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Summary of model-free methods

 Model-free methods allow to solve MDPs without knowing anything about the model.

Algorithm Action Space Exploration On- or Off- Sample Learning Policy
Policy Efficiency Stability Optimality
DQN Discrete €-greedy Off-policy + - +
A3C Discrete and Gaussian ~ On-policy - - +
Continuous policy
DDPG Continuous Exploration Off-policy + - +
noise
TD3 Continuous Exploration Off-policy ++ + +++
noise
PPO Discrete and Gaussian On-policy + +++ +++
Continuous policy
SAC Continuous Soft policy  Off-policy +++ - +++

e |In practice, you should use PPO if you do not really care about sample efficiency and prefer learning
stability (ChatGPT). It works well for both discrete and continuous spaces.

e For continuous ction spaces (robotics), you should prefer TD3 or SAC, TD3 being less computationally
expensive, but SAC being more sample efficient.
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1 - Model-based RL



Model-free vs. model-based RL

Model based Model free
— " 7N

w' " don't take
_ 5, b0 T freeway

Source: Dayan and Niv (2008) Reinforcement learning: The
Good, The Bad and The Ugly. Current Opinion in
Neurobiology, Cognitive neuroscience 18:185-196.
doi:10.1016/j.conb.2008.08.003

In model-free RL (MF) methods, we do not need to know
anything about the dynamics of the environment to start
learning a policy:

p(s'|s,a) r(s,a,s)

We just sample transitions (s, a, r, s') from the environment
and update either Q-values or a policy network.

The main advantage is that the agent does not need to “think”
when acting: just select the action with highest Q-value
(reflexive behavior).

The other advantage is that you can use MF methods on any
MDP: you do not need to know anything about them.

« MF methods are very slow (sample complexity): as they make no assumption, they have to learn

everything by trial-and-error from scratch.

e MF methods are not safe: it is very hard to use external knowledge to avoid exploring dangerous actions.
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Model-free vs. model-based RL

o If you had a model of the environment, you could plan ahead (what would happen if | did that?) and speed
up learning (do not explore stupid ideas): model-based RL (MB).

e In chess, players plan ahead the possible moves up ¢ In real-time strategy games, learning the
to a certain horizon and evaluate moves based on environment (world model) is part of the strategy:

their emulated consequences. you do not attack right away.

%1% How, to Win in Wonder Race in Age of Empires 2

Source: https://www.chess.com/article/view/announcing-the-chess-com- Source: https://towardsdatascience.com/model-based-reinforcement-
gif-maker learning-cb9e41ff1f0d
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Two families of deep RL algorithms

[ RL Algorithms }
'

[

[ Model-Free RL

)

\

Model-Based RL }

L

[ Learn the Model }

~

{Policy Optimization] [ Q-Learning }
Policy Gradient [<«—— r ) —> DQN
- g —> DDPG < -
A2C / A3C |€«<— - ) —> C51
: g —> TD3 <« )
PPO <« % \ —>»  QR-DQN
) g —> SAC <] )
TRPO <« —> HER

Source: https://github.com/avillemin/RL-Personnal-Notebook

{ Given the Model }

r

World Models

~

s

I2A

MBMF

MBVE

—{ AlphaZero }
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2 - Learning the world model



Learning the world model

e Learning the world model is not complicated in theory.

e We just need to collect enough transitions s;, a;, S 1, T+11 using a random agent (or during learning)
and train a supervised model to predict the next state and reward.

3,, r — M(S, a,) Training in imagination
1. Collect transitions (s, a, r, s') using a (random/expert) policy b and

create a dataset D = {(sg, ax,r, s}, }k.

St > > Sii1 2. Train the model M (s,a) = (s, r) on D using supervised learning.

Model

a, > > T4 3. Optimize the policy 7 on rollouts 7 generated by the model.

e Such a model is called the dynamics model, the transition model or the forward model.

