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Model-based RL algorithms with learned models

Model-based augmented model-free (MBMF)

e Dyna-Q: the model generates imaginary

transitions/rollouts that are used to train a MF
algorithm.

value/policy

acting

planning direct
RL

experience

5

model
learning

model

A

Source: Sutton and Barto (1998)

e NAF: Normalized advantage functions (Gu et al.,
2016)

e |2A: Imagination-augmented agents (Weber et al.,
2017)

« MBVE: model-based value estimation (Feinberg et
al., 2018)

e MPC: the learned model is used to plan actions

Model-based planning

that maximize the RL objective.

R e DL
: t=0
Dynamics Model 1 Control and Planning

ter o]

Source: https://arxiv.org/abs/1901.03737

TDM: Temporal difference models (Pong et al.,
2018)

World models (Ha and Schmidhuber, 2018)
PlaNet (Hafner et al., 2019)
Dreamer (Hafner et al., 2020)
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1 - Model predictive control (MPC)



Learning from imaginary rollouts

e With a good transition model, you can generate rollouts, i.e. imaginary

Generate
imaginary policy trajectories / episodes using the model.
> Je:f:--._;m""“t'_sf_ . e Given an initial state sy and a policy 7, you can unroll the future using the
r’\ )
. Improve policy ) _
= ocoiavan | T=80 7700 > S1 01— > Sy ... ST
-
e e You can then feed these trajectories to any optimizer (classical or model-
J y

free RL algorithm) that will learn to maximize the returns.

Training in imagination

1. Collect transitions (s, a, r, s") using a (random/expert) policy b and create a dataset D = {(sy, ag, T S}, }x-

2. Train the model M (s,a) = (s',7) on D using supervised learning.

3. Optimize the policy 7 on rollouts 7 generated by the model.

J(0) = E-[R(7)]

e The only sample complexity is the one needed to train the model: the rest is emulated.

Kurutach et al. (2018) Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592. 4/57



Imperfect model

e For long horizons, the slightest imperfection in the model can accumulate (drift) and lead to completely
wrong trajectories.

fis not modeled
4 here before

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

 The emulated trajectory will have a biased return, the algorithm does not converge to the optimal policy.

e |f you have a perfect model, you should not be using RL anyway, as classical control methods would be
much faster (but see AlphaGo).
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MPC - Model Predictive Control

e The solution is to replan at each time step and execute only the first planned action in the real
environment.

&
Replan at every time step
to take corrective action

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

e Replanning avoids accumulating errors over long horizons.
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MPC - Model Predictive Control

e Collect transitions (s, a, T, s') using a (random/expert) policy b and create an initial dataset D =
{(sk,ar,T s}t

e while not converged:
= (Re)Train the dynamics model M (s,a) = (s',r) on D using supervised learning.
= foreach step t in the trajectory:

o Plan a trajectory from the current state s; using the model M, returning a sequence of planned
actions:

Qt, At4+15--.,0T

o Take the first action a;, observe the next state s;. 1.

o Append the transition (s¢, a;, S¢11) to the dataset.

7157



MPC - Example with a neural model

DATA POINTS
(si, ai, Si+1)

AGENT

NEURAL NETWORK
DATA —p  DYNAMICS MODEL

fo

(GOAL)
REWARD
FUNCTION

UPDATED
STATE INFO

MPC
CONTROLLER

SELECTED
ACTION

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.
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MPC - Example with a neural model

e The planner can actually be anything, it does not have to be a RL algorithm. Examples:

e iLQR (Iterative Linear Quadratic Regulator), a non-linear optimization method.

https://jonathan-hui.medium.com/rl-Igr-ilgr-linear-quadratic-regulator-a5de5104c¢750.

 Random-sampling shooting:

1. in the current state, select a set of possible
actions.

2. generate rollouts with these actions and
compute their returns using the model.

3. select the action whose rollout has the highest
return.

e Stochastic sampling methods such as the cross-
entropy method CEM, where the policy is sampled
using Bayesian methods (Szita and Lorincz, 2006),

e Genetic algorithms such as Evolutionary Search
Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/ (ES) (Sallmans et al-» 201 7)

Nagabandi et al. (2017) Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.
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https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

MPC - Example with a neural model

e The main advantage of MPC is that you can change the reward function (the goal) on the fly: what you
learn is the model, but planning is just an optimization procedure.

e You can set intermediary goals to the agent very flexibly: no need for a well-defined reward function.

e Model imperfection is not a problem as you replan all the time. The model can adapt to changes in the
environment (slippery terrain, simulation to real-world).

