REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Deep Reinforcement Learning

Model-based RL, augmentation

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/28

Summary of model-free methods

 Model-free methods allow to solve MDPs without knowing anything about the model.

Algorithm Action Space Exploration On- or Off- Sample Learning Policy
Policy Efficiency Stability Optimality
DQN Discrete €-greedy Off-policy + - +
A3C Discrete and Gaussian ~ On-policy - - +
Continuous policy
DDPG Continuous Exploration Off-policy + - +
noise
TD3 Continuous Exploration Off-policy ++ + +++
noise
PPO Discrete and Gaussian On-policy + +++ +++
Continuous policy
SAC Continuous Soft policy Off-policy +++ - +++

e |In practice, you should use PPO if you do not really care about sample efficiency and prefer learning
stability (ChatGPT). It works well for both discrete and continuous spaces.

e For continuous ction spaces (robotics), you should prefer TD3 or SAC, TD3 being less computationally
expensive, but SAC being more sample efficient.

2/28

1 - Model-based RL

Model-free vs. model-based RL

Model based Model free
— " 7N

w' " don't take
_ 5, b0 T freeway

Source: Dayan and Niv (2008) Reinforcement learning: The
Good, The Bad and The Ugly. Current Opinion in
Neurobiology, Cognitive neuroscience 18:185-196.
doi:10.1016/j.conb.2008.08.003

In model-free RL (MF) methods, we do not need to know
anything about the dynamics of the environment to start
learning a policy:

p(s'|s,a) r(s,a,s)

We just sample transitions (s, a, r, s') from the environment
and update either Q-values or a policy network.

The main advantage is that the agent does not need to “think”
when acting: just select the action with highest Q-value
(reflexive behavior).

The other advantage is that you can use MF methods on any
MDP: you do not need to know anything about them.

« MF methods are very slow (sample complexity): as they make no assumption, they have to learn

everything by trial-and-error from scratch.

e MF methods are not safe: it is very hard to use external knowledge to avoid exploring dangerous actions.

4/28

Model-free vs. model-based RL

o If you had a model of the environment, you could plan ahead (what would happen if | did that?) and speed
up learning (do not explore stupid ideas): model-based RL (MB).

e In chess, players plan ahead the possible moves up ¢ In real-time strategy games, learning the
to a certain horizon and evaluate moves based on environment (world model) is part of the strategy:

their emulated consequences. you do not attack right away.

%1% How, to Win in Wonder Race in Age of Empires 2

Source: https://www.chess.com/article/view/announcing-the-chess-com- Source: https://towardsdatascience.com/model-based-reinforcement-
gif-maker learning-cb9e41ff1f0d

5/28

https://www.chess.com/article/view/announcing-the-chess-com-gif-maker
https://towardsdatascience.com/model-based-reinforcement-learning-cb9e41ff1f0d

Two families of deep RL algorithms

[RL Algorithms }
'

[

[Model-Free RL

)

\

Model-Based RL }

L

[Learn the Model }

~

{Policy Optimization] [Q-Learning }
Policy Gradient [<«—— r) —> DQN
- g —> DDPG < -
A2C / A3C |€«<— -) —> C51
: g —> TD3 <«)
PPO <« % \ —>» QR-DQN
) g —> SAC <])
TRPO <« —> HER

Source: https://github.com/avillemin/RL-Personnal-Notebook

{ Given the Model }

r

World Models

~

s

I2A

MBMF

MBVE

—{ AlphaZero }

6/28

https://github.com/avillemin/RL-Personnal-Notebook

2 - Learning the world model

Learning the world model

e Learning the world model is not complicated in theory.

e We just need to collect enough transitions s;, a;, S 1, T+11 using a random agent (or during learning)
and train a supervised model to predict the next state and reward.

3,, r — M(S, a,) Training in imagination
1. Collect transitions (s, a, r, s') using a (random/expert) policy b and

create a dataset D = {(sg, ax,r, s}, }k.

St > > Sii1 2. Train the model M (s,a) = (s, r) on D using supervised learning.

