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Model-based vs. Model-free
Model-free methods use the reward prediction error (RPE) to update values:

Encountered rewards propagate very slowly to all states and actions.

If the environment changes (transition probabilities, rewards), they have to relearn everything.

After training, selecting an action is very fast.

δ  =t r  +t+1 γ V (s  ) −π
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Model-based vs. Model-free
Model-based RL can learn very fast changes in the transition or reward distributions:

But selecting an action requires planning in the tree of possibilities (slow).

Δr(s  , a  , s  ) =t t t+1 α (r  −t+1 r(s  , a  , s  ))t t t+1

Δp(s ∣s  , a  ) =′
t t α (I(s  =t+1 s ) −′ p(s ∣s  , a  ))′

t t
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Model-based vs. Model-free
Relative advantages of MF and MB methods:

Inference
speed

Sample complexity Optimality Flexibility

Model-free fast high yes no

Model-based slow low as good as the
model

yes

A trade-off would be nice… Most MB models in the deep RL literature are hybrid MB/MF models anyway.
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Outcome devaluation
Two forms of behavior are observed in the animal psychology literature: 

1. Goal-directed behavior learns Stimulus  Response  Outcome associations.

2. Habits are developed by overtraining Stimulus  Response associations.  

The main difference is that habits are not influenced by outcome devaluation, i.e. when rewards lose their
value.

→ →

→

Source: Bernard W. Balleine
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Goal-directed / habits = MB / MF ?
The classical theory assigns MF to habits and MB to goal-directed, mostly because their sensitivity to
outcome devaluation.

The open question is the arbitration mechanism between these two segregated process: who takes
control?

Recent work suggests both systems are largely overlapping.

Doll, B. B., Simon, D. A., and Daw, N. D. (2012). The ubiquity of model-based reinforcement learning. Current Opinion in Neurobiology 22, 1075–1081.
doi:10.1016/j.conb.2012.08.003.

Miller, K., Ludvig, E. A., Pezzulo, G., and Shenhav, A. (2018). “Re-aligning models of habitual and goal-directed decision-making,” in Goal-Directed
Decision Making : Computations and Neural Circuits, eds. A. Bornstein, R. W. Morris, and A. Shenhav (Academic Press)
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Successor Representations (SR)
Successor representations (SR) have been introduced to combine MF and MB properties. Let’s split the
definition of the value of a state:

where  is 1 when the agent is in  at time , 0 otherwise.

The left part corresponds to the transition dynamics: which states will be visited by the policy, discounted
by .

The right part corresponds to the immediate reward in each visited state.

Couldn’t we learn the transition dynamics and the reward distribution separately in a model-free manner?

V (s)π = E  [  γ r  ∣s  = s]π
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Successor Representations (SR)
SR rewrites the value of a state into an expected discounted future state occupancy  and an
expected immediate reward  by summing over all possible states  of the MDP:

M (s, s )π ′

r(s )′ s′
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Successor Representations (SR)
The underlying assumption is that the world dynamics are independent from the reward function (which
does not depend on the policy).

This allows to re-use knowledge about world dynamics in other contexts (e.g. a new reward function in
the same environment): transfer learning.

What matters is the states that you will visit and how interesting they are, not the order in which you visit
them.

Knowing that being in the mensa will eventually get you some food is enough to know that being in the
mensa is a good state: you do not need to remember which exact sequence of transitions will put food in
your mouth.

Source: https://awjuliani.medium.com/the-present-in-terms-of-the-future-successor-representations-in-reinforcement-learning-316b78c5fa3
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Successor Representations (SR)
SR algorithms must estimate two quantities:

1. The expected immediate reward received after each state:

2. The expected discounted future state occupancy (the SR itself):

The value of a state  is then computed with:

what allows to infer the policy (e.g. using an actor-critic architecture).

The immediate reward for a state can be estimated very quickly and flexibly after receiving each reward:

r(s) = E[r  ∣s  =t+1 t s]
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SR and transition matrix
Imagine a very simple MDP with 4 states and a single deterministic action:

The transition matrix  depicts the possible  transitions:

The SR matrix  also represents the future transitions discounted by :
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SR matrix in a Tolman’s maze
The SR represents whether a state can be reached
soon from the current state (b) using the current
policy.

The SR depends on the policy:

A random agent will map the local
neighborhood (c).

A goal-directed agent will have SR
representations that follow the optimal path
(d).