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Nagabandi et al. (2017) Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596. 10/57
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2 - World models

World Models

https://worldmodels.github.io/

David Ha! Jiirgen Schmidhuber *°

Ha and Schmidhuber (2018) World Models. NeurlPS. doi:10.5281/zenodo.1207631.
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World models

At each time step, our agent
receives an observation from
the environment.

World Model

The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict
future states.

A small Controller (C) uses the
representations from both
V and M to select good actions.

The agent performs actions that
go back and affect the environment.

https://worldmodels.github.io/
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e The core idea of world models is to explicitly separate the world model (what will happen next) from the
controller (how to act).

e Deep RL NN are usually small, as rewards do not contain enough information to train huge networks.
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World models

e A huge world model can be efficiently trained by supervised or unsupervised methods.

e A small controller should not need too many trials if its input representations are good.

At each time step, our agent
receives an observation from
the environment.

World Model

The Vision Model (V) encodes the
high-dimensional observation into
a low-dimensional latent vector.

The Memory RNN (M) integrates
the historical codes to create a
representation that can predict

future states.

A small Controller (C) uses the
representations from both
V and M to select good actions.

The agent performs actions that
go back and affect the environment.

https://worldmodels.github.io/
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The Vizdoom Take Cover environment

The media could not be loaded, either because the server or network failed or because the format is not supported.

http://vizdoom.cs.put.edu.pl/, https://worldmodels.github.io/
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World models

e The vision module V is trained as a variational autoencoder (VAE) on single frames of the game.

e The latent vector z; contains a compressed representation of the frame 0.

Original Observed Frame

I

Encoder

(2

https://worldmodels.github.io/

/

/

Decoder

g

Reconstructed Frame



https://worldmodels.github.io/

World models

Screenshot Image Reconstruction

i
|

1
i
g
g
i

Load Random Screenshot ‘ Randomize Z ‘

e Go to https://worldmodels.github.io/ for an interactive demo.
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World models

e The sequence of latent representations zg, . . . Z; in a game is fed to a LSTM layer together with the
actions a; to compress what happens over time.

e A Mixture Density Network (MDN) is used to predict the distribution of the next latent representations
P(zt+1|at, ht, .« o Zt)-

e The RNN-MDN architecture has been used successfully in the past for sequence generation problems
such as generating handwriting and sketches (Sketch-RNN).

Pt
EIACTATY

M
A

t t+1 +2

https://worldmodels.github.io/

Ha and Eck (2017) A Neural Representation of Sketch Drawings. arXiv:1704.03477
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Sketch-RNN

The media could not be loaded, either because the server or network failed or because the format is not supported.

https://magenta.tensorflow.org/sketch-rnn-demo

Ha and Eck (2017) A Neural Representation of Sketch Drawings. arXiv:1704.03477


https://magenta.tensorflow.org/sketch-rnn-demo

World models

e The last ste.p is the controller. It tak.es a latent { environment ]< .
representation z; and the current hidden state of { action
the LSTM h; as inputs and selects an action
linearly:

a; = tanh(W |z, h;| + b)
i 5 /
i i : >

e ARL actor cannot get simpler as that... observation ; v . -

world model = | MDN-RNN (M) >
N Y, h
S t """"""""" "~ ] action |

https://worldmodels.github.io/

e The controller is not even trained with RL: it uses a genetic algorithm, the Covariance-Matrix Adaptation
Evolution Strategy (CMA-ES), to find the output weights that maximize the returns.

e The world model is trained by classical supervised learning using a random agent before learning.

19 /57


https://worldmodels.github.io/

World models : car racing

The media could not be loaded, either because the server or network failed or because the format is not supported.

https://worldmodels.github.io/
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World models : car racing

e Below is the input of the VAE and the reconstruction.

e The reconstruction does not have to be perfect as long as the latent space is informative.

The media could not be loaded, either because the server or network failed or because the format is not supported.

https://worldmodels.github.io/
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World models : car racing

e Controller seeing only z;. e Controller seeing both z; and h;.

The media could not be loaded, either because the server or network failed The media could not be loaded, either because the server or network failed

or because the format is not supported. or because the format is not supported.

