ぎ華

UNIVERSITY OF TECHNOLOGY
in the european capital of culture CHEMNITZ

Neurocomputing

Optimization

Julien Vitay

Professur für Künstliche Intelligenz－Fakultät für Informatik

1-Optimization
\equiv

Machine learning = Optimization

- Machine learning is all about optimization:
- Supervised learning minimizes the error between the prediction and the data.
- Unsupervised learning maximizes the fit between the model and the data
- Reinforcement learning maximizes the collection of rewards.
- The function to be optimized is called the objective function, cost function or loss function.
- ML searches for the value of free parameters which optimize the objective function on the data set.
- The simplest optimization method is the gradient descent (or ascent) method.

Analytical optimization

- The easiest method to find the extremum of a function $f(x)$ is to look where its first derivative is equal to 0 :

$$
\begin{aligned}
& x^{*}=\min _{x} f(x) \Leftrightarrow f^{\prime}\left(x^{*}\right)=0 \text { and } f^{\prime \prime}\left(x^{*}\right)>0 \\
& x^{*}=\max _{x} f(x) \Leftrightarrow f^{\prime}\left(x^{*}\right)=0 \text { and } f^{\prime \prime}\left(x^{*}\right)<0
\end{aligned}
$$

- The sign of the second order derivative tells us whether it is a maximum or minimum.
- There can be multiple minima or maxima (or none) depending on the function.
- The "best" minimum (with the lowest value among all minima) is called the global minimum.
- The others are called local minima.

Multivariate optimization

- A multivariate function is a function of more than one variable, e.g. $f(x, y)$.
- A point $\left(x^{*}, y^{*}\right)$ is an extremum of f if all partial derivatives are zero at the same time:

$$
\left\{\begin{array}{l}
\frac{\partial f\left(x^{*}, y^{*}\right)}{\partial x}=0 \\
\frac{\partial f\left(x^{*}, y^{*}\right)}{\partial y}=0
\end{array}\right.
$$

- The vector of partial derivatives is called the gradient of the function:

$$
\nabla_{x, y} f(x, y)=\left[\begin{array}{l}
\frac{\partial f(x, y)}{\partial x} \\
\frac{\partial f(x, y)}{\partial y}
\end{array}\right]
$$

- Finding the extremum of f is searching for the values of (x, y) where the gradient of the function is the zero vector:

$$
\nabla_{x, y} f\left(x^{*}, y^{*}\right)=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Multivariate optimization : example

- Let's consider this function:

$$
f(x, y)=(x-1)^{2}+y^{2}+1
$$

- Its gradient is:

$$
\nabla_{x, y} f(x, y)=\left[\begin{array}{c}
2(x-1) \\
2 y
\end{array}\right]
$$

- The gradient is equal to 0 when:

$$
\left\{\begin{array}{l}
2(x-1)=0 \\
2 y=0
\end{array}\right.
$$

- $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is the minimum of f.
- One should check the second order derivative to know whether it is a minimum or maximum...

2 - Gradient descent

Problem with analytical optimization

- In machine learning, we generally do not have access to the analytical form of the objective function.
- We can not therefore get its derivative and search where it is 0 .
- However, we have access to its value (and derivative) for certain values, for example:

$$
f(0,1)=2 \quad f^{\prime}(0,1)=-1.5
$$

- We can "ask" the model for as many values as we want, but we never get its analytical form.
- For most useful problems, the function would be too complex to differentiate anyway.

Euler method

- Let's remember the definition of the derivative of a function. The derivative $f^{\prime}(x)$ is defined by the slope of the tangent of the function:

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x+h-x} \\
& =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
\end{aligned}
$$

- If we take h small enough, we have the following approximation:

$$
f(x+h)-f(x) \approx h f^{\prime}(x)
$$

- We are making an error, but it is negligible if h is small enough (Taylor series).

