
Neurocomputing
Optimization

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
31

1 - Optimization

2
/
31

Machine learning = Optimization
Machine learning is all about optimization:

Supervised learning minimizes the error between the prediction and the data.

Unsupervised learning maximizes the fit between the model and the data

Reinforcement learning maximizes the collection of rewards.

The function to be optimized is called the objective
function, cost function or loss function.

ML searches for the value of free parameters
which optimize the objective function on the data
set.

The simplest optimization method is the gradient
descent (or ascent) method.

3
/
31

Analytical optimization
The easiest method to find the extremum of a function is to look where its first derivative is equal to
0:

The sign of the second order derivative tells us whether it is a maximum or minimum.

There can be multiple minima or maxima (or none)
depending on the function.

The “best” minimum (with the lowest value
among all minima) is called the global
minimum.

The others are called local minima.

f(x)

x =∗
​ f(x) ⇔

x
min f (x) =′ ∗ 0 and f (x) >′′ ∗ 0

x =∗ f(x) ⇔
x

max f (x) =′ ∗ 0 and f (x) <′′ ∗ 0

4
/
31

Multivariate optimization
A multivariate function is a function of more than one variable, e.g. .

A point is an extremum of if all partial
derivatives are zero at the same time:

The vector of partial derivatives is called the
gradient of the function:

Finding the extremum of is searching for the values of where the gradient of the function is the
zero vector:

f(x, y)

(x , y)∗ ∗ f

​ ​

⎩
⎨
⎧

​ = 0
∂x

∂f(x , y)∗ ∗

​ = 0
∂y

∂f(x , y)∗ ∗

∇ ​ f(x, y) =x,y ​ ​ ​

⎣
⎡

​

∂x
∂f(x, y)

​

∂y
∂f(x, y)⎦

⎤

f (x, y)

∇ ​ f(x , y) =x,y
∗ ∗

​[0
0

]

5
/
31

Multivariate optimization : example
Let’s consider this function:

Its gradient is:

The gradient is equal to 0 when:

 is the minimum of .

One should check the second order derivative to know whether it is a minimum or maximum…

f(x, y) = (x − 1) +2 y +2 1

∇ ​ f(x, y) =x,y ​[2(x − 1)
2y

]

​{2 (x − 1) = 0
2 y = 0

​[1
0

] f

6
/
31

2 - Gradient descent

7
/
31

Problem with analytical optimization
In machine learning, we generally do not have access to the analytical form of the objective function.

We can not therefore get its derivative and search where it is 0.

However, we have access to its value (and derivative) for certain values, for example:

We can “ask” the model for as many values as we want, but we never get its analytical form.

For most useful problems, the function would be too complex to differentiate anyway.

f(0, 1) = 2 f (0, 1) =′ −1.5

8
/
31

Euler method
Let’s remember the definition of the derivative of a
function. The derivative is defined by the
slope of the tangent of the function:

If we take small enough, we have the following
approximation:

We are making an error, but it is negligible if is
small enough (Taylor series).

f (x)′

f (x)′ = ​ ​

h→0
lim

x + h − x

f(x + h) − f(x)

= ​ ​

h→0
lim

h

f(x + h) − f(x)

h

f(x + h) − f(x) ≈ h f (x)′

h

9
/
31

Euler method
First order approximation:

If we want to be closer to the minimum than
, we want:

We therefore want that:

The change in the value of must have the
opposite sign of .

If the function is increasing in , the minimum
is smaller than .

If the function is decreasing in , the minimum
is bigger than .

f(x+ h) − f(x) ≈ h f (x)′

x+ h

x

f(x+ h) < f(x