X X

e Having access to a full rollout of the future leads to more stable driving.

https://worldmodels.github.io/
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World models
Algorithm:

1. Collect 10,000 rollouts from a random policy.
2. Train VAE (V) to encode each frame into a latent vector z € R3?.

3. Train MDN-RNN (M) to model P(z¢+1|at, h, ... 2z¢).

4. Evolve Controller (C) to maximize the expected cumulative reward of a rollout.

Parameters for car racing:

Model Parameter Count
VAE 4,348,547
MDN-RNN 422,368
Controller 867

23 /57



World models : car racing

Method
DQN [53]
A3C (continuous) [52]

A3C (discrete) [57]

ceobillionaire’s algorithm (unpublished) 47

V model only, z input
V model only, z input with a hidden layer

Full World Model z and h

https://worldmodels.github.io/

Average Score over 100 Random Tracks

343 = 18
091 = 45
652 = 10
838 — 11
632 = 251
/88 £ 141
906 + 21
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World models

o The world model V+M is learned offline with a
action random agent, using unsupervised learning.

e The controller C has few weights (1000) and can
be trained by evolutionary algorithms, not even RL.

e The network can even learn by playing entirely in its
own imagination as the world model can be applied

5 7 on itself and predict all future frames.
observation . v - ” - e |t just need to additionally predict the reward.
world model MDN-RNN (M) > e The learned policy can then be transferred to the
L ) real environment.
e I __________________ o | action

https://worldmodels.github.io/
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3 - Deep Planning Network - PlaNet

Learning Latent Dynamics for Planning from Pixels

Danijar Hafner ' > Timothy Lillicrap® Ian Fischer* Ruben Villegas '°
David Ha' Honglak Lee! James Davidson '

Hafner et al. (2019) Learning Latent Dynamics for Planning from Pixels. arXiv:181104551
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PlaNet

e PlaNet extends the idea of World models by learning the model together with the policy (end-to-end).

e It learns a latent dynamics model that takes the past observations o; into account (needed for POMDPs):

Start—l—laat — f(otaa'ta St—l)

and plans in the latent space using multiple rollouts:

n|

a; = arg max LI R(st,a, S¢11,--.)]

l
l
l
l

ﬂ
—~
-
—~

O1 O1 O2 O2 O3 O3 04 04

Source: https://planetrl.github.io/
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PlaNet: latent dynamics model

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html



https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent dynamics model

e The latent dynamics model is a sequential variational autoencoder learning concurrently:

1. An encoder from the observation o; to the latent
space S;.

q(st|ot)

2. A decoder from the latent space to the
reconstructed observation 0.

P(at ‘St)

3. A transition model to predict the next latent
representation given an action.

p(st—l—l ‘Sta a’t)

4. A reward model predicting the immediate reward.

p(T¢|st)

“:. I
o, o, 0,

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html
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PlaNet: latent dynamics model

e The loss function to train this recurrent state-space model (RSSM) simply adds up the three learning
objectives (VAE + world model + reward).

E(e) — Ereconstruction (9) T Epl'ediCtiOH (9) T Lreward (0)

o Training sequences (01, a1, 02, ...,0r) can be generated off-policy (e.g. from demonstrations) or on-
policy.
o Backpropagation through time (BPTT) can be applied on complete (or partial) sequences.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html
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PlaNet: latent space planning

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html


https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent space planning

From a single observation o; encoded into sy,
10000 rollouts are generated using random
sampling.

A belief over action sequences is updated using the

cross-entropy method (CEM) in order to restrict the
search.

The first action of the sequence with the highest
estimated return (reward model) is executed.

At the next time step, planning starts from scratch:
Model Predictive Control.

There is no actor in PlaNet, only a transition model
used for planning.

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-

planning.html

e
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PlaNet results

e Planet learns continuous image-based control problems in 2000 episodes, where D4PG needs 50 times
more.

i Learning Latent Dynamics for Planning from Pixels

L L

=

505 Episodes



https://www.youtube.com/watch?v=tZk1eof_VNA

PlaNet results

e The latent dynamics model can learn 6 control tasks at the same time.

e As there is no actor, but only a planner, the same network can control all agents!

