
Deep Reinforcement Learning
Planning with learned world models

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
57

Model-based RL algorithms with learned models
Model-based augmented model-free (MBMF)

Dyna-Q: the model generates imaginary
transitions/rollouts that are used to train a MF
algorithm.

NAF: Normalized advantage functions (
)

I2A: Imagination-augmented agents (
)

MBVE: model-based value estimation (
)

Model-based planning

MPC: the learned model is used to plan actions
that maximize the RL objective.

TDM: Temporal difference models (
)

World models ()

PlaNet ()

Dreamer ()

Source: Sutton and Barto ()1998

Gu et al.,
2016

Weber et al.,
2017

Feinberg et
al., 2018

Source: https://arxiv.org/abs/1901.03737

Pong et al.,
2018

Ha and Schmidhuber, 2018

Hafner et al., 2019

Hafner et al., 2020

2
/
57

https://arxiv.org/abs/1901.03737

1 - Model predictive control (MPC)

3
/
57

Learning from imaginary rollouts
With a good transition model, you can generate rollouts, i.e. imaginary
trajectories / episodes using the model.

Given an initial state and a policy , you can unroll the future using the
model .

You can then feed these trajectories to any optimizer (classical or model-
free RL algorithm) that will learn to maximize the returns.

1. Collect transitions using a (random/expert) policy and create a dataset .

2. Train the model on using supervised learning.

3. Optimize the policy on rollouts generated by the model.

The only sample complexity is the one needed to train the model: the rest is emulated.

s ​0 π

s , r =′ M(s, a)

τ = s ​ ​0 π
a ​ ​0

M
s ​ ​1 π

a ​ ​1 π
s ​ ​2 … ​

M
s ​T

Training in imagination

(s, a, r, s)′ b D = {(s ​, a ​, r ​s ​} ​k k , k
′

k

M(s, a) = (s , r)′ D

π τ

J (θ) = E ​[R(τ)]τ

Kurutach et al. () Model-Ensemble Trust-Region Policy Optimization. arXiv:1802.10592.2018 4
/
57

Imperfect model
For long horizons, the slightest imperfection in the model can accumulate (drift) and lead to completely
wrong trajectories.

The emulated trajectory will have a biased return, the algorithm does not converge to the optimal policy.

If you have a perfect model, you should not be using RL anyway, as classical control methods would be
much faster (but see AlphaGo).

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

5
/
57

https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

MPC - Model Predictive Control
The solution is to replan at each time step and execute only the first planned action in the real
environment.

Replanning avoids accumulating errors over long horizons.

Source: https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

6
/
57

https://medium.com/@jonathan_hui/rl-model-based-reinforcement-learning-3c2b6f0aa323

MPC - Model Predictive Control
Collect transitions using a (random/expert) policy and create an initial dataset

.

while not converged:

(Re)Train the dynamics model on using supervised learning.

foreach step in the trajectory:

Plan a trajectory from the current state using the model , returning a sequence of planned
actions:

Take the first action , observe the next state .

Append the transition to the dataset.

(s, a, r, s)′ b D =
{(s ​, a ​, r ​s ​} ​k k , k

′
k

M(s, a) = (s , r)′ D

t

s ​t M

a ​, a ​, … , a ​t t+1 T

a ​t s ​t+1

(s ​, a ​, s ​)t t t+1

7
/
57

MPC - Example with a neural model

Nagabandi et al. (2017). Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596. 8
/
57

MPC - Example with a neural model
The planner can actually be anything, it does not have to be a RL algorithm. Examples:

iLQR (Iterative Linear Quadratic Regulator), a non-linear optimization method.

.

Random-sampling shooting:

1. in the current state, select a set of possible
actions.

2. generate rollouts with these actions and
compute their returns using the model.

3. select the action whose rollout has the highest
return.

Stochastic sampling methods such as the cross-
entropy method CEM, where the policy is sampled
using Bayesian methods (),

Genetic algorithms such as Evolutionary Search
(ES) ()…

https://jonathan-hui.medium.com/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Szita and Lörincz, 2006

Salimans et al., 2017

Nagabandi et al. () Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.2017 9
/
57

https://jonathan-hui.medium.com/rl-lqr-ilqr-linear-quadratic-regulator-a5de5104c750
https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

MPC - Example with a neural model
The main advantage of MPC is that you can change the reward function (the goal) on the fly: what you
learn is the model, but planning is just an optimization procedure.

