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Overview of deep RL methods
Model-free methods (DQN, A3C, DDPG, PPO, SAC)
are able to find optimal policies in complex MDPs
by just sampling transitions.

They suffer however from a high sample
complexity, i.e. they need ridiculous amounts of
samples to converge.

Model-based methods (I2A, Dreamer, MuZero) use
learned dynamics to predict the future and plan the
consequences of an action.

The sample complexity is lower, but learning a
good model can be challenging. Inference times
can be prohibitive.
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Source: https://www.alexirpan.com/2018/02/14/rl-hard.html
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Deep RL is still very unstable
Depending on initialization, deep RL networks may or may not converge (30% of runs converge to a worse
policy than a random agent).

Careful optimization such as TRPO / PPO help, but not completely.

You never know if failure is your fault (wrong network, bad hyperparameters, bug), or just bad luck.

Source: https://www.alexirpan.com/2018/02/14/rl-hard.html
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Deep RL lacks generalization to different environments

As it uses neural networks, deep RL overfits its training data, i.e. the environment it is trained on.

If you change anything to the environment dynamics, you need to retrain from scratch.

OpenAI Five collects 900 years of game experience per day on Dota 2: it overfits the game, it does not
learn how to play.

Modify the map a little bit and everything is gone.

But see Meta RL - RL^2 later.

Jacob Andreas
@jacobandreas · Follow

Deep RL is popular because it's the only area in ML
where it's socially acceptable to train on the test set.
9�27 PM · Oct 28, 2017

617 Reply Copy link

Read 13 replies

7 / 48

https://twitter.com/jacobandreas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide
https://twitter.com/jacobandreas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide
https://twitter.com/jacobandreas?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide
https://twitter.com/intent/follow?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide&screen_name=jacobandreas
https://twitter.com/jacobandreas/status/924356906344267776?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide
https://twitter.com/jacobandreas/status/924356906344267776?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide&tweet_id=924356906344267776
https://twitter.com/intent/tweet?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide&in_reply_to=924356906344267776
https://twitter.com/jacobandreas/status/924356906344267776?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E924356906344267776%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=file%3A%2F%2F%2FUsers%2Fvitay%2FTeaching%2FDeepReinforcementLearning%2FCourse%2Fdocs%2Fslides%2F5.1-Outlook.html%2Ftitle-slide


Classical methods sometimes still work better
Model Predictive Control (MPC) is able to control Mujoco robots much better than RL through classical
optimization techniques (e.g. iterative LQR) while needing much less computations.

If you have a good physics model, do not use DRL. Reserve it for unknown systems, or when using noisy
sensors (images). Genetic algorithms (CMA-ES) sometimes give better results than RL.

Model-Predictive control of a humanoidModel-Predictive control of a humanoid
ShareShare
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https://www.youtube.com/watch?v=uRVAX_sFT24


You cannot do that with deep RL (yet)

What's new, Atlas?What's new, Atlas?
ShareShare
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https://www.youtube.com/watch?v=fRj34o4hN4I


RL libraries
After an initial phase with many competing frameworks, deep learning converged to pytorch and
tensorflow.

The situation is not that clear in deep RL. There are still dozens of frameworks, most of them quickly
unmaintained.

See https://blog.dataiku.com/on-choosing-a-deep-reinforcement-learning-library 10 / 48
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RL libraries
rllib is part of the more global ML framework Ray, which also includes Tune for hyperparameter
optimization.

It has implementations in both tensorflow and Pytorch.

All major model-free algorithms are implemented (DQN, Rainbow, A3C, DDPG, PPO, SAC), including their
distributed variants (Ape-X, IMPALA, TD3) but also model-based algorithms (Dreamer!)

https://docs.ray.io/en/master/rllib.html
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RL libraries
tianshou is a recent addition to the family. The implementation is based on pytorch and is very modular.
Allows for efficient distributed RL.

Algos: DQN+/DDPG/PPO/SAC, imitation learning, offline RL…

https://github.com/thu-ml/tianshou
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RL maximizes the reward function you give it
RL is an optimization method: it maximizes the
reward function that you provide it.