Model

a, > > T4 3. Optimize the policy 7 on rollouts 7 generated by the model.

e Such a model is called the dynamics model, the transition model or the forward model.

= What happens if | do that?
e The model can be deterministic (use neural networks) or stochastic (use Gaussian Processes).

e Given an initial state sy and a policy 7, you can unroll the future using the local model.

8/28

Learning from imaginary rollouts

e Once you have a good transition model, you can generate

imaginary policy
rollouts o

e Given an initial state sg and a policy 7, you can unroll the
future using the model s’,r = M (s, a).

| \q T=8 —a)— S —a] —> 89 —>...—> ST
| T M T T M

\ Improve polic
\ﬁ_ﬁ_] H?_ o+ WF: J(6) Y (j/ e You can then feed these trajectories to any optimizer

{ (classical or model-free RL algorithm) that will learn to
maximize the returns.

J(0) = E-|R(7)]

e The only sample complexity is the one needed to train the model: the rest is emulated.

e Drawback: This can only work when the model is close to perfect, especially for long trajectories or
probabilistic MDPs. See MPC in the next chapter.

Kurutach et al. (2018) Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592.

Generate rollouts, i.e. imaginary trajectories / episodes using the model.

9/28

3 - Dyna-Q

Dyna-Q

e A simple approach to MB RL is to augment MF
methods with MB rollouts.

Agent . .
e The MF algorithm (e.g. Q-learning) learns from
transitions (s, a, r, s') sampled either with:
pr;Iine) simulated RL . . , ,
interaction online RL update = real experience: interaction with the
update environment.
= simulated experience: simulation by the model.
Environment > Model

e |f the simulated transitions are good enough, the
MF algorithm can converge using much less real

transitions, thereby reducing its sample
complexity.

model training

o The Dyna-Q algorithm is an extension of Q-learning to integrate a model M (s,a) = (s',r').

e The model can be tabular or approximated with a NN.

Sutton (1990) Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic Programming. Machine Learning Proceedings.

11/28

Dyna-Q

o Initialize values Q)(s, @) and model M (s, a).

» Select a; using (), take it on the real environment and observe s;11 and 7¢.1.

= Update the Q-value of the real action:
AQ(Sta at) — ("‘t+1 Ty mgx Q(3t+17 a) - Q(St, at))
= Update the model:

M(Sta a't) < (St—l—la ’rt—l—l)

» for K steps:

o Sample a state s;. from a list of visited states.

o Select ay using @, predict s;. 1 and 7,1 using the model M (s, ay).

o Update the Q-value of the imagined action:

AQ(Ska a’k) — (rk—H + 7Y mC?JXQ(Sk—Ha CL) — Q(Sk7 a'k))

12/28

Dyna-Q

Minibatch of transitions

Agent p (S @ 1o SPYE
@(s) DNN @ > :
Agent A -
State - Action Experience
: — — — — — — my(s,a)
.or,:“ne H simulated RL] Replay
neraction online RL update O Qys, a) Memory
update s
<

. — Environment N
Environment > Model Transition (s, a,r, s")

model training

e |tis interesting to notice that Dyna-Q is very similar to DQN and its experience replay memory.

e In DQN, the ERM stores real transitions generated in the past.

e In Dyna-Q, the model generates imagined transitions based on past real transitions.

http://incompleteideas.net/sutton/book/the-book.html

13/28

http://incompleteideas.net/sutton/book/the-book.html

4 - |12A - Imagination-augmented agents

Imagination-Augmented Agents
for Deep Reinforcement Learning

Théophane Weber® Sébastien Racaniere® David P. Reichert®™ Lars Buesing
Arthur Guez Danilo Rezende Adria Puigdoménech Badia Oriol Vinyals
Nicolas Heess Yujia Li Razvan Pascanu Peter Battaglia
Demis Hassabis David Silver Daan Wierstra
DeepMind

https://deepmind.com/blog/article/agents-imagine-and-plan

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

14/28

https://deepmind.com/blog/article/agents-imagine-and-plan

I2A - Imagination-augmented agents

e |12A is a model-based augmented model-free method: it trains a MF algorithm (A3C) with the help of
rollouts generated by a MB model.

