
Deep Reinforcement Learning
AlphaGo

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 37

Solving the game of Go
Go is an ancient two-opponents board game, where
each player successively places stones on a 19x19
grid.

When a stone is surrounded by four opponents, it
dies. The goal is to ensure strategical position in
order to cover the biggest territory.

There are around possible states and 250
actions available at each turn (possible
games), making it a much harder game than chess
for a computer (35 possible actions, possible
games).

A game lasts 150 moves on average (80 in chess).

Up until 2015 and AlphaGo, Go AIs could not
compete with world-class experts, and people
usually considered AI would need at least another
20 years to solve it.

10170

10761

10120

2 / 37

Minimax and Alpha-Beta

Minimax algorithm expand the whole game tree, simulating the moves of the MAX (you) and MIN (your
opponent) players.

The final outcome (win or lose) is assigned to the leaves.

It allows to solve zero sum games: what MAX wins is lost by MIN, and vice-versa. We suppose MIN plays
optimally (i.e. in his own interest).

3 / 37

Minimax and Alpha-Beta

The value of the leaves is propagated backwards to the starting position: MAX chooses the action leading
to the state with the highest value, MIN does the opposite.

For most games, the tree becomes too huge for such a systematic search:

The value of all states further than a couple of moves away are approximated by a heuristic function:
the value of these states.

Obviously useless parts of the tree are pruned: Alpha-Beta algorithm.

V (s)

4 / 37

Limits of tree-based approaches
Alpha-Beta methods work well for simple problems where the complete game tree can be manipulated:

Tic-Tac-Toe has only a couple of possible states and actions (states).

It also works when precise heuristics can be
derived in a reasonable time.

This is the principle of IBM DeepBlue which
was the first Chess AI to beat a world
champion (Garry Kasparov) in 1995.

Carefully engineered heuristics (with the help
of chess masters) allowed DeepBlue to search
6 moves away what is the best situation it can
arrive in.

But it does not work in Go because its branching factor (250 actions possible from each state) is too
huge: the tree explodes very soon.

, so even if your processor evaluates 1 billion nodes per second, it would need 11 days
to evaluate a single position 6 moves away…

3 =9 19000

250 ≈6 1015

5 / 37

Game tree of Go

Source: <https://www.quora.com/What-does-it-mean-that-AlphaGo-relied-on-Monte Carlo-tree-search/answer/Kostis-Gourgoulias>

6 / 37

1 - AlphaGo

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature 529, 484–489. doi:10.1038/nature16961.2016 7 / 37

AlphaGo
AlphaGo uses four different neural networks:

The rollout policy and the SL policy network use supervised learning to predict expert human moves
in any state.

The RL policy network uses self-play and reinforcement learning to learn new strategies.

The value network learns to predict the outcome of a game (win/lose) from the current state.

The rollout policy and the value network are used to guide stochastic tree exploration in Monte Carlo Tree
Search (MCTS) (MPC-like planning algorithm).

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 8 / 37

AlphaGo - supervised pretraining
Supervised learning is used for bootstrapping the policy network.

A policy network is trained to predict human expert moves:

30M expert games have been gathered: input is board
configuration, output is the move played by the expert.

The CNN has 13 convolutional layers (5x5) and no max-
pooling.

The accuracy at the end of learning is 57% (not bad, but
not sufficient to beat experts).

A faster rollout policy network is also trained:

Only one layer, views only part of the state (around the last
opponent’s move).

Prediction accuracy of 24%.

Inference time is only 2 s, instead of 3 ms for the policy
network .

ρ σ

ρ π

μ

ρ σ

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 9 / 37

AlphaGo - self-play RL
The SL policy network is used to initialize the weights of the RL policy network , so it can start
exploring from a decent policy.

The RL policy network then plays against an older version of itself (target network) to improve its
policy, updating the weights using Policy Gradient (REINFORCE):

where = +1 when the game is won, -1 otherwise.

The idea of playing against an older version of the same
network (self-play) allows to learn offline.

The RL policy network already wins 85% of the time against
the strongest AI at the time (Pachi), but not against expert
humans.

A value network finally learns to predict the outcome of a
game (+1 when winning, -1 when losing) based on the self-
play positions generated by the RL policy network.

ρ σ ρ ρ

≈

∇ J (θ) =θ E [∇ log π (s, a)R]s∼ρ ,a∼π θ θ θ θ

R

ν θ

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 10 / 37

AlphaGo

The policy network learns the probability of
selecting different moves. The value network learns to predict the value of any

possible state under the learned policy.

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 11 / 37

Monte Carlo Tree Search

The final AlphaGo player uses Monte Carlo Tree Search (MCTS), which is an incremental tree search
(depth-limited), biased by the Q-value of known transitions.

The game tree is traversed depth-first from the current state, but the order of the visits depends on the
value of the transition.

MCTS was previously the standard approach for Go AIs, but based on expert moves only, not deep
networks.

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 12 / 37

Monte Carlo Tree Search
In the selection phase, a path is found in the tree of possible actions using Upper Confidence Bound
(UCB).

