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Biological neuron

e The human brain is composed of 100 billion
neurons.

e A biological neuron is a cell, composed of a cell
body (soma), multiple dendrites and an axon.

e The axon of a neuron can contact the dendrites of
another through synapses to transmit information.

e There are hundreds of different types of neurons,
each with different properties.

Fostsynaptic Neuron

https://www.verywellmind.com/what-is-a-neuron-2794890 Presynaptic Neuron
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Synapse

https://en.wikipedia.org/wiki/Neuron
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Biological neuron

https://en.wikipedia.org/wiki/Action_potential

+40

Vokage (mv)

=55
-70

Threshold

Action
pot ential

Faled
inkiations

..-"":;_r-__

Restng state

Stir|'||_|||_|51I

Refractory
period

2 3 4 5
Tirme (rmis)

e Neurons are negatively charged: they have a resting potential at around -70 mV.

 When a neuron receives enough input currents, its membrane potential can exceed a threshold and the
neuron emits an action potential (or spike) along its axon.

e A spike has a very small duration (1 or 2 ms) and its amplitude is rather constant.

e |tis followed by a refractory period where the neuron is hyperpolarized, limiting the number of spikes per

second to 200.
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https://en.wikipedia.org/wiki/Action_potential

Biological neuron

https://en.wikipedia.org/wiki/Neuron

e The action potential arrives at the synapses and
releases neurotransmitters in the synaptic cleft:

glutamate (AMPA, NMDA)
GABA

dopamine

serotonin

nicotin

etc...

e Neurotransmitters can enter the receiving neuron
through receptors and change its potential: the
neuron may emit a spike too.

e Synaptic currents change the membrane potential
of the post.synaptic neuron.

 The change depends on the strength of the
synapse called the synaptic efficiency or weight.

e Some synapses are stronger than others, and have
a larger influence on the post-synaptic cell.
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https://en.wikipedia.org/wiki/Neuron

Biological neuron

Biological Neural Network Signal Propagation Overview
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https://www.youtube.com/watch?v=WCqNn9PEELw

Information is transmitted through spike trains

neuronal spiking e The two important dimensions of the information

WAl e B I L S SR exchanged by neurons are:

sed ) "fq o' % e, ) '-:- 'Lr’-:.' .': L * '-'1 :-.-‘:' * 'ti" . "

A S O IR LA IR M R I S : :
W e g SR RS g abyh et L = The instantaneous frequency or firing rate:
SRS SRR ST TN AT S TR Y, MV -‘-', C sl .

P R S - B S N number of spikes per second (Hz).

. ‘7; IR AL DA S SRR 5 TR O S RAN
B I T U+ M L S L = The precise timing of the spikes.
AR TR L R W R A

¥ 4 ‘P, o i * Tone foy II‘ : 5. i | 1o |

o o1 02 o3 04 o5 06 o1 UB ' TR e The Shape of the Spike (amplitude, duration) does
not matter much.

local field potential

\ ” " /\ v o Spikes are binary signals (0 or 1) at precise
ﬁ /\ /\ / moments of time.

\ \ \ \ e Some neuron models called rate-coded models

\/ ’ \ J only represent the firing rate of a neuron and ignore
V.V \J | \/ V, spike timing.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time [s] e Other models called spiking models represent
explicitly the spiking behavior.

Source: https://en.wikipedia.org/wiki/Neural_oscillation
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https://en.wikipedia.org/wiki/Neural_oscillation

The Hodgkin-Huxley neuron (Hodgkin and Huxley, 1952)

Extracellular Medium e Alan Hodgkin and Andrew Huxley (Nobel prize 1963) were the
first to propose a detailed mathematical model of the giant
squid neuron.

e The membrane potential V' of the neuron is governed by an
electrical circuit, including sodium and potassium channels.

e The membrane has a capacitance C' that models the
dynamics of the membrane (time constant).

e The conductance gy, allows the membrane potential to relax

back to its resting potential £, in the absence of external
currents.

e For electrical engineers: it is a simple RC network...

o External currents (synaptic inputs) perturb the membrane
potential and can bring the neuron to fire an action potential.

https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model
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https://en.wikipedia.org/wiki/Hodgkin%E2%80%93Huxley_model

The Hodgkin-Huxley neuron (Hodgkin and Huxley, 1952)

e Their model include:

a, = 0.01 (v + 60)/(1.0 — exp(—0.1 (v + 60)))
am = 0.1 (v+45)/(1.0 — exp(—0.1 (v + 45)))
ap = 0.07 exp(—0.05 (v + 70))

b, = 0.125 exp(—0.0125 (v + 70))

= An ordinary differential equation
(ODE) for the membrane potential v.