It is therefore different from the transition matrix,
as it depends on behavior and rewards.

The exact dynamics are lost compared to MB: it
only represents whether a state is reachable, not
how.

Russek et al. ( ) Predictive representations can link model-based reinforcement learning to model-free mechanisms. PLOS Computational Biology.2017 14 / 36



Example of a SR matrix
The SR matrix reflects the proximity between states depending on the transitions and the policy. it does
not have to be a spatial relationship.

Stachenfeld et al. ( ) The hippocampus as a predictive map. Nature Neuroscience 20, 1643–1653. doi:10.1038/nn.46502017 15 / 36



Learning the SR
How can we learn the SR matrix for all pairs of states?

We first notice that the SR obeys a recursive Bellman-like equation:

This is reminiscent of TDM: the remaining distance to the goal is 0 if I am already at the goal, or gamma
the distance from the next state to the goal.
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Model-based SR
Bellman-like SR:

If we know the transition matrix for a fixed policy :

we can obtain the SR directly with matrix inversion as we did in dynamic programming:

so that:

This DP approach is called model-based SR (MB-SR) as it necessitates to know the environment
dynamics.

M (s, s ) =π ′ I(s  =t s ) +′ γ E  [M (s  , s )]s  ∼P (s ∣s)t+1 π ′
π

t+1
′

π
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a

∑ ′
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Momennejad et al. ( ) The successor representation in human reinforcement learning. Nature Human Behaviour 1, 680–692. doi:10.1038/s41562-017-0180-8.2017 17 / 36



Model-free SR
If we do not know the transition probabilities, we simply sample a single  transition:

We can define a sensory prediction error (SPE):

that is used to update an estimate of the SR:

This is SR-TD, using a SPE instead of RPE, which learns only from transitions but ignores rewards.
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The sensory prediction error - SPE
The SPE has to be applied on ALL successor states  after a transition :

Contrary to the RPE, the SPE is a vector of prediction errors, used to update one row of the SR matrix.

The SPE tells how surprising a transition  is for the SR.
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Successor representations
The SR matrix represents the expected discounted future state occupancy:

It can be learned using a TD-like SPE from single transitions:

The immediate reward in each state can be learned independently from the policy:

The value  of a state is obtained by summing of all successor states:

This critic can be used to train an actor  using regular TD learning (e.g. A3C).
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Successor representation of actions
Note that it is straightforward to extend the idea of SR to state-action pairs:

allowing to estimate Q-values:

using SARSA or Q-learning-like SPEs:

depending on the choice of the next action  (on- or off-policy).
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Successor features
The SR matrix associates each state to all others (
matrix):

curse of dimensionality.

only possible for discrete state spaces.

A better idea is to describe each state  by a feature vector 
 with less dimensions than the number of

states.

This feature vector can be constructed (see the lecture on
function approximation) or learned by an autoencoder (latent
representation).

N × N

s

ϕ(s) = [ϕ  (s)]  i i=1
d

Source: http://www.jessicayung.com/the-successor-representation-1-generalising-between-states/
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Successor features
The successor feature representation (SFR) represents the discounted probability of observing a feature 

 after being in s.

Instead of predicting when the agent will see a cat after being in the current state , the SFR predicts
when it will see eyes, ears or whiskers independently:

Linear SFR (Gehring, 2015) supposes that it can be linearly approximated from the features of the current
state:

ϕ  j

Source: http://www.jessicayung.com/the-successor-representation-1-generalising-between-states/

s

M  (s) =j
π M (s,ϕ  ) =π

j E  [  γ I(ϕ  (s  ))∣s  =π

k=0

∑
∞

k
j t+k t s, a =t a]

d
Gehring ( ) Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM).2015 24 / 36
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Successor features
The value of a state is now defined as the sum over successor features of their immediate reward
discounted by the SFR:

The SFR matrix  associates each feature  of the current state to all successor features 
.

Knowing that I see a kitchen door in the current state, how likely will I see a food outcome in the near
future?

Each successor feature  is associated to an expected immediate reward .

A good state is a state where food features (high ) are likely to happen soon (high ).

In matrix-vector form:

V (s) =π
 M  (s) r(ϕ  ) =

j=1

∑
d

j
π

j  r(ϕ  )  m  ϕ  (s)
j=1

∑
d

j

i=1

∑
d

i,j i

M =π [m  ]  i,j i,j ϕ  i

ϕ  j

ϕ  j r(ϕ  )j

r(ϕ  )j m  i,j

V (s) =π r ×T M ×π ϕ(s)

Gehring ( ) Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM).2015 25 / 36



Successor features
Value of a state:

The reward vector  only depends on the features and can be learned independently from the policy, but
can be made context-dependent:

Food features can be made more important when the agent is hungry, less when thirsty.