Euler method

- First order approximation:

$$
f(x+h)-f(x) \approx h f^{\prime}(x)
$$

- If we want $x+h$ to be closer to the minimum than x, we want:

$$
f(x+h)<f(x)
$$

- We therefore want that:

$$
h f^{\prime}(x)<0
$$

- The change h in the value of x must have the opposite sign of $f^{\prime}(x)$.
- If the function is increasing in x, the minimum is smaller than x.
- If the function is decreasing in x, the minimum is bigger than x.

Gradient descent

- Gradient descent (GD) is a first-order method to iteratively find the minimum of a function $f(x)$.

- It creates a series of estimates $\left[x_{0}, x_{1}, x_{2}, \ldots\right]$ that converges to a local minimum of f.
- Each element of the series is calculated based on the previous element and the derivative of the function in that element:

$$
x_{n+1}=x_{n}+\Delta x=x_{n}-\eta f^{\prime}\left(x_{n}\right)
$$

- η is a small parameter between 0 and 1 called the learning rate.

Gradient descent

Gradient descent algorithm

- We start with an initially wrong estimate of $x: x_{0}$
- for $n \in[0, \infty]$:
- We compute or estimate the derivative of the loss function in $x_{n}: f^{\prime}\left(x_{n}\right)$
- We compute a new value x_{n+1} for the estimate using the gradient descent update rule:

$$
\Delta x=x_{n+1}-x_{n}=-\eta f^{\prime}\left(x_{n}\right)
$$

- There is theoretically no end to the GD algorithm: we iterate forever and always get closer to the minimum.
- The algorithm can be stopped when the change Δx is below a threshold.

Gradient descent

Multivariate gradient descent

- Gradient descent can be applied to multivariate functions:

$$
\min _{x, y, z} \quad f(x, y, z)
$$

- Each variable is updated independently using partial derivatives:

$$
\begin{aligned}
& \Delta x=x_{n+1}-x_{n}=-\eta \frac{\partial f\left(x_{n}, y_{n}, z_{n}\right)}{\partial x} \\
& \Delta y=y_{n+1}-y_{n}=-\eta \frac{\partial f\left(x_{n}, y_{n}, z_{n}\right)}{\partial y} \\
& \Delta z=z_{n+1}-z_{n}=-\eta \frac{\partial f\left(x_{n}, y_{n}, z_{n}\right)}{\partial z}
\end{aligned}
$$

- We can also use the vector notation to use the gradient operator:

$$
\mathbf{x}_{n}=\left[\begin{array}{l}
x_{n} \\
y_{n} \\
z_{n}
\end{array}\right] \quad \text { and } \quad \nabla_{\mathbf{x}} f(\mathbf{x})=\left[\begin{array}{l}
\frac{\partial f(x, y, z)}{\partial x} \\
\frac{\partial f(x, y, z)}{\partial y} \\
\frac{\partial f(x, y, z)}{\partial z}
\end{array}\right]
$$

which gives:

$$
\Delta \mathbf{x}=-\eta \nabla_{\mathbf{x}} f\left(\mathbf{x}_{n}\right)
$$

Multivariate gradient descent

Influence of the learning rate

- The parameter η is called the learning rate (or step size) and regulates the speed of convergence.
- The choice of the learning rate η is critical:
- If it is too small, the algorithm will need a lot of iterations to converge.
- If it is too big, the algorithm can oscillate around the desired values without ever converging.

Optimality of gradient descent

- Gradient descent is not optimal: it always finds a local minimum, but there is no guarantee that it is the global minimum.
- The found solution depends on the initial choice of x_{0}. If you initialize the parameters near to the global minimum, you are lucky. But how?
- This will be a big issue in neural networks.

3 - Regularization

Regularization

- Most of the time, there are many minima to a function, if not an infinity.
- As GD only converges to the "closest" local minimum, you are never sure that you get a good solution.
- Consider the following function:

$$
f(x, y)=(x-1)^{2}
$$

- As it does not depend on y, whatever initial value y_{0} will be considered as a solution.
- As we will see later, this is something we do not want.