You can set intermediary goals to the agent very flexibly: no need for a well-defined reward function.

Model imperfection is not a problem as you replan all the time. The model can adapt to changes in the
environment (slippery terrain, simulation to real-world).

Source: https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

Nagabandi et al. () Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning. arXiv:1708.02596.2017 10
/
57

https://bair.berkeley.edu/blog/2017/11/30/model-based-rl/

2 - World models

https://worldmodels.github.io/

Ha and Schmidhuber () World Models. NeurIPS. doi:10.5281/zenodo.1207631.2018 11
/
57

https://worldmodels.github.io/

World models
The core idea of world models is to explicitly separate the world model (what will happen next) from the
controller (how to act).

Deep RL NN are usually small, as rewards do not contain enough information to train huge networks.

https://worldmodels.github.io/

12
/
57

https://worldmodels.github.io/

World models
A huge world model can be efficiently trained by supervised or unsupervised methods.

A small controller should not need too many trials if its input representations are good.

https://worldmodels.github.io/

13
/
57

https://worldmodels.github.io/

The Vizdoom Take Cover environment

XX

The media could not be loaded, either because the server or network failed or because the format is not supported.

, http://vizdoom.cs.put.edu.pl/ https://worldmodels.github.io/ 14
/
57

http://vizdoom.cs.put.edu.pl/
https://worldmodels.github.io/

World models
The vision module is trained as a variational autoencoder (VAE) on single frames of the game.

The latent vector contains a compressed representation of the frame .

V

z ​t o ​t

Encoder z Decoder

Original Observed Frame Reconstructed Frame

https://worldmodels.github.io/

15
/
57

https://worldmodels.github.io/

World models

Go to for an interactive demo.https://worldmodels.github.io/

16
/
57

https://worldmodels.github.io/

World models
The sequence of latent representations in a game is fed to a LSTM layer together with the
actions to compress what happens over time.

A Mixture Density Network (MDN) is used to predict the distribution of the next latent representations
.

The RNN-MDN architecture has been used successfully in the past for sequence generation problems
such as generating handwriting and sketches (Sketch-RNN).

z ​, … z0 t

a ​t

P (z ​∣a ​,h , … z ​)t+1 t t t

https://worldmodels.github.io/

Ha and Eck () A Neural Representation of Sketch Drawings. arXiv:1704.034772017 17
/
57

https://worldmodels.github.io/

Sketch-RNN

XX

https://magenta.tensorflow.org/sketch-rnn-demo

The media could not be loaded, either because the server or network failed or because the format is not supported.

Ha and Eck () A Neural Representation of Sketch Drawings. arXiv:1704.034772017 18
/
57

https://magenta.tensorflow.org/sketch-rnn-demo

World models
The last step is the controller. It takes a latent
representation and the current hidden state of
the LSTM as inputs and selects an action
linearly:

A RL actor cannot get simpler as that…

The controller is not even trained with RL: it uses a genetic algorithm, the Covariance-Matrix Adaptation
Evolution Strategy (CMA-ES), to find the output weights that maximize the returns.

The world model is trained by classical supervised learning using a random agent before learning.

z ​t

h ​t

a ​ =t tanh(W [z ​,h ​] +t t b)

https://worldmodels.github.io/

19
/
57

https://worldmodels.github.io/

World models : car racing

XX

The media could not be loaded, either because the server or network failed or because the format is not supported.

https://worldmodels.github.io/ 20
/
57

https://worldmodels.github.io/

World models : car racing
Below is the input of the VAE and the reconstruction.

The reconstruction does not have to be perfect as long as the latent space is informative.

XX

The media could not be loaded, either because the server or network failed or because the format is not supported.

https://worldmodels.github.io/ 21
/
57

https://worldmodels.github.io/

World models : car racing
Controller seeing only . Controller seeing both and .

Having access to a full rollout of the future leads to more stable driving.

z ​t

XX

z ​t h ​t

XX

The media could not be loaded, either because the server or network failed
or because the format is not supported.