= What happens if | do that?
e The model can be deterministic (use neural networks) or stochastic (use Gaussian Processes).

e Given an initial state sy and a policy 7, you can unroll the future using the local model.
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Learning from imaginary rollouts

e Once you have a good transition model, you can generate

imaginary policy
rollouts o

e Given an initial state sg and a policy 7, you can unroll the
future using the model s’,r = M (s, a).

| \q T=8 —a)— S —a] —> 89 —>...—> ST
| T M T T M

\ Improve polic
\ﬁ_ﬁ_] H?_ o+ WF: J(6) Y (j/ e You can then feed these trajectories to any optimizer

{ (classical or model-free RL algorithm) that will learn to
maximize the returns.

J(0) = E-|R(7)]

e The only sample complexity is the one needed to train the model: the rest is emulated.

e Drawback: This can only work when the model is close to perfect, especially for long trajectories or
probabilistic MDPs. See MPC in the next chapter.

Kurutach et al. (2018) Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592.

Generate rollouts, i.e. imaginary trajectories / episodes using the model.
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3 - Dyna-Q



Dyna-Q

e A simple approach to MB RL is to augment MF
methods with MB rollouts.

Agent . .
e The MF algorithm (e.g. Q-learning) learns from
transitions (s, a, r, s') sampled either with:
pr;Iine ) simulated RL . . , ,
interaction online RL update = real experience: interaction with the
update environment.
= simulated experience: simulation by the model.
Environment > Model

e |f the simulated transitions are good enough, the
MF algorithm can converge using much less real

transitions, thereby reducing its sample
complexity.

model training

o The Dyna-Q algorithm is an extension of Q-learning to integrate a model M (s,a) = (s',r').

e The model can be tabular or approximated with a NN.

Sutton (1990) Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. Machine Learning Proceedings.
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Dyna-Q

o Initialize values Q)(s, @) and model M (s, a).

» Select a; using (), take it on the real environment and observe s;11 and 7¢.1.

= Update the Q-value of the real action:
AQ(Sta at) — ("‘t+1 Ty mgx Q(3t+17 a) - Q(St, at))
= Update the model:

M(Sta a't) < (St—l—la ’rt—l—l)

» for K steps:

o Sample a state s;. from a list of visited states.

o Select ay using @, predict s;. 1 and 7,1 using the model M (s, ay).

o Update the Q-value of the imagined action:

AQ(Ska a’k) — (rk—H + 7Y mC?JXQ(Sk—Ha CL) — Q(Sk7 a'k))
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Dyna-Q

Minibatch of transitions

Agent p (S @ 1o SPYE
@(s) DNN @ > :
Agent A -
State - Action Experience
: — — — — — — my(s,a)
.or,:“ne H simulated RL ] Replay
neraction online RL update O Qys, a) Memory
update s
<

. — Environment N
Environment > Model Transition (s, a,r, s")

model training

e |tis interesting to notice that Dyna-Q is very similar to DQN and its experience replay memory.

e In DQN, the ERM stores real transitions generated in the past.

e In Dyna-Q, the model generates imagined transitions based on past real transitions.

http://incompleteideas.net/sutton/book/the-book.html
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4 - |12A - Imagination-augmented agents

Imagination-Augmented Agents
for Deep Reinforcement Learning

Théophane Weber® Sébastien Racaniere® David P. Reichert®™ Lars Buesing
Arthur Guez Danilo Rezende Adria Puigdoménech Badia Oriol Vinyals
Nicolas Heess Yujia Li Razvan Pascanu  Peter Battaglia
Demis Hassabis David Silver Daan Wierstra
DeepMind

https://deepmind.com/blog/article/agents-imagine-and-plan

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.
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I2A - Imagination-augmented agents

e |12A is a model-based augmented model-free method: it trains a MF algorithm (A3C) with the help of
rollouts generated by a MB model.