The probability of selecting an action when
sampling the tree depends on:

Its Q-value (as learned by MCTS): how
likely this action leads to winning.

Its prior probability: how often human players
would play it, given by the SL policy network
.

Its number of visits : this ensures
exploration during the sampling.

Q(s, a)

ρ σ

N(s, a)

a =t argmax Q(s, a) +a K ⋅

1 + N(s, a)
P (s, a)

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 13 / 37

Monte Carlo Tree Search
In the expansion phase, a leaf state of the game
tree is reached.

The leaf is expanded, and the possible successors
of that state are added to the tree.

One requires a model to know which states are
possible successors, but this is very easy in Go.

The tree therefore grows every time a Monte Carlo
sampling (“episode”) is done.

s L

s =t+1 f(s , a)t t

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 14 / 37

Monte Carlo Tree Search
In the evaluation phase, the leaf is evaluated both by

the RL value network (how likely can we win from that
state)

a random rollout until the end of the game using the fast
rollout policy .

The random rollout consists in “emulating” the end of the
game using the fast rollout policy network.

The rollout is of course imperfect, but complements the value
network: they are more accurate together than alone!

This solves the bias/variance trade-off.

s L

ν θ

ρ π

V (s) =L (1 − λ) ν (s) +θ L λR rollout

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 15 / 37

Monte Carlo Tree Search
In the backup phase, the Q-values of all actions taken when
descending the tree are updated with the value of the leaf
node:

This is a Monte Carlo method: perform one episode and
update the Q-value of all taken actions.

However, it never uses real rewards, only value estimates.

The Q-values are learned by using both the learned value of
future states (value network) and internal simulations
(rollout).

Q(s, a) = V (s)
N(s, a)

1

i=1

∑
n

L
i

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 16 / 37

Monte Carlo Tree Search
The four phases are then repeated as long as possible (time is limited in Go), to expand the game tree as
efficiently as possible.

The game tree is repeatedly sampled and grows after each sample.

When the time is up, the greedy action (highest Q-value) in the initial state is chosen and played.

For the next move, the tree is reset and expanded again (MPC replanning).

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 17 / 37

In the end, during MCTS, only the value network , the SL policy network and the fast rollout policy
are used.

The RL policy network is only used to train the value network . i.e. to predict which positions are
interesting or not.

However, the RL policy network can discover new strategies by playing many times against itself, without
relying on averaging expert moves like the previous approaches.

ν θ ρ σ ρ π

ρ ρ ν θ

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 18 / 37

AlphaGo
AlphaGo was able to beat Lee Sedol in 2016, 19 times World champion.

It relies on human knowledge to bootstrap a RL agent (supervised learning).

The RL agent discovers new strategies by using self-play: during the games against Lee Sedol, it was able
to use novel moves which were never played before and surprised its opponent.

The neural networks are only used to guide random search using MCTS: the policy network alone is not
able to beat grandmasters.

Training took several weeks on 1202 CPUs and 176 GPUs.

Silver et al. () Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, arXiv:1712.01815.2016 19 / 37

But is Go that hard compared to robotics?
1. Fully deterministic. There is no noise in the rules of the game; if the two players take the same sequence

of actions, the states along the way will always be the same.

2. Fully observed. Each player has complete information and there are no hidden variables. For example,
Texas hold’em does not satisfy this property because you cannot see the cards of the other player.

3. The action space is discrete. A number of unique moves are available. In contrast, in robotics you might
want to instead emit continuous-valued torques at each joint.

4. We have access to a perfect simulator (the game itself), so the effects of any action are known exactly.
This is a strong assumption that AlphaGo relies on quite strongly, but is also quite rare in other real-world
problems.

5. Each episode/game is relatively short, of approximately 200 actions. This is a relatively short time
horizon compared to other RL settings which may involve thousands (or more) of actions per episode.

�. The evaluation is clear, fast and allows a lot of trial-and-error experience. In other words, the agent can
experience winning/losing millions of times, which allows is to learn, slowly but surely, as is common with
deep neural network optimization.

7. There are huge datasets of human play game data available to bootstrap the learning, so AlphaGo doesn’t
have to start from scratch.

Source: https://medium.com/@karpathy/alphago-in-context-c47718cb95a5 20 / 37

https://medium.com/@karpathy/alphago-in-context-c47718cb95a5

2 - AlphaZero

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

Silver et al. () A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144. doi:10.1126/science.aar6404.2018 21 / 37

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

AlphaZero

Source: https://deepmind.com/blog/alphago-zero-learning-scratch/

22 / 37

https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaZero
AlphaZero totally skips the supervised learning part: the RL policy network starts self-play from scratch!

The RL policy network uses MCTS to select moves,
not a softmax-like selection as in AlphaGo.

The policy and value networks are merged into a
two-headed monster: the convolutional residual
layers are shared to predict both:

The policy , which is only used to guide
MCTS (prior of UCB).

The state value for the value of the
leaves (no fast rollout).