= Three ODEs forn, m and h
representing potassium channel

activation, sodium channel b = 4 exp(—(v + 70)/80)
activation, and sodium channel br, = 1/(1 + exp(—0.1 (v + 40)))
Inactivation.
= Several parameters determined d_n _ 1—n)—b
experimentally. at o (1=n)=bnn
e Not only did they design experiments to
find the parameters, but they designed d_m — (1 o m) —b.m
the equations themselves. dt " "
dh
— =ap(l1—h)—0byh
g~ =R =0
dv
C— =9 (Vo —v)+ggn* (Vg —v) + gnam® h (Vaa —v) + 1

dt
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The Hodgkin-Huxley neuron (Hodgkin and Huxley, 1952)

e These equations allow to describe very precisely how an action potential is created from external

M
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The leaky integrate-and-fire neuron (Lapicque, 1907)

As action potentials are stereotypical, it is a waste
of computational resources to model their
generation precisely.

What actually matters are the sub-threshold

dynamics, i.e. what happens before the spike is
emitted.

The leaky integrate-and-fire (LIF) neuron integrates

its input current and emits a spike if the membrane
potential exceeds a threshold.

dv

Cdt

=—gr(v—-V)+1

if v > Vr emit a spike and reset.

membrane potential v (mV)

20

40 60
time (ms)

80

100
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Different spiking neuron models are possible

e Izhikevich quadratic IF (Izhikevich, o Adaptive exponential IF (AdEXx, Brette and Gerstner,
2001). 2005).
dv dv V — VT
— =0.04v* +5v+140 —u + I C— = —g1 (v— Er)+g1 Ar exp( )
dt dt A
— =a(bv —u)
dt
dw ( Ep) - w
Tw — = a(v— B1) —
Y dt
LIF Izhikevich Adaptive Exponential IF
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Realistic neuron models can reproduce a variety of dynamics

a) tonic spiking b) adaptation Biological neurons do nqt all
0 0 respond the same to an input

current.
-20

e Some fire regularly.

—40
~60 / e Some slow down with time.
—60 \ 80

e Some emit bursts of spikes.

0 2000 4000 0 2000 4000 o .
o | Modern spiking neuron models
0 €) initial burst 0 d) regular bursting allow to recreate these dynamics by
changing a few parameters.
—20 —20
~40 -40
—60 —60

0 2000 4000 0 2000 4000
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Populations of spiking neurons

e Interconnected networks of spiking neurons tend to
fire synchronously (redundancy).
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e |t can be estimated by an histogram of the spikes
emitted by a network of similar neurons, or by
repeating the same experiment multiple times for a
single neuron.

Histogram
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e One can also build neural models that directly
model the firing rate of (a population of) neuron(s):

the rate-coded neuron.

40
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Izhikevich, E.M. (2003). Simple Model of Spiking Neurons, IEEE Transaction on Neural Networks, 14:6 13/26



The rate-coded neuron

e Arate-coded neuron is represented by two time-dependent variables:
= The “membrane potential” v(¢) which evolves over time using an ODE.
= The firing rate r(t) which transforms the membrane potential into a single continuous value using a

transfer function or activation function.

Rate-coded neuron

d

Membrane dv (t)

potential Firing rate T I ’U(t) — wz', T (t) _|_ b
o) () dt Zl :

- fO ——

Activation r(t) = f(v(t))

function

e The membrane potential uses a weighted sum of inputs (the firing rates 7; (t) of other neurons) by

multiplying each rate with a weight w; and adds a constant value b (the bias). The activation function can
be any non-linear function, usually making sure that the firing rate is positive.
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The rate-coded neuron

e Let's consider a simple rate-coded neuron taking a

1.0 step signal I (%) as input:
0.8
dvu(t)

g 06 " dt Fult) = 1)
£ o4 r(t) = (v(t))"

0.2 o The “speed” of v(t) is given by its temporal

. derivative:

0 20 4Q 60 80 100
time (ms) dv (t) I(t) o U(t)

dt T

« When v(t) is quite different from I(t), the membrane potential “accelerates” to reduce the difference.