The media could not be loaded, either because the server or network failed
or because the format is not supported.

https://worldmodels.github.io/ 22
/
57

https://worldmodels.github.io/

World models
Algorithm:

1. Collect 10,000 rollouts from a random policy.

2. Train VAE (V) to encode each frame into a latent vector .

3. Train MDN-RNN (M) to model .

4. Evolve Controller (C) to maximize the expected cumulative reward of a rollout.

Parameters for car racing:

Model Parameter Count

VAE 4,348,547

MDN-RNN 422,368

Controller 867

z ∈ R32

P (z ​∣a ​,h ​, … z ​)t+1 t t t

23
/
57

World models : car racing

https://worldmodels.github.io/

24
/
57

https://worldmodels.github.io/

World models
The world model V+M is learned offline with a
random agent, using unsupervised learning.

The controller C has few weights (1000) and can
be trained by evolutionary algorithms, not even RL.

The network can even learn by playing entirely in its
own imagination as the world model can be applied
on itself and predict all future frames.

It just need to additionally predict the reward.

The learned policy can then be transferred to the
real environment.

https://worldmodels.github.io/

25
/
57

https://worldmodels.github.io/

3 - Deep Planning Network - PlaNet

Hafner et al. () Learning Latent Dynamics for Planning from Pixels. arXiv:1811045512019 26
/
57

PlaNet
PlaNet extends the idea of World models by learning the model together with the policy (end-to-end).

It learns a latent dynamics model that takes the past observations into account (needed for POMDPs):

and plans in the latent space using multiple rollouts:

o ​t

s ​, r ​, ​ =t t+1 ôt f(o ​, a ​, s ​)t t t−1

a ​ =t arg ​ E[R(s ​, a, s ​, …)]
a

max t t+1

Source: https://planetrl.github.io/

27
/
57

https://planetrl.github.io/

PlaNet: latent dynamics model

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html
28
/
57

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent dynamics model
The latent dynamics model is a sequential variational autoencoder learning concurrently:

1. An encoder from the observation to the latent
space .

2. A decoder from the latent space to the
reconstructed observation .

3. A transition model to predict the next latent
representation given an action.

4. A reward model predicting the immediate reward.

o ​t

s ​t

q(s ∣o ​)t t

​ôt

p(​∣s ​)ôt t

p(s ​∣s ​, a ​)t+1 t t

p(r ​∣s ​)t t

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html

29
/
57

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent dynamics model
The loss function to train this recurrent state-space model (RSSM) simply adds up the three learning
objectives (VAE + world model + reward).

Training sequences can be generated off-policy (e.g. from demonstrations) or on-
policy.

Backpropagation through time (BPTT) can be applied on complete (or partial) sequences.

L(θ) = L ​(θ) +reconstruction L ​(θ) +prediction L ​(θ)reward

(o ​, a ​, o ​, … , o ​)1 1 2 T

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

30
/
57

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

PlaNet: latent space planning

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

31
/
57

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet: latent space planning
From a single observation encoded into ,
10000 rollouts are generated using random
sampling.

A belief over action sequences is updated using the
cross-entropy method (CEM) in order to restrict the
search.

The first action of the sequence with the highest
estimated return (reward model) is executed.

At the next time step, planning starts from scratch:
Model Predictive Control.

There is no actor in PlaNet, only a transition model
used for planning.

o ​t s ​t

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-
planning.html

32
/
57

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

PlaNet results
Planet learns continuous image-based control problems in 2000 episodes, where D4PG needs 50 times
more.

Learning Latent Dynamics for Planning from PixelsLearning Latent Dynamics for Planning from Pixels
ShareShare

33
/
57

https://www.youtube.com/watch?v=tZk1eof_VNA

PlaNet results
The latent dynamics model can learn 6 control tasks at the same time.

As there is no actor, but only a planner, the same network can control all agents!

Source: https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

34
/
57

https://ai.googleblog.com/2019/02/introducing-planet-deep-planning.html

4 - Dreamer

Hafner et al. () Dream to Control: Learning Behaviors by Latent Imagination. arXiv:1912016032020 35
/
57

Dreamer
Dreamer extends the idea of PlaNet by additionally training an actor instead of using a MPC planner.

The latent dynamics model is the same RSSM architecture.

Training a “model-free” actor on imaginary rollouts instead of MPC planning should reduce the
computational time.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

36
/
57

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer: latent dynamics model
The latent dynamics model is the same as in PlaNet, learning from past experiences.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

37
/
57

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer: behavior module
The behavior module learns to predict the value of a state and the policy (actor-critic).

