
http://arxiv.org/abs/1707.04175
http://arxiv.org/abs/1707.06203