Figure 3: Random examples of procedurally generated Sokoban levels. The player (green sprite)
needs to push all 4 boxes onto the red target squares to solve a level, while avoiding irreversible

mistakes. Our agents receive sprite graphics (shown above) as observations.

e They showcase their algorithm on the puzzle environment Sokoban, where you need to move boxes to
specified locations.

e Sokoban is a quite hard game, as actions are irreversible (you can get stuck) and the solution requires
many actions (sparse rewards).

« MF methods are bad at this game as they learn through trials-and-(many)-errors.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203. 15/ 28

Sokoban

ﬂ? Sokoban: Level 2 solution

.-.II.-I-..-IIHI-I-II- II-I-I.I-II-I...-II-I!I-II! l.-ll-l.l-..ll
m..n_.m _.-u..__._u = .._um * i .__._ F
Ig*ig®ig® g g™ _u _..

m.:—_uw_nm.:m.:-.:w_nm.=m_"

i &

i

1
e
< Ll
~oeiar

|
m.m

o 1 o B)

1..:__. .A.___.._1-._:m ;

: o ey 8 g W

u> m__nm_ m.a___m

.—..

h- .1|l||.-|||.-.||.1||1|-.”1...| l...ll-lll.hl ﬂm.
& 5 .._u = il Lo
R T :_:ﬂ =
._m.uu_nu.u_. m._._u. o= B!
“a . Bkl

gt L...ﬁ. !
Bil ﬂ. gl Bl
i ﬂ b L

- H .- —_" L

l..l.-lll.lll.‘._m_ |

mfnf a?mvaﬁﬁs =

.......... o

o
1 ._-!I..li_..._ﬂ.l. ._.!n.._.u_IH_n_m_.._.u_
m.. *‘.ﬁﬁh_.
kL S ;s

.I:'.I..--. .
h- e o e l||-|.1|-.||1|1.1.l.:.u.-..

¥ i ..n_ il il =Y i it
T HHHH B

Bl agen

m.um.nu_uw_nm.uw.nr.;

16/28

https://www.youtube.com/watch?v=fg8QImlvB-k

I2A - Imagination-augmented agents

e The model learns to predict the next frame and the next reward based on the four last frames and the

chosen action.

input observations stacked context

il T il

il) il
- R’ -

=

ConvNet

predicted observation

P

input action one-hot P

O—(1 1~

 |tis a convolutional autoencoder, taking additionally an action a as input and predicting the next reward.

predicted reward

Figure 2: Environment model. The
input action 1s broadcast and concate-
nated to the observation. A convolu-
tional network transforms this into a
pixel-wise probability distribution for
the output 1mage, and a distribution
for the reward.

e |t can be pretrained using a random policy, and later fine-tuned during training.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

17 /28

I2A - Imagination-augmented agents

a) Imagination core b) Single imagination rollout c) Full I12A Architecture

Policy Net Env. Model

™,V |

7l % | EM

AN

mag. | > Ot+21
> A *

I

ﬁ

B R

éOt_|_1 :

[] [] .
- -1‘!%!!‘1‘|§!{1 ™
[]

e

Rollout encoder
| Rollout encoder

internal state

gRollout
‘Encoding

.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

1. imagine future 2 encode Model-based path / Model-free path

Aggregator \

i

18/28

I2A - Imagination-augmented agents

a) Imagination core

Policy Net Env. Model| ™
| % | EM
[T
II|I |I III."II
|I I.'III
‘h_':“f:-a-f"” M“Ji.
A O
Op.O¢ t+1
or

(|

internal state

fixed input

The imagination core is composed of the environment model
M (s, a) and a rollout policy 7.

As Sokoban is a POMDP (partially observable), the notation

uses observation o; instead of states s¢, but it does not really
matter here.

The rollout policy 7 is a simple and fast policy. It does not
have to be the trained policy .

It could even be a random policy, or a pretrained policy using
for example A3C directly.

In I2A, it is a distilled policy from the trained policy 7 (see
later).