If you do not design the reward function correctly,
the agent may not do what you expect.

In the Coast runners game, turbos provide small
rewards but respawn very fast: it is more optimal to
collect them repeatedly than to try to finish the
race.

CoastRunners 7CoastRunners 7
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https://www.youtube.com/watch?v=tlOIHko8ySg


Reward functions need careful engineering
Defining the reward function that does what you
want becomes an art.

RL algorithms work better with dense rewards than
sparse ones. It is tempting to introduce
intermediary rewards.

You end up covering so many special cases that it
becomes unusable:

Go as fast as you can but not in a curve, except
if you are on a closed circuit but not if it rains…

In the OpenAI Lego stacking paper, it was perhaps harder to define the reward function than to implement
DDPG.

Deep Reinforcement Learning for Dexterous Deep Reinforcement Learning for Dexterous ……

Popov et al. ( ) Data-efficient Deep Reinforcement Learning for Dexterous Manipulation. arXiv:1704.03073.2017 15 / 48

https://www.youtube.com/watch?v=8QnD8ZM0YCo


Inverse Reinforcement Learning
The goal of inverse RL is to learn from
demonstrations (e.g. from humans) which reward
function is maximized.

This is not imitation learning, where you try to learn
and reproduce actions.

The goal if to find a parametrized representation of
the reward function:

When the reward function has been learned, you
can train a RL algorithm to find the optimal policy.http://www.miubiq.cs.titech.ac.jp/modeling-risk-anticipation-and-defensive-

driving-on-residential-roads-using-inverse-reinforcement-learning/

(s) =r̂  w  φ  (s)
i=1

∑
K

i i

Arora and Doshi ( ) A Survey of Inverse Reinforcement Learning: Challenges, Methods and Progress. arXiv:1806.068772019 16 / 48
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Intrinsic motivation and curiosity
One fundamental problem of RL is its dependence on the reward function. 

When rewards are sparse, the agent does not learn much
(but see successor representations) unless its random
exploration policy makes it discover rewards.

The reward function is handmade, what is difficult in
realistic complex problems.

Human learning does not (only) rely on maximizing rewards or achieving
goals.

Especially infants discover the world by playing, i.e. interacting with the
environment out of curiosity.

What happens if I do that? Oh, that’s fun.

This called intrinsic motivation: we are motivated by understanding the
world, not only by getting rewards.

Rewards are internally generated.

Credit: https://vimeo.com/felixsteger

Barto ( ) Intrinsic Motivation and Reinforcement Learning In Intrinsically Motivated Learning in Natural and Artificial Systems. doi:10.1007/978-3-642-32375-1_22013 18 / 48

https://vimeo.com/felixsteger


Intrinsic motivation and curiosity
What is intrinsically rewarding / motivating / fun? Mostly what has unexpected consequences.

If you can predict what is going to happen, it becomes boring.

If you cannot predict, you can become curious and try to explore that action.  

The intrinsic reward (IR) of an action is defined as
the sensory prediction error:

where  is a forward model predicting the
sensory consequences of an action.

An agent maximizing the IR will tend to visit
unknown / poorly predicted states (exploration).

Source: https://medium.com/data-from-the-trenches/curiosity-driven-
learning-through-next-state-prediction-f7f4e2f592fa

IR(s  , a  , s  ) =t t t+1 ∣∣f(s  , a  ) −t t s  ∣∣t+1

f(s  , a  )t t
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Intrinsic motivation and curiosity
Is it a good idea to predict frames directly?

Frames are highly dimensional and there will
always be a remaining error.

Moreover, they can be noisy and unpredictable,
without being particularly interesting.

What can we do? As usual, predict in a latent space!

Source: https://medium.com/data-from-the-trenches/curiosity-driven-
learning-through-next-state-prediction-f7f4e2f592fa

Source: Giphy
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Intrinsic curiosity module (ICM)
The intrinsic curiosity module (ICM) learns to provide an intrinsic reward for a transition  by
comparing the predicted latent representation  (using a forward model) to its “true” latent
representation .