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html
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4 - Dreamer

Published as a conference paper at ICLR 2020

DREAM TO CONTROL: LEARNING BEHAVIORS
BY LATENT IMAGINATION

Danijar Hafner * Timothy Lillicrap Jimmy Ba Mohammad Norouzi
University of Toronto  DeepMind University of Toronto  Google Brain
Google Brain

Hafner et al. (2020) Dream to Control: Learning Behaviors by Latent Imagination. arXiv:191201603
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Dreamer

e Dreamer extends the idea of PlaNet by additionally training an actor instead of using a MPC planner.
e The latent dynamics model is the same RSSM architecture.

e Training a “model-free” actor on imaginary rollouts instead of MPC planning should reduce the

computational time.
s ﬂ
- - WA

World Model Learning Value and Environment
Learning Actor Networks Interaction

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html
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Dreamer: latent dynamics model

e The latent dynamics model is the same as in PlaNet, learning from past experiences.

E]] Ell
» L
= - -

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html
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Dreamer: behavior module

e The behavior module learns to predict the value of a state V,,(s) and the policy 7y (s) (actor-critic).

e Itis trained in imagination in the latent space using the reward model for the immediate rewards (to
compute returns) and the transition model for the next states.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

e The current observation oy is encoded into a state s;, the actor selects an action a;, the transition model
predicts s;. 1, the reward model predicts r;. 1, the critic predicts Vso(st).

e At the end of the sequence, we apply backpropagation-through-time to train the actor and the critic.
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Dreamer: behavior module

e The critic V,,(s;) is trained on the imaginary sequence (S, G¢, T¢+1, St4+1, - - - , ST ) to minimize the
prediction error with the A-return:

T—t—1
R} =(1-X) » X"'R+AXT"'R,

n=1
e The actor 7'('9(8,5, at) is trained on the sequence to maximize the sum of the value of the future states:

T

j(@) — <1ZSt,CLtN?Te [Z VSO(St’)]

t'=t

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html
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Dreamer

 The main advantage of training an actor is that we need only one rollout when training it: backpropagation
maximizes the expected returns.

e When acting, we just need to encode the history of the episode in the latent space, and the actor
becomes model-free!

a, a ' a, v, a, Vv, a, a
o

i g N AT ATA 4 - ;‘

A A A
llllll l A A A
pEEEEE B J

(a) Learn dynamics from experience (b) Learn behavior in imagination  (c¢) Act in the environment

Hafner et al. (2020) Dream to Control: Learning Behaviors by Latent Imagination. arXiv:191201603 40 /57



Dreamer results

e Dreamer beats model-free and model-based methods on 20 continuous control tasks.

..

Sparse Cartpole Acrobot Swingup  Hopper Hop Walker Run

Quadruped Run

B Dreamer (5e6 steps) BEE PlaNet (5e6 steps) EEE D4PG (1e8 steps) WM A3C (1e8 steps, proprio)
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BE=ZSC052S 25853 S5 e 52 2E SR 2B 2D PF 22 52 25 25 B2 58
=522 Vg Ea s ET 272 : £.E REESEE.E 3T EoE 2 55
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Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html
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Dreamer results

e It also learns Atari and Deepmind lab video games, sometimes on par with Rainbow or IMPALA!

Boxing Freeway Frostbite Collect Objects Watermaze
Mspacman Namethisgame Pong Tutankham
0004 o004 01
=
2 3000 - 7500 -
&
é 2000 - 5000 -
21000 - 2500
{] I I I T
1 2 3 4
le7
Up N Down Zaxxon
10.0 -
=
2
L
oY
E
2
&8
2 4 6 0.5 1.0 1.5 0.250.500.751.001.251.50 1 2 3 4 5
Environment Steps 1€7 Environment Steps 1e7 Environment Steps 1e7 Environment Steps 1e7
== Dreamer == SimPLe (le5 steps) == DOQN (2e8 steps) == Rainbow (2e8 steps) == IMPALA (lel0Osteps) - Random

Source: https://dreamrl.github.io/
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DayDreamer

e Arecent extension of Dreamer, DayDreamer, allows physical robots to learn complex tasks in a few hours.

https://danijar.com/daydreamer
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(a) A1 Quadruped Walking (b) URS Visual Pick Place  (c) XArm Visual Pick Place (d) Sphero Navigation

Figure 1: To study the applicability of Dreamer for sample-efficient robot learning, we apply the
algorithm to learn robot locomotion, manipulation, and navigation tasks from scratch in the real
world on 4 robots, without simulators. The tasks evaluate a diverse range of challenges, including
continuous and discrete actions, dense and sparse rewards, proprioceptive and camera inputs, as well
as sensor fusion of multiple input modalities. Learning successfully using the same hyperparameters
across all experiments, Dreamer establishes a strong baseline for real world robot learning.