Take home message: given the current observation o; and a

policy 7, we can predict the next observation 0,1 and the
next reward 74 1.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

I2A - Imagination-augmented agents

b) Single imagination rollout

1. imagine future :2. encode
“H"‘H
Oty2 | v
Imag. : R : Encoder |
- core Fiiol
‘HHHH E
Ot41) , — "
lmag' : e Encn::c]er
r .
ccle P
\j
A \
Rollout
O .
t Encoding

e The imagination rollout module uses the
imagination core to predict iteratively the next T

frames and rewards using the current frame o; and
the rollout policy:

Ot = Oty1 =2 Op32 =7 oo =7 Oty

e The 7 frames and rewards are passed backwards

to a convolutional LSTM (from ¢ + 7 to t) which
produces an embedding / encoding of the rollout.

e The output of the imagination rollout module is a

vector e; (the final state of the LSTM) representing

the whole rollout, including the (virtually) obtained
rewards.

e Note that because of the stochasticity of the rollout

policy 7, different rollouts can lead to different
encoding vectors.

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

20/28

I2A - Imagination-augmented agents

e For the current observation o;, we then generate one rollout

c) Full 12A Architecture T,V
= per possible action (5 in Sokoban):
Model-based path f_._,,__.,...x---’ M odel-free path
| = What would happen if | do action 1?
Aggregator
= What would happen if | do action 2?

.
\
.
.
o
..
.
.
., 4
\
", !
., /
- !
., !
“ !
'~ !
., !
. !

o o = etc.
c = e The resulting vectors are concatenated to the output of
% % model-free path (a convolutional neural network taking the
”"’\ =) current observation as input).
;’_ o Altogether, we have a huge NN with weights 6 (model,
t -

encoder, MF path) producing an input s; to the A3C module.

e We can then learn the policy 7 and value function V' based on this input to maximize the returns:

n—1

Vej(e) — <Es,gr\qoe,atrvﬂ'g [VH IOg 7"-9(3157 a't) (Z 7k Tttk+1 T ,yn VQO(St-l—n) o VSO(St))]
k=0

n—1

L(®) = Egmpparmms [V Teinsr + 9" Vi (se4n) — Vip(s))?]
k=0

21/28

I2A - Imagination-augmented agents

e The complete architecture may seem complex, but everything is differentiable so we can apply
backpropagation and train the network end-to-end using multiple workers.

e Itisthe A3C algorithm (MF), but augmented by MB rollouts, i.e. with explicit information about the future.

a) Imagination core

b) Single imagination rollout

c) Full I2A Architecture

i

m,V

E 4 A

\
‘*HMOdeI-free path

\

: - 1. imagine future :2.encode
Policy Net Env. Model 9 K‘\\ Model-based path o
. L BN] L N B] \\
A at h
T 4% | EM H AN . l N Aggregator
™,
Imag. L 9t+2 > \“\ A
core [, S i Encoaer \\\ T
— >3 "t+2
s : ‘\ E} E
D 5 Ot+1 S 8 8
tor t A Imag‘ — Ot_l_]- — E E
Frit e +@£ o ®
core Tt+4+1 i = =
} 5| |3
| — a4 o
internal state A Y [~
o Rollout —
fixed input ‘ Encoding

Weber et al. (2017) Imagination-Augmented Agents for Deep Reinforcement Learning. arXiv:1707.06203.

)
~~

H
H
H
H
.
-
L]
H
H
H
H
L] .
-
H
H
H
H
.
-
H
H
H
H
.
-
L]
H
H
H
H
_— .
L]
H
H
o
_-"-'-F

22 /28

Policy distillation

e The rollout policy 7 is trained using policy distillation of the trained policy 7. The small rollout policy
network with weights @ tries to copy the outputs 7 (s, a) of the bigger policy network (A3C).

e Thisis a supervised learning task: just minimize the KL divergence between the two policies:

E(é) — ﬂS,a [DKL (7%(87 CL) | ‘7-‘-(87 a))]

e Asthe network is smaller, it won't be as good as 7, but its learning objective is easier.

n(s,a)

Teacher

network - ey _

(big and frozen)

Minimize the

KL-divergence

p(s) -, [DK_ (G5,) || (s, @)

Student #(s, a)

network

(small and

learning)

Rusu et al. (2016) Policy Distillation. arXiv:1511.06295.