The feature representation  is trained using an inverse model predicting the action leading from 
to .

(s  , a  , s  )t t t+1

 (s  )ϕ̂ t+1

ϕ(s  )t+1

ϕ(s  )t s  t

s  t+1

Pathak et al. ( ) Curiosity-driven Exploration by Self-supervised Prediction. arXiv:170505363.2017 21 / 48



Intrinsic motivation and curiosity

Curiosity Driven Exploration by Self-Supervised PredictionCuriosity Driven Exploration by Self-Supervised Prediction
ShareShare

Pathak et al. ( ) Curiosity-driven Exploration by Self-supervised Prediction. arXiv:170505363.2017 22 / 48

https://www.youtube.com/watch?v=J3FHOyhUn3A


Intrinsic motivation and curiosity

Curiosity-Driven Learning: AI agents exploring without looking at any scoresCuriosity-Driven Learning: AI agents exploring without looking at any scores
ShareShare

Burda et al. ( ) Large-Scale Study of Curiosity-Driven Learning. arXiv:180804355. 2018 https://pathak22.github.io/large-scale-curiosity/ 23 / 48

https://www.youtube.com/watch?v=l1FqtAHfJLI
https://pathak22.github.io/large-scale-curiosity/


Additional readings
Oudeyer P-Y, Gottlieb J, Lopes M. (2016). Chapter 11 - Intrinsic motivation, curiosity, and learning: Theory
and applications in educational technologies In: Studer B, Knecht S, editors. Progress in Brain Research,
Motivation. Elsevier. pp. 257–284. doi:10.1016/bs.pbr.2016.05.005

Pathak D, Agrawal P, Efros AA, Darrell T. (2017). Curiosity-driven Exploration by Self-supervised Prediction.
arXiv:170505363.

Burda Y, Edwards H, Pathak D, Storkey A, Darrell T, Efros AA. (2018). Large-Scale Study of Curiosity-Driven
Learning. arXiv:180804355.

Aubret A, Matignon L, Hassas S. (2019). A survey on intrinsic motivation in reinforcement learning.
arXiv:190806976.
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4 - Hierarchical RL - learning different action levels
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Hierarchical RL - learning different action levels
In all previous RL methods, the action space is fixed.

When you read a recipe, the actions are “Cut carrots”, “Boil water”, etc.

But how do you perform these high-level actions? Break them into subtasks iteratively until you arrive to
muscle activations.

But it is not possible to learn to cook a boeuf bourguignon using muscle activations as actions.

Source: https://thegradient.pub/the-promise-of-hierarchical-reinforcement-learning/
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Meta-Learning Shared Hierarchies
Sub-policies (options) can be trained to solve simple tasks (going left, right, etc).

A meta-learner or controller then learns to call each sub-policy when needed, at a much lower frequency.

Frans et al. ( ) Meta Learning Shared Hierarchies. arXiv:1710.097672017 27 / 48



Meta-Learning Shared Hierarchies

Learning a HierarchyLearning a Hierarchy
ShareShare

https://openai.com/blog/learning-a-hierarchy/ 28 / 48

https://www.youtube.com/watch?v=zkJmH4NlzPs
https://openai.com/blog/learning-a-hierarchy/


Meta-Learning Shared Hierarchies

Learning a HierarchyLearning a Hierarchy
ShareShare

https://openai.com/blog/learning-a-hierarchy/ 29 / 48
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Hierarchical Reinforcement Learning
MLSH: Frans, K., Ho, J., Chen, X., Abbeel, P., and Schulman, J. (2017). Meta Learning Shared Hierarchies.
arXiv:1710.09767.

FUN: Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jaderberg, M., Silver, D., et al. (2017). FeUdal
Networks for Hierarchical Reinforcement Learning. arXiv:1703.01161 .

Option-Critic architecture: Bacon, P.-L., Harb, J., and Precup, D. (2016). The Option-Critic Architecture.
arXiv:1609.05140.

HIRO: Nachum, O., Gu, S., Lee, H., and Levine, S. (2018). Data-Efficient Hierarchical Reinforcement
Learning. arXiv:1805.08296.