It is trained in imagination in the latent space using the reward model for the immediate rewards (to
compute returns) and the transition model for the next states.

The current observation is encoded into a state , the actor selects an action , the transition model
predicts , the reward model predicts , the critic predicts .

At the end of the sequence, we apply backpropagation-through-time to train the actor and the critic.

V ​(s)φ π ​(s)θ

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

o ​t s ​t a ​t

s ​t+1 r ​t+1 V ​(s ​)φ t

38
/
57

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer: behavior module
The critic is trained on the imaginary sequence to minimize the
prediction error with the -return:

The actor is trained on the sequence to maximize the sum of the value of the future states:

V ​(s ​)φ t (s ​, a ​, r ​, s ​, … , s ​)t t t+1 t+1 T

λ

R ​ =t
λ (1 − λ) ​λ R ​ +

n=1

∑
T−t−1

n−1
t
n λ R ​

T−t−1
t

π ​(s ​, a ​)θ t t

J (θ) = E ​[​V ​(s ​)]s ​,a ​∼π ​t t θ

t =t′

∑
T

φ t′

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

39
/
57

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer
The main advantage of training an actor is that we need only one rollout when training it: backpropagation
maximizes the expected returns.

When acting, we just need to encode the history of the episode in the latent space, and the actor
becomes model-free!

Hafner et al. () Dream to Control: Learning Behaviors by Latent Imagination. arXiv:1912016032020 40
/
57

Dreamer results
Dreamer beats model-free and model-based methods on 20 continuous control tasks.

Source: https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

41
/
57

https://ai.googleblog.com/2020/03/introducing-dreamer-scalable.html

Dreamer results
It also learns Atari and Deepmind lab video games, sometimes on par with Rainbow or IMPALA!

Source: https://dreamrl.github.io/

42
/
57

https://dreamrl.github.io/

DayDreamer
A recent extension of Dreamer, DayDreamer, allows physical robots to learn complex tasks in a few hours.

https://danijar.com/daydreamer

Wu et al. () DayDreamer: World Models for Physical Robot Learning (arXiv:2206.14176).2022 43
/
57

https://danijar.com/daydreamer

DayDreamer

Learning to Walk in the Real World in 1 Hour (No Simulator)Learning to Walk in the Real World in 1 Hour (No Simulator)
ShareShare

44
/
57

https://www.youtube.com/watch?v=xAXvfVTgqr0

Dreamer v3
The third iteration of Dreamer established SoTA performance on more than 150 benchmarks.

It is the first algorithm to collect diamonds in Minecraft from scratch without human data or curricula.

Hafner et al. () Mastering Diverse Domains through World Models. doi:10.48550/arXiv.2301.04104. 2024 https://danijar.com/project/dreamerv3/ 45
/
57

https://danijar.com/project/dreamerv3/

5 - Temporal difference models - TDM (skipped)

Pong et al. () Temporal Difference Models: Model-Free Deep RL for Model-Based Control. arXiv:1802.090812018 46
/
57

TDM
One problem with model-based planning is the discretization time step (difference between and).

It is determined by the action rate: how often a different action has to be taken.

In robotics, it could be below the millisecond, leading to very long trajectories in terms of steps.

If you want to go from Berkeley to the Golden State
bridge with your bike, planning over leg movements
will be very expensive (long horizon).

A solution is multiple steps ahead planning.
Instead of learning a one-step model:

one learns to predict the state achieved in steps
using the current policy:

Planning and acting occur at different time scales.

t t + 1

a ​t

Source: https://bairblog.github.io/2018/04/26/tdm/

s ​ =t+1 f ​(s ​, a ​)θ t t

T

s ​ =t+T f ​(s ​, a ​,π)θ t t

47
/
57

https://bairblog.github.io/2018/04/26/tdm/

TDM
A problem with RL in general is how to define the reward function.

If you goal is to travel from Berkeley to the Golden
State bridge, which reward function should you
use?

+1 at the bridge, 0 otherwise (sparse).

+100 at the bridge, -1 otherwise (sparse).

minus the distance to the bridge (dense).

Goal-conditioned RL defines the reward function
using the distance between the achieved state
and a goal state :

An action is good if it brings the agent closer to its goal.