Wu et al. (2022) DayDreamer: World Models for Physical Robot Learning (arXiv:2206.14176).
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DayDreamer

53' Learning to Walk in the Real World in 1 Hour (No Simulator)
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https://www.youtube.com/watch?v=xAXvfVTgqr0

Dreamer v3

e The third iteration of Dreamer established SoTA performance on more than 150 benchmarks.

e |tis the first algorithm to collect diamonds in Minecraft from scratch without human data or curricula.

— -
S0 110 @

(d) DMLa (e) Minecraft

(a) Control Suite
a Atari ProcGen DMLab Minecraft
57 tasks, 200M steps 16 tasks, 50M steps 30 tasks, 100M steps 1 task, 100M steps b . .
900- . 70- . 70- . 9- . Minecraft Diamond
600+ c% o g 501 ?, g 501 4+ < SEJ 6 % < GEJ 12- | O
= © 30+ = © 30 NE 28 S S 2 B
30012 § 5[ 2 5 2 E NI RsZE
o x = [& 101 & a [& 101 & = 22 [a o =[a g-
0 0 c
2
Ataril00k Proprio Control Visual Control BSuite &
26 tasks, 400K steps 18 tasks, 500K steps 20 tasks, 1M steps 23 tasks 4- s
1301 - 900- - 900- - 70- Z e = T
. 9 ] U i Q 50- Q - Mean
90 e 6001 o [z 6001 o O JS ol Em . .
5010 = un B 30010 & £ K 300{ 0 £ O K 3010 2 o B 100K 1M 10M 100M
CL;E a < = k= o D o - _D_OO
1018 F %= [a On_oo On_uD 101 O m [& Env steps
Tuned experts B Unified configuration

Hafner et al. (2024) Mastering Diverse Domains through World Models. doi:10.48550/arXiv.2301.04104. https://danijar.com/project/dreamerv3/ 45 /57
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5 - Temporal difference models - TDM (skipped)

TEMPORAL DIFFERENCE MODELS:
MODEL-FREE DEEP RLL FOR MODEL-BASED CONTROL

Vitchyr Pong* Shixiang Gu”

University of California, Berkeley University of Cambridge

vitchyr@berkeley.edu Max Planck Institute
Google Brain

sg/l7@cam.ac.uk

Murtaza Dalal Sergey Levine
University of California, Berkeley University of California, Berkeley
mdalal@berkeley.edu svlievineleecs.berkeley.edu

Pong et al. (2018) Temporal Difference Models: Model-Free Deep RL for Model-Based Control. arXiv:1802.09081
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TDM

e One problem with model-based planning is the discretization time step (difference betweent and ¢t + 1).

e |tis determined by the action rate: how often a different action a; has to be taken.

e Inrobotics, it could be below the millisecond, leading to very long trajectories in terms of steps.

e |f you want to go from Berkeley to the Golden State
do bridge with your bike, planning over leg movements

will be very expensive (long horizon).

e A solution is multiple steps ahead planning.
Instead of learning a one-step model:

St+1 = fH(Stva’t)

one learns to predict the state achieved in " steps
using the current policy:

St+T = fe(stvataﬂ-)

Source: https://bairblog.github.io/2018/04/26/tdm/

e Planning and acting occur at different time scales.

47 157


https://bairblog.github.io/2018/04/26/tdm/

TDM

e A problem with RL in general is how to define the reward function.

e |f you goal is to travel from Berkeley to the Golden
éo State bridge, which reward function should you
use?

= +1 at the bridge, 0 otherwise (sparse).
= +100 at the bridge, -1 otherwise (sparse).

= minus the distance to the bridge (dense).

o Goal-conditioned RL defines the reward function
using the distance between the achieved state s;.1

and a goal state sy:

r(staatastJrl) — —|\3t+1 — ng

Source: https://bairblog.github.io/2018/04/26/tdm/

e An action is good if it brings the agent closer to its goal.

e The Euclidean distance works well for the biking example (e.g. using a GPS), but the metric can be
adapted to the task.
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Goal-conditioned RL

One advantage is that you can learn multiple “tasks” at the same time with a single policy, not the only
one hard-coded in the reward function.

Another advantage is that it makes a better use of exploration by learning from mistakes: hindsight
experience replay (HER, Andrychowicz et al., 2017).