HAC: Levy, A., Konidaris, G., Platt, R., and Saenko, K. (2019). Learning Multi-Level Hierarchies with
Hindsight. arXiv:1712.00948.

Spinal-cortical: Heess, N., Wayne, G., Tassa, Y., Lillicrap, T., Riedmiller, M., and Silver, D. (2016). Learning
and Transfer of Modulated Locomotor Controllers. arXiv:1610.05182.
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5 - Meta Reinforcement learning - RL^2
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Meta RL: Learning to learn
Meta learning is the ability to reuse skills acquired on a set of tasks to quickly acquire new (similar) ones
(generalization).

Source: https://meta-world.github.io/
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Meta RL: Learning to learn
Meta RL is based on the idea of fast and slow learning:

Slow learning is the adaptation of weights in the NN.

Fast learning is the adaptation to changes in the environment.

A simple strategy developed concurrently by (Wang et al. 2016) and (Duan et
al. 2016) is to have a model-free algorithm (e.g. A3C) integrate with a LSTM
layer not only the current state , but also the previous action  and
reward .

The policy of the agent becomes memory-guided: it selects an action
depending on what it did before, not only the state.

s  t a  t−1

r  t

Wang et al. ( ) Learning to reinforcement learn. arXiv:161105763.2016 33 / 48



Meta RL: Learning to learn

The algorithm is trained on a set of similar MDPs:

1. Select a MDP .

2. Reset the internal state of the LSTM.

3. Sample trajectories and adapt the weights.

4. Repeat 1, 2 and 3.

M

Duan et al. ( ) RL^2: Fast Reinforcement Learning via Slow Reinforcement Learning. arXiv:161102779.2016 34 / 48



Meta RL: Learning to learn
The meta RL can be be trained an a multitude of 2-armed bandits, each giving a reward of 1 with
probability  and .

Left is a classical bandit algorithm, right is the meta bandit:

The meta bandit has learned that the best strategy for any 2-armed bandit is to sample both actions
randomly at the beginning and then stick to the best one.

The meta bandit does not learn to solve each problem, it learns how to solve them.

p 1 − p

Source: https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-tensorflow-b15b592a2ddf
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Model-Based Meta-Reinforcement Learning for Flight with Suspended
Payloads

Model-Based Meta-Reinforcement Learning for Flight with Suspended PayloadsModel-Based Meta-Reinforcement Learning for Flight with Suspended Payloads
ShareShare

Belkhale et al. ( ) Model-Based Meta-Reinforcement Learning for Flight with Suspended Payloads. IEEE Robot Autom Lett. 2021 https://sites.google.com/view/meta-rl-for-flight 36 / 48

https://www.youtube.com/watch?v=AP5FgKjFpvQ
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Additional readings
Meta RL: Wang JX, Kurth-Nelson Z, Tirumala D, Soyer H, Leibo JZ, Munos R, Blundell C, Kumaran D,
Botvinick M. (2016). Learning to reinforcement learn. arXiv:161105763.

RL  Duan Y, Schulman J, Chen X, Bartlett PL, Sutskever I, Abbeel P. 2016. RL : Fast Reinforcement
Learning via Slow Reinforcement Learning. arXiv:161102779.

MAML: Finn C, Abbeel P, Levine S. (2017). Model-Agnostic Meta-Learning for Fast Adaptation of Deep
Networks. arXiv:170303400.

PEARL: Rakelly K, Zhou A, Quillen D, Finn C, Levine S. (2019). Efficient Off-Policy Meta-Reinforcement
Learning via Probabilistic Context Variables. arXiv:190308254.

POET: Wang R, Lehman J, Clune J, Stanley KO. (2019). Paired Open-Ended Trailblazer (POET): Endlessly
Generating Increasingly Complex and Diverse Learning Environments and Their Solutions.
arXiv:190101753.

MetaGenRL: Kirsch L, van Steenkiste S, Schmidhuber J. (2020). Improving Generalization in Meta
Reinforcement Learning using Learned Objectives. arXiv:191004098.