The Euclidean distance works well for the biking example (e.g. using a GPS), but the metric can be
adapted to the task.

Source: https://bairblog.github.io/2018/04/26/tdm/

s ​t+1

s ​g

r(s ​, a ​, s ​) =t t t+1 −∣∣s ​ −t+1 s ​∣∣g

48
/
57

https://bairblog.github.io/2018/04/26/tdm/

Goal-conditioned RL
One advantage is that you can learn multiple “tasks” at the same time with a single policy, not the only
one hard-coded in the reward function.

Another advantage is that it makes a better use of exploration by learning from mistakes: hindsight
experience replay (HER, Andrychowicz et al., 2017).

If your goal is to reach but the agent generates a trajectory
landing in , you can learn that this trajectory is good way to
reach !

In football, if you try to score a goal but end up doing a pass to
a teammate, you can learn that this was a bad shot and a
good pass.

HER is a model-based method: you implicitly learn a model of
the environment by knowing how to reach any position.

Exploration never fails: you always learn to do something, even if this was not your original goal.

The principle of HER can be used in all model-free methods: DQN, DDPG, etc.

s ​g

s ​g′

s ​g′

Source: https://openai.com/blog/ingredients-for-robotics-
research/

Andrychowicz et al. () Hindsight Experience Replay. arXiv:1707.014952017 49
/
57

https://openai.com/blog/ingredients-for-robotics-research/

TDM
Using the goal-conditioned reward function , how can we learn?

TDM introduces goal-conditioned Q-value with a horizon :
.

The Q-value of an action should denote how close we will be from
the goal in steps.

If we can estimate these Q-values, we can use a planning algorithm
such as MPC to find the action that will bring us closer to the goal
easily:

This corresponds to planning steps ahead; which action should I do now in order to be close to the
goal in steps?

r(s ​, a ​, s ​) =t t t+1 −∣∣s ​ −t+1 s ​∣∣g

T

Q(s, a, s ​,T)g

s ​g T

a =∗ arg ​ r(s ​, a ​, s ​)
a ​t

max t+T t+T t+T+1

T

T

Source: https://bairblog.github.io/2018/04/26/tdm/

50
/
57

https://bairblog.github.io/2018/04/26/tdm/

TDM
If the horizon is well chosen, we only need to plan over a small number of intermediary positions, not
over each possible action.

TDM is model-free on each subgoal, but model-based on the whole trajectory.

T

Source: https://bairblog.github.io/2018/04/26/tdm/

51
/
57

https://bairblog.github.io/2018/04/26/tdm/

TDM
How can we learn the goal-conditioned Q-values with a model?

TDM introduces a recursive relationship for the Q-values:

If we plan over steps, i.e. immediately after the action , the Q-value is the remaining distance
to the goal from the next state .

Otherwise, it is the Q-value of the greedy action in the next state with an horizon (one step
shorter).

This allows to learn the Q-values from single transitions :

with , the target is the remaining distance to the goal.

with , the target is the Q-value of the next action at a shorter horizon.

Q(s, a, s ​,T)g

​ ​

Q(s, a, s ​,T)g = ​ ​ ​⎩⎨
⎧E ​[r(s, a, s)] if T = 0s′

′

E ​[max ​ Q(s , a, s ​,T − 1)] otherwise.s′ a
′

g

= E ​[r(s, a, s) 1(T = 0) + ​ Q(s , a, s ​,T − 1) 1(T = 0)]s′
′

a
max ′

g 

T = 0 (s, a)
s′

s′ T − 1

(s ​, a ​, s ​)t t t+1

T = 0

T > 0

52
/
57

TDM
The critic learns to minimize the prediction error off-policy:

This is a model-free Q-learning-like update rule, that can be learned by any off-policy value-based
algorithm (DQN, DDPG) and an experience replay memory.

The cool trick is that, with a single transition , you can train the critic with:

different horizons , e.g. between 0 and .

different goals . You can sample any achievable state as a goal, including the “true”
(hindsight).

You do not only learn to reach , but any state! TDM learns a lot of information from a single transition,
so it has a very good sample complexity.