Figure 3: Random examples of procedurally generated Sokoban levels. The player (green sprite)
needs to push all 4 boxes onto the red target squares to solve a level, while avoiding irreversible

mistakes. Our agents receive sprite graphics (shown above) as observations.

e They showcase their algorithm on the puzzle environment Sokoban, where you need to move boxes to
specified locations.

e Sokoban is a quite hard game, as actions are irreversible (you can get stuck) and the solution requires
many actions (sparse rewards).

« MF methods are bad at this game as they learn through trials-and-(many)-errors.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 15/ 28



Sokoban

ﬂ? Sokoban: Level 2 solution
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https://www.youtube.com/watch?v=fg8QImlvB-k

I2A - Imagination-augmented agents

e The model learns to predict the next frame and the next reward based on the four last frames and the

chosen action.

input observations stacked context

il T il

il ) il
- R’ -

=

ConvNet

predicted observation

P

input action one-hot P

O—(1 1~

 |tis a convolutional autoencoder, taking additionally an action a as input and predicting the next reward.

predicted reward

Figure 2: Environment model. The
input action 1s broadcast and concate-
nated to the observation. A convolu-
tional network transforms this into a
pixel-wise probability distribution for
the output 1mage, and a distribution
for the reward.

e |t can be pretrained using a random policy, and later fine-tuned during training.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.
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I2A - Imagination-augmented agents

a) Imagination core b) Single imagination rollout c) Full I12A Architecture

Policy Net Env. Model
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e

Rollout encoder
| Rollout encoder

internal state

gRollout
‘Encoding

.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

1. imagine future 2 encode Model-based path / Model-free path

Aggregator \

i
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I2A - Imagination-augmented agents

a) Imagination core

Policy Net Env. Model| ™
| % | EM
[ T
II|I |I III."II
|I I.'III
‘h_':“f:-a-f"” M“Ji.
A O
Op.O¢ t+1
or

(|

internal state

fixed input

The imagination core is composed of the environment model
M (s, a) and a rollout policy 7.

As Sokoban is a POMDP (partially observable), the notation

uses observation o; instead of states s¢, but it does not really
matter here.

The rollout policy 7 is a simple and fast policy. It does not
have to be the trained policy .

It could even be a random policy, or a pretrained policy using
for example A3C directly.

In I2A, it is a distilled policy from the trained policy 7 (see
later).

Take home message: given the current observation o; and a

policy 7, we can predict the next observation 0,1 and the
next reward 74 1.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.



I2A - Imagination-augmented agents

b) Single imagination rollout

1. imagine future :2. encode
“H"‘H
Oty2 | v
Imag. : R : Encoder |
- core Fiiol
‘HHHH E
Ot41) , — "
lmag' : e Encn::c]er
r .
ccle P
\j
A \
Rollout
O .
t Encoding

e The imagination rollout module uses the
imagination core to predict iteratively the next T

frames and rewards using the current frame o; and
the rollout policy:

Ot = Oty1 =2 Op32 =7 oo =7 Oty

e The 7 frames and rewards are passed backwards

to a convolutional LSTM (from ¢ + 7 to t) which
produces an embedding / encoding of the rollout.

e The output of the imagination rollout module is a

vector e; (the final state of the LSTM) representing

the whole rollout, including the (virtually) obtained
rewards.

e Note that because of the stochasticity of the rollout

policy 7, different rollouts can lead to different
encoding vectors.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.
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I2A - Imagination-augmented agents

e For the current observation o;, we then generate one rollout

c) Full 12A Architecture T,V
= per possible action (5 in Sokoban):
Model-based path f_._,,__.,...x---’ M odel-free path
| = What would happen if | do action 1?
Aggregator
= What would happen if | do action 2?