Botvinick M, Ritter S, Wang JX, Kurth-Nelson Z, Blundell C, Hassabis D. (2019). Reinforcement Learning,
Fast and Slow. Trends in Cognitive Sciences 23:408–422. doi:10.1016/j.tics.2019.02.006

2 2
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Additional resources
https://lilianweng.github.io/lil-log/2019/06/23/meta-reinforcement-learning.html

https://hackernoon.com/learning-policies-for-learning-policies-meta-reinforcement-learning-rl%C2%B2-in-
tensorflow-b15b592a2ddf

https://towardsdatascience.com/learning-to-learn-more-meta-reinforcement-learning-f0cc92c178c1

https://eng.uber.com/poet-open-ended-deep-learning/
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Offline RL
Even off-policy algorithms need to interact with the environment: the behavior policy is -soft around the
learned policy.

Is it possible to learn purely offline from recorded transitions using another policy (experts)? Data
efficiency.

This would bring safety: the agent would not explore dangerous actions.

ϵ

Source: https://ai.googleblog.com/2020/04/an-optimistic-perspective-on-offline.html 40 / 48
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D4RL
D4RL ( ) provides offline data recorded using expert policies to
test offline algorithms.

https://sites.google.com/view/d4rl/home

https://ai.googleblog.com/2020/08/tackling-open-challenges-in-offline.html
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Behavioral cloning
As no exploration is allowed, the model is limited by the quality of the data: if the acquisition policy is
random, there is not much to hope.

If we have already a good policy, but slow or expensive to compute, we could try to transfer it to a fast
neural network.

If the policy is a human expert, it is called learning from demonstrations (lfd) or imitation learning.

The simplest approach to offline RL is behavioral cloning: simply supervised learning of  pairs…(s, a)

Bojarski et al. ( ) End to end learning for self-driving cars. arXiv:1604.073162016 42 / 48



Dave2 : NVIDIA’s self-driving car

NVIDIA Autonomous CarNVIDIA Autonomous Car
ShareShare
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https://www.youtube.com/watch?v=qhUvQiKec2U


Distribution shift
The main problem in offline RL is the distribution shift: what if the trained policy assigns a non-zero
probability to a  pair that is outside the training data?

Most offline RL methods are conservative methods, which try to learn policies staying close to the known
distribution of the data. Examples:

Batch-Contrained deep Q-learning (model-free), MOREL (model-based)…

(s, a)

Source: https://kenshinhm.tistory.com/37
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Decision transformer
Transformers are the new SotA method to transform sequences into sequences.

Why not sequences of states into sequences of actions?

The decision transformer takes complete offline trajectories as inputs (s, a, r, s…) and predicts
autoregressively the next action.

Source: https://arxiv.org/abs/2106.01345
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Transformers as World models

Micheli et al. ( ) Transformers are Sample Efficient World Models (arXiv:2209.00588). https://doi.org/10.48550/arXiv.2209.005882022 46 / 48



Additional readings
Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline Reinforcement Learning: Tutorial, Review, and
Perspectives on Open Problems. ArXiv:2005.01643 [Cs, Stat]. http://arxiv.org/abs/2005.01643

Kidambi, R., Rajeswaran, A., Netrapalli, P., & Joachims, T. (2021). MOReL: Model-Based Offline
Reinforcement Learning. ArXiv:2005.05951 [Cs, Stat]. http://arxiv.org/abs/2005.05951

Fujimoto, S., Meger, D., & Precup, D. (2019). Off-Policy Deep Reinforcement Learning without Exploration.
Proceedings of the 36th International Conference on Machine Learning, 2052–2062.
https://proceedings.mlr.press/v97/fujimoto19a.html

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srinivas, A., & Mordatch, I. (2021).
Decision Transformer: Reinforcement Learning via Sequence Modeling. ArXiv:2106.01345 [Cs].
http://arxiv.org/abs/2106.01345

Micheli, V., Alonso, E., & Fleuret, F. (2022). Transformers are Sample Efficient World Models
(arXiv:2209.00588). arXiv. https://doi.org/10.48550/arXiv.2209.00588
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