π (s)θ

a =t argmax Q(s, a) +a K ⋅

1 + N(s, a)
π (s, a)θ

V (s)φ

Silver et al. () A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144. doi:10.1126/science.aar6404.2018 23 / 37

AlphaZero
The loss function used to train the network is a
compound loss:

The policy head learns to mimic the actions
selected by MCTS by minimizing the cross-entropy
(or KL).

The value network learns to predict the
return by minimizing the mse.

L(θ) = (R − V (s)) −φ
2 π (s) log π (s) +MCTS θ c∣∣θ∣∣2

π (s)θ

V (s)φ

Silver et al. () A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144. doi:10.1126/science.aar6404.2018 24 / 37

AlphaZero
1. Initialize neural network.

2. Play self-play games, using 1,600 MCTS
simulations per move (which takes about 0.4
seconds).

3. Sample 2,048 positions from the most recent
500,000 games, along with whether the game was
won or lost.

4. Train the neural network, using both A) the move
evaluations produced by the MCTS lookahead
search and B) whether the current player won or
lost.

5. Finally, every 1,000 iterations of steps 3-4, evaluate
the current neural network against the previous
best version; if it wins at least 55% of the games,
begin using it to generate self-play games instead
of the prior version.

Repeat steps 3-4 700,000 times, while the self-play games are continuously being played .

Silver et al. () A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140–1144. doi:10.1126/science.aar6404.2018 25 / 37

AlphaZero
By using a single network instead of four and learning faster, AlphaZero also greatly reduces the energy
consumption.

Source: https://deepmind.com/blog/alphago-zero-learning-scratch/

26 / 37

https://deepmind.com/blog/alphago-zero-learning-scratch/

AlphaZero

The same algorithm can also play Chess and Shogi!

The network weights are reset for each game, but it uses the same architecture and hyperparameters.

After only 8 hours of training, AlphaZero beats Stockfish with 28-72-00, the best Chess AI at the time,
which itself beats any human.

This proves the algorithm is generic and can be applied to any board game.

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

27 / 37

https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

3 - MuZero

Schrittwieser et al. () Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv:1911.082652019 28 / 37

MuZero
MuZero is the latest extension of AlphaZero (but see EfficientZero).

Instead of relying on a perfect simulator for the MCTS, it learns the dynamics model instead.

https://arxiv.org/abs/2111.00210

s , r =t+1 t+1 f(s , a)t t

Schrittwieser et al. () Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv:1911.082652019 29 / 37

https://arxiv.org/abs/2111.00210

MuZero

Source: https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-f77d5718061a

30 / 37

https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-f77d5718061a

MuZero
MuZero is composed of three neural networks:

The representation network (encoder) transforming the history of observations
into a state representation (latent space).

The dynamics model used to generate rollouts for MCTS.

The policy and value network learning the policy with PG.

s = h(o , … , o)1 t

s , r =′ g(s, a)

π,V = f(s)

Source: https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-f77d5718061a

31 / 37

https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-f77d5718061a

MuZero
The dynamics model replaces the
perfect simulator in MCTS.

It is used in the expansion phase of MCTS to add
new nodes.

Importantly, nodes are latent representations of the
observations, not observations directly.

This is a similar idea to World Models and
PlaNet/Dreamer, which plan in the latent space of a
VAE.

Selection in MCTS still follows an upper confidence
bound using the learned policy :

s , r =′ g(s, a)

π

Schrittwieser et al. () Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv:1911.082652019 32 / 37

MuZero

The actions taking during self-play are taken from the MCTS search as in AlphaZero.

Note that the network plays each turn: there is additional information about whether the network is
playing white or black.

Self-played games are stored in a huge experience replay memory.

Schrittwieser et al. () Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv:1911.082652019 33 / 37

MuZero

Finally, complete games sampled from the ERM are used to learn simultaneously the three networks ,
and :

f g

h

Schrittwieser et al. () Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv:1911.082652019 34 / 37

MuZero
MuZero beats AlphaZero on Chess, Go and Shogi, but also R2D2 on Atari games.

The representation network allows to encode the Atari frames in a compressed manner that allows
planning over raw images.

h

Schrittwieser et al. () Mastering Atari, Go, Chess and Shogi by Planning with a Learned Model. arXiv:1911.082652019 35 / 37

MuZero
A nice series of blog posts by David Foster explaining how to implement MuZero:

https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-f77d5718061a

https://medium.com/applied-data-science/how-to-build-your-own-deepmind-muzero-in-python-part-2-3-
f99dad7a7ad

https://medium.com/applied-data-science/how-to-build-your-own-deepmind-muzero-in-python-part-3-3-
ccea6b03538b

36 / 37

https://medium.com/applied-data-science/how-to-build-your-own-muzero-in-python-f77d5718061a
https://medium.com/applied-data-science/how-to-build-your-own-deepmind-muzero-in-python-part-2-3-f99dad7a7ad
https://medium.com/applied-data-science/how-to-build-your-own-deepmind-muzero-in-python-part-3-3-ccea6b03538b

But…

37 / 37