​ ​ ​

L(θ) =E ​[s ​,a ​,s ​∈Dt t t+1

(r(s ​, a ​, s ​) 1(T = 0) + ​ Q(s ​, a, s ​,T − 1) 1(T = 0) − Q(s ​, a ​, s ​,T))t t t+1
a

max t+1 g  t t g
2

]

(s ​, a ​, s ​)t t t+1

T T ​max

s ​g s ​t+T

s ​g

53
/
57

Summary of TDM
TDM learns to break long trajectories into finite horizons (model-based planning) by learning model-free
(Q-learning updates).

The critic learns how good an action (s, a) is order to reach a state in steps.

The actor uses MPC planning to iteratively select actions that bring us closer to the goal in steps:

The argmax can be estimated via sampling.

TDM is a model-based method in disguise: it does predict the next state directly, but how much closer it
will be to the goal via Q-learning.

s ​g T

Q(s, a, s ​,T) =g E ​[r(s, a, s) 1(T =s′
′ 0) + ​ Q(s , a, s ​,T −

a
max ′

g 1) 1(T = 0)]

T

a ​ =t arg ​ Q(s ​, a, s ​,T)
a

max t g

54
/
57

TDM results
For problems where the model is easy to learn, the performance of TDM is on par with model-based
methods (MPC).

Model-free methods have a much higher sample
complexity.

TDM learns much more from single transitions.

Source: https://bairblog.github.io/2018/04/26/tdm/

55
/
57

https://bairblog.github.io/2018/04/26/tdm/

TDM results
For problems where the model is complex to learn, the performance of TDM is on par with model-free
methods (DDPG).

Model-based methods suffer from model
imprecision on long horizons.

TDM plans over shorter horizons .

Source: https://bairblog.github.io/2018/04/26/tdm/

T

56
/
57

https://bairblog.github.io/2018/04/26/tdm/

References
Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., et al. (2017). Hindsight Experience Replay.

.

Feinberg, V., Wan, A., Stoica, I., Jordan, M. I., Gonzalez, J. E., and Levine, S. (2018). Model-Based Value Estimation for
Efficient Model-Free Reinforcement Learning. .

Gu, S., Lillicrap, T., Sutskever, I., and Levine, S. (2016). Continuous Deep Q-Learning with Model-based Acceleration.
.

Ha, D., and Eck, D. (2017). A Neural Representation of Sketch Drawings. .

Ha, D., and Schmidhuber, J. (2018). World Models. doi: .

Hafner, D., Lillicrap, T., Ba, J., and Norouzi, M. (2020). Dream to Control: Learning Behaviors by Latent Imagination.
.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D., Lee, H., et al. (2019). Learning Latent Dynamics for Planning from
Pixels. .

Hafner, D., Pasukonis, J., Ba, J., and Lillicrap, T. (2024). Mastering Diverse Domains through World Models.
doi: .

Kurutach, T., Clavera, I., Duan, Y., Tamar, A., and Abbeel, P. (2018). Model-Ensemble Trust-Region Policy Optimization.
.

Nagabandi, A., Kahn, G., Fearing, R. S., and Levine, S. (2017). Neural Network Dynamics for Model-Based Deep
Reinforcement Learning with Model-Free Fine-Tuning. .

Pong, V., Gu, S., Dalal, M., and Levine, S. (2018). Temporal Difference Models: Model-Free Deep RL for Model-Based
Control. .

S li T H J Ch X Sid S d S t k I (2017) E l ti St t i S l bl Alt ti t

http://arxiv.org/abs/1707.01495

http://arxiv.org/abs/1803.00101

http://arxiv.org/abs/1603.00748

http://arxiv.org/abs/1704.03477

10.5281/zenodo.1207631

http://arxiv.org/abs/1912.01603

http://arxiv.org/abs/1811.04551

10.48550/arXiv.2301.04104

http://arxiv.org/abs/1802.10592

http://arxiv.org/abs/1708.02596

http://arxiv.org/abs/1802.09081

57
/
57

http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1803.00101
http://arxiv.org/abs/1603.00748
http://arxiv.org/abs/1704.03477
https://doi.org/10.5281/zenodo.1207631
http://arxiv.org/abs/1912.01603
http://arxiv.org/abs/1811.04551
https://doi.org/10.48550/arXiv.2301.04104
http://arxiv.org/abs/1802.10592
http://arxiv.org/abs/1708.02596
http://arxiv.org/abs/1802.09081