Transfer learning becomes possible in the same environment:

Different goals (searching for food or water, going to place A or B) only require different reward
vectors.

The dynamics of the environment are stored in the SFR.

V (s) =π r ×T M ×π ϕ(s)

r

Source: https://awjuliani.medium.com/the-present-in-terms-of-the-future-successor-representations-in-reinforcement-learning-316b78c5fa3
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Successor features
How can we learn the SFR matrix ?

We only need to use the sensory prediction error for a transition between the feature vectors  and 
:

and use it to update the whole matrix:

However, this linear approximation scheme only works for fixed feature representation . We need to
go deeper…

Mπ

V (s) =π r ×T M ×π ϕ(s)

ϕ(s  )t
ϕ(s  )t+1

δ  =t
SFR ϕ(s  ) +t γM ×π ϕ(s  ) −t+1 M ×π ϕ(s  )t

ΔM =π δ  ×t
SFR ϕ(s  )t T

ϕ(s)

Gehring ( ) Approximate Linear Successor Representation. Presented at the The multi-disciplinary conference on Reinforcement Learning and Decision Making (RLDM).2015 27 / 36



4 - Deep Successor Reinforcement Learning
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Deep Successor Reinforcement Learning
Each state  is represented by a D-dimensional (D=512) vector  which is the output of an
encoder.

A decoder  is used to provide a reconstruction loss, so  is a latent representation of an
autoencoder:

The immediate reward  is linearly predicted from the feature vector  using a reward vector .

The reconstruction loss is important, otherwise the latent representation  would be too reward-
oriented and would not generalize.

The reward function is learned on a single task, but it can fine-tuned on another task, with all other
weights frozen.

s  t ϕ(s  ) =t f  (s  )θ t

g  

θ̂
ϕ(s  )t

L  (θ, ) =reconstruction θ̂ E[(g  (ϕ(s  )) −θ̂ t s ) ]t
2

R(s  )t ϕ(s  )t w

R(s  ) =t ϕ(s  ) ×t
T w

L  (w, θ) =reward E[(r  −t+1 ϕ(s  ) ×t
T w) ]2

ϕ(s  )t
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Deep Successor Reinforcement Learning
For each action , a NN  predicts the future feature occupancy  for the current state:

The Q-value of an action is simply the dot product between the SR of an action and the reward vector :

The selected action is -greedily selected around the greedy action:

The SR of each action is learned using the Q-learning-like SPE (with fixed  and a target network ):

The compound loss is used to train the complete network end-to-end off-policy using a replay buffer
(DQN-like).

a u  α M(s, s , a)′

m  =s  at u  (s  , a)α t

w

Q(s  , a) =t w ×T m  s  at

ϵ

a  =t arg  Q(s  , a)
a

max t

θ u  α′

L (α) =SPE E[  (ϕ(s  ) +
a

∑ t γ  u  (s  , a ) −
a′

max α′ t+1
′ u  (s  , a)) ]α t

2

L(θ w α) =θ̂ L (θ ) +t ti θ̂ L (w θ) +d L (α)SPEKulkarni et al. ( ) Deep Successor Reinforcement Learning. arXiv:1606.023962016 31 / 36
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Deep Successor Reinforcement Learning
The interesting property is that you do not need
rewards to learn:

A random agent can be used to learn the
encoder and the SR, but  can be left
untouched.

When rewards are introduced (or changed),
only  has to be adapted, while DQN would
have to re-learn all Q-values.

This is the principle of latent learning in animal psychology: fooling around in an environment without a
goal allows to learn the structure of the world, what can speed up learning when a task is introduced.

The SR is a cognitive map of the environment: learning task-unspecific relationships.

w

w

Kulkarni et al. ( ) Deep Successor Reinforcement Learning. arXiv:1606.023962016 34 / 36



Visual Semantic Planning using Deep Successor Representations

Visual Semantic PlanningVisual Semantic Planning
ShareShare

Zhu et al. ( ) Visual Semantic Planning using Deep Successor Representations. arXiv:1705080802017 35 / 36

https://www.youtube.com/watch?v=_2pYVw6ATKo
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