« When v(t) is similar to I (), the membrane potential stays constant.
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The rate-coded neuron

e The membrane potential follows an exponential
function which tries to “match” its input with a

speed determined by the time constant 7.

1.0

e The time constant 7 determines how fast the rate-
coded neuron matches its inputs.

e Biological neurons have time constants between 5

and 30 ms depending on the cell type.
0.2

0.0

0 20 40 60 80 100
time (ms)
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Activation functions

rectifier f{x) = max(0, x) piecewise linear f(x) = |x|2
4 2
2 1
| iy 0 2 4 —4 —2 0 2 -
sigmoid f{x) = 1/(1 + exp(—x)) tanh flx) = tanh(x)
1.00

0.75
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Rectifier activation function

 When using the rectifier activation function

f(z) = max(0, z)

the membrane potential v(t) can take any value, but the firing rate 7(t) is only positive.
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Logistic activation function

o When using the logistic (or sigmoid) activation function

1

fl@) = 1 + exp(—x)

the firing rate 'r'(t) Is bounded between 0 and 1, but responds for negative membrane potentials.
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Networks of rate-coded neurons

o Networks of interconnected rate-coded neurons can exhibit very complex dynamics (e.g. reservoir
computing).

dvu(t)

T +u(t) = Y w I(t)+g Yy whr(t)+£(t)
input rec
r(t) = tanh(v(t))
Input layer _Rggervoir Readout layer

0.75

0.50

0.25

0.00

firing rate r

—0.50

—0.75

—1.00

0 500 1000 1500 2000 2500 3000
time (ms)
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The McCulloch & Pitts neuron (McCulloch and Pitts, 1943)

e By omitting the dynamics of the rate-coded neuron, one obtains the very simple artificial neuron:

Inputs Artificial neuron
Weights Bias
w1 b ( d )
Net y=1f g w; ¢; + b
w2 activation Output i1
Y
w A\ 2 10— - "
e An artificial neuron sums its inputs x1,..., x4 by
Activation : : : :
W finction multiplying them with weights wq, ..., wy, adds a

e T
e T

bias b and transforms the result into an output y
using an activation function f.

e The output y directly reflects the input, without
temporal integration.

. . . d : . ..
ne weighted sum of inputs + bias Zizl w; x; + bis called the net activation.

nis overly simplified neuron model is the basic unit of the artificial neural networks (ANN) used in

machine learning / deep learning.
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Artificial neurons and hyperplanes

e Let's consider an artificial neuron with only two inputs 21 and x5.
e The net activation wy 1 + wy o + b is the equation of a line in the space (5131, :cg).
w1 b

wixi +woxreo+b=0 19 = —— 11
w2 w2
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Artificial neurons and hyperplanes

Z e We can write the net activation using a weight
vector w and a bias b:

d
Zwiwi—l—b:<w-x>—|—b

1=1
with:
w1 L1
w2 L2
W = X =
https://newvitruvian.com/explore/vector-planes/#gal_post_7186_nonzero-
vector.gif w, T

e The net activation defines a line in 2D, a plane in 3D,

etc o (-) is the dot product (aka inner product, scalar

product) between the input vector x and the weight

e Generally, the net activation describes an
vector w.

hyperplane in the input space with d dimensions
(21, X2,...,2q). e The weight vector is orthogonal to the hyperplane

(w, b) and defines its orientation. b is the “signed

e Anh | h di ion less than th
N YPETpIane has ohe dimension 1ess than the distance” between the hyperplane and the origin.

space.
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Artificial neurons and hyperplanes

e The hyperplane separates the input space into two parts:
= (w-Xx)+ b > 0for all points x above the hyperplane.
» (W -X)+ b < 0for all points x below the hyperplane.

e By looking at the sign of the net activation, we can separate the input space into two classes.
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Overview of neuron models

Biological plausibility

Artificial neuron

Machine learning

—
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/B Neural_ Network 3D Simulation

Hidden Neurons: 2000
Synapses: 1191000
Synapses shown: 2%
Learning: WCor
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https://www.youtube.com/watch?v=3JQ3hYko51Y