Regularization

L2 - Regularization

- We may want to put the additional constraint that x and y should be as small as possible.
- One possibility is to also minimize the Euclidian norm (or L2-norm) of the vector $\mathbf{x}=[x, y]$.

$$
\min _{x, y}\|\mathbf{x}\|^{2}=x^{2}+y^{2}
$$

- Note that this objective is in contradiction with the original objective: $(0,0)$ minimizes the norm, but not the function $f(x, y)$.
- We construct a new function as the sum of $f(x, y)$ and the norm of \mathbf{x}, weighted by the regularization parameter λ :

$$
\mathcal{L}(x, y)=f(x, y)+\lambda\left(x^{2}+y^{2}\right)
$$

L2 - Regularization

- For a fixed value of λ, for example 0.1 , we now minimize using gradient descent the following loss function function:

$$
\mathcal{L}(x, y)=f(x, y)+\lambda\left(x^{2}+y^{2}\right)
$$

- We just need to compute its gradient:

$$
\nabla_{x, y} \mathcal{L}(x, y)=\left[\begin{array}{l}
\frac{\partial f(x, y)}{\partial x}+2 \lambda x \\
\frac{\partial f(x, y)}{\partial y}+2 \lambda y
\end{array}\right]
$$

and apply gradient descent iteratively:

$$
\Delta\left[\begin{array}{l}
x \\
y
\end{array}\right]=-\eta \nabla_{x, y} \mathcal{L}(x, y)=-\eta\left[\begin{array}{l}
\frac{\partial f(x, y)}{\partial x}+2 \lambda x \\
\frac{\partial f(x, y)}{\partial y}+2 \lambda y
\end{array}\right]
$$

L2 - Regularization

L2 - Regularization

- You may notice that the result of the optimization is a bit off, it is not exactly $(1,0)$.
- This is because we do not optimize $f(x, y)$ directly, but $\mathcal{L}(x, y)$.
- Let's look at the real landscape of the function.

$$
\mathcal{L}(x, y)=f(x, y)+\lambda\left(x^{2}+y^{2}\right)
$$

L2 - Regularization

L2 - Regularization

- The optimization with GD works, it is just that the function is different.
- The constraint on the Euclidian norm "attracts" or "distorts" the function towards $(0,0)$.
- This may seem counter-intuitive, but we will see with deep networks that we can live with it.
- Let's now look at what happens when we increase λ (to 5.0).

L2 - Regularization

L2 - Regularization

L2 - Regularization

- Now the result of the optimization is totally wrong: the constraint on the norm completely dominates the optimization process.

$$
\mathcal{L}(x, y)=f(x, y)+\lambda\left(x^{2}+y^{2}\right)
$$

- λ controls which of the two objectives, $f(x, y)$ or $x^{2}+y^{2}$, has the priority:
- When λ is small, $f(x, y)$ dominates and the norm of \mathbf{x} can be anything.
- When λ is big, $x^{2}+y^{2}$ dominates, the result will be very small but $f(x, y)$ will have any value.
- The right value for λ is hard to find. We will see later methods to experimentally find its most adequate value.

L1 - Regularization

- Another form of regularization is L1 - regularization using the L1-norm (absolute values):

$$
\mathcal{L}(x, y)=f(x, y)+\lambda(|x|+|y|)
$$

- Its gradient only depend on the sign of x and y :

$$
\nabla_{x, y} \mathcal{L}(x, y)=\left[\begin{array}{l}
\frac{\partial f(x, y)}{\partial x}+\lambda \operatorname{sign}(x) \\
\frac{\partial f(x, y)}{\partial y}+\lambda \operatorname{sign}(y)
\end{array}\right]
$$

- It tends to lead to sparser value of (x, y), i.e. either x or y will be 0 .

L1-Regularization