23 /28

Distral : distill and transfer learning

e FYI: distillation can be used to ensure generalization over different environments.

e Each learning algorithms learns its own task, but tries not to diverge too much from a shared policy,
which turns out to be good at all tasks.

distill regularise

aistill
regularise

Teh et al. (2017) Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175

24 /28

I2A - Imagination-augmented agents

e Unsurprisingly, 12A performs better than A3C on Sokoban.
e The deeper the rollout, the better.

Sokoban performance Unroll depth analysis

1.0 1.0
T o
Q] . .
=038 > 0.8 = i
o o
U LA
L n
v 0.6 v 0.6
> >
A @
b e
C 0.4 o 0.4
- — 127 S unroll depth
e - standard(large) = — 15
E 0.2 —— standard E 0.2 —_— 5
= no reward 124 = Ill-" _ 3

copy-model 124 —_—]
0.0 === 0.0
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e9 environment steps 1e9

Figure 4: Sokoban learning curves. Left: training curves of I12A and baselines. Note that I2A use
additional environment observations to pretrain the environment model, see main text for discussion.
Right: 12A training curves for various values of imagination depth.

Teh et al. (2017) Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 o5 / 28

I2A - Imagination-augmented agents

e The model does not even have to be perfect: the MF path can compensate for imperfections.

Sokoban good vs. bad models

Rollout steps 1.0
L & @ T & mao = — |2A: good model
TS T T o Ie) 0.8 —— [2A: poor model
: , v —— MC: good mode|
: = ?m.l 0.6 —— MC: poor mode|
. . v 0.
o
....- s
-
=
© 0.2
1]
—
0.0 o
0.0 0.2 0.4 0.6 0.8 1.0
environment steps 1e9

Figure 5: Experiments with a noisy environment model. Left: each row shows an example 5-step
rollout after conditioning on an environment observation. Errors accumulate and lead to various
artefacts, including missing or duplicate sprites. Right: comparison of Monte-Carlo (MC) search and
[2A when using either the accurate or the noisy model for rollouts.

Teh et al. (2017) Distral: Robust Multitask Reinforcement Learning. arXiv:1707.04175 26 / 28

|2A - Sokoban

0 Imagination-augmented agent plays Sokoban

i %%%%

-+ & £ & £

27 /28

https://www.youtube.com/watch?v=llwAwE7ItdM

References

Dayan, P, and Niv, Y. (2008). Reinforcement learning: The Good, The Bad and The Ugly. Current Opinion in
Neurobiology 18, 185-196. doi:10.1016/j.conb.2008.08.003.

Kurutach, T., Clavera, |., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-Ensemble Trust-Region Policy Optimization.
http://arxiv.org/abs/1802.10592.

Rusu, A. A,, Colmenarejo, S. G., Gulcehre, C., Desjardins, G., Kirkpatrick, J., Pascanu, R,, et al. (2016). Policy
Distillation. http://arxiv.org/abs/1511.06295.

Sutton, R. S. (1990). Integrated Architectures for Learning, Planning, and Reacting Based on Approximating Dynamic
Programming. Machine Learning Proceedings 1990, 216—224. doi:10.1016/B978-1-55860-141-3.50030-4.

Teh, Y. W,, Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., et al. (2017). Distral: Robust Multitask
Reinforcement Learning. http://arxiv.org/abs/1707.04175.

Weber, T.,, Racaniere, S., Reichert, D. P, Buesing, L., Guez, A., Rezende, D. J., et al. (2017). Imagination-Augmented
Agents for Deep Reinforcement Learning. http://arxiv.org/abs/1707.06203.

28 /28

https://doi.org/10.1016/j.conb.2008.08.003
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1511.06295
https://doi.org/10.1016/B978-1-55860-141-3.50030-4
http://arxiv.org/abs/1707.04175
http://arxiv.org/abs/1707.06203