.
\
.
.
o
..
.
.
., 4
\
", !
., /
- !
., !
“ !
'~ !
., !
. !

o o = etc.
c = e The resulting vectors are concatenated to the output of
% % model-free path (a convolutional neural network taking the
”"’\ = ) current observation as input).
;’_ o Altogether, we have a huge NN with weights 6 (model,
t -

encoder, MF path) producing an input s; to the A3C module.

e We can then learn the policy 7 and value function V' based on this input to maximize the returns:

n—1

Vej(e) — <Es,gr\qoe,atrvﬂ'g [VH IOg 7"-9(3157 a't) (Z 7k Tttk+1 T ,yn VQO(St-l—n) o VSO(St))]
k=0

n—1

L(®) = Egmpparmms [V Teinsr + 9" Vi (se4n) — Vip(s))?]
k=0
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I2A - Imagination-augmented agents

e The complete architecture may seem complex, but everything is differentiable so we can apply
backpropagation and train the network end-to-end using multiple workers.

e Itisthe A3C algorithm (MF), but augmented by MB rollouts, i.e. with explicit information about the future.

a) Imagination core

b) Single imagination rollout

c) Full I2A Architecture

i
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Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.
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Policy distillation

e The rollout policy 7 is trained using policy distillation of the trained policy 7. The small rollout policy
network with weights @ tries to copy the outputs 7 (s, a) of the bigger policy network (A3C).

e Thisis a supervised learning task: just minimize the KL divergence between the two policies:

E(é) — ﬂS,a [DKL (7%(87 CL) | ‘7-‘-(87 a))]

e Asthe network is smaller, it won't be as good as 7, but its learning objective is easier.

n(s,a)

Teacher

network - ey _

(big and frozen)

Minimize the

KL-divergence

p(s) -, [DK_ (G5, ) || (s, @)

Student #(s, a)

network

(small and

learning)

Rusu et al. (2016) Policy Distillation. arXiv:1511.06295.
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Distral : distill and transfer learning

e FYI: distillation can be used to ensure generalization over different environments.

e Each learning algorithms learns its own task, but tries not to diverge too much from a shared policy,
which turns out to be good at all tasks.

distill regularise

aistill
regularise

Teh et al. (2017) Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175
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I2A - Imagination-augmented agents

e Unsurprisingly, 12A performs better than A3C on Sokoban.
e The deeper the rollout, the better.

Sokoban performance Unroll depth analysis

1.0 1.0
T o
Q ] . .
=038 > 0.8 = i
o o
U LA
L n
v 0.6 v 0.6
> >
A @
b e
C 0.4 o 0.4
- — 127 S unroll depth
e - standard(large) = — 15
E 0.2 —— standard E 0.2 —_— 5
= no reward 124 = Ill-" _ 3

copy-model 124 —_— ]
0.0 === 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e9 environment steps 1e9

Figure 4: Sokoban learning curves. Left: training curves of I12A and baselines. Note that I2A use
additional environment observations to pretrain the environment model, see main text for discussion.
Right: 12A training curves for various values of imagination depth.

Teh et al. (2017) Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 o5 / 28



I2A - Imagination-augmented agents

e The model does not even have to be perfect: the MF path can compensate for imperfections.

Sokoban good vs. bad models

Rollout steps 1.0
L & @ T & mao = — |2A: good model
TS T T o Ie) 0.8 —— [2A: poor model
: , v —— MC: good mode|
: = ?m.l 0.6 —— MC: poor mode|
. . v 0.
o
....- s
-
=
© 0.2
1]
—
0.0 o
0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e9

Figure 5: Experiments with a noisy environment model. Left: each row shows an example 5-step
rollout after conditioning on an environment observation. Errors accumulate and lead to various
artefacts, including missing or duplicate sprites. Right: comparison of Monte-Carlo (MC) search and
[2A when using either the accurate or the noisy model for rollouts.

Teh et al. (2017) Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 26 / 28



|2A - Sokoban

0 Imagination-augmented agent plays Sokoban

i %%%%

-+ & £ & £
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https://www.youtube.com/watch?v=llwAwE7ItdM
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