If your goal is to reach s, but the agent generates a trajectory

landing in s/, you can learn that this trajectory is good way to >
reach s,/! v

In football, if you try to score a goal but end up doing a passto ()
a teammate, you can learn that this was a bad shot and a

VIRTUAL GOAL
ACHIEVED

good pass.

HER is a model-based method: you implicitly learn a model of

the environment by knowing how to reach any position_ Source: https://openai.com/blog/ingredients-for-robotics-
research/

Exploration never fails: you always learn to do something, even if this was not your original goal.

The principle of HER can be used in all model-free methods: DQN, DDPG, etc.

Andrychowicz et al. (2017) Hindsight Experience Replay. arXiv:1707.01495
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TDM

e Using the goal-conditioned reward function 7(s;, as, S¢+1) = —||St+1 — S

,how can we learn?

s« * TDMintroduces goal-conditioned Q-value with a horizon 1":
Q(S, a,Sg, T)-

e The Q-value of an action should denote how close we will be from
the goal s, in 1" steps.

e If we can estimate these Q-values, we can use a planning algorithm
such as MPC to find the action that will bring us closer to the goal
easily:

X

a = arg Inda’x T(St—|-T7 at+T, St—I—T—I—l)
t

e This corresponds to planning 1" steps ahead; which action should | do now in order to be close to the
goal in I’ steps?

&

oo

Source: https://bairblog.github.io/2018/04/26/tdm/
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TDM

o If the horizon 1" is well chosen, we only need to plan over a small number of intermediary positions, not
over each possible action.

e TDM is model-free on each subgoal, but model-based on the whole trajectory.

Source: https://bairblog.github.io/2018/04/26/tdm/
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TDM

« How can we learn the goal-conditioned Q-values Q)( s, a, Sgs T') with a model?

e TDM introduces a recursive relationship for the Q-values:

o |r(s,a,s)]if T =0

Q(S7 a’7 897 T)

F

s [max, Q(s',a,s,,T —1)] otherwise.

= Ity [r(Sy a, 3,) 1(T — O) + max Q(Sla a, 397T _ 1) 1(T % O)]

a

o If we planover T’ = 0 steps, i.e. immediately after the action (s, a), the Q-value is the remaining distance
to the goal from the next state s’.

 Otherwise, it is the Q-value of the greedy action in the next state s’ with an horizon T" — 1 (one step
shorter).

e This allows to learn the Q-values from single transitions (st, a, st+1):

= with T' = 0, the target is the remaining distance to the goal.

= withIT" > 0, the target is the Q-value of the next action at a shorter horizon.
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TDM

e The critic learns to minimize the prediction error off-policy:

‘C(e) — 4:3taat73t+1 ED[
(r(s¢, a,8¢01) 1(T = 0) + max Q(St+1,a,84, T — 1) L(T # 0) — Q(s¢, at, sg,T))2

e This is a model-free Q-learning-like update rule, that can be learned by any off-policy value-based
algorithm (DQN, DDPG) and an experience replay memory.

e The cool trick is that, with a single transition (s¢, a¢, St+1), you can train the critic with:

= different horizons 1, e.g. between 0 and 1 ax.

= different goals s,. You can sample any achievable state as a goal, including the "true” sy 1
(hindsight).

e You do not only learn to reach sg4, but any state! TDM learns a lot of information from a single transition,
so it has a very good sample complexity.
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Summary of TDM

e TDM learns to break long trajectories into finite horizons (model-based planning) by learning model-free
(Q-learning updates).

e The critic learns how good an action (s, a) is order to reach a state s, in I’ steps.

Q(s,a,s,,T) =Eg[r(s,a,s)1(T =0) + max Q(s',a,s,, T —1)1(T # 0)]
e The actor uses MPC planning to iteratively select actions that bring us closer to the goal in I’ steps:
a; = argmax Q(st,a, sq,T)
a

e The argmax can be estimated via sampling.

e TDM is a model-based method in disguise: it does predict the next state directly, but how much closer it
will be to the goal via Q-learning.
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TDM results

e For problems where the model is easy to learn, the performance of TDM is on par with model-based
methods (MPC).

e Model-free methods have a much higher sample
complexity.

e TDM learns much more from single transitions.
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Source: https://bairblog.github.io/2018/04/26/tdm/
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TDM results
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e For problems where the model is complex to learn, the performance of TDM is on par with model-free
methods (DDPG).

imprecision on long horizons.
e TDM plans over shorter horizons 1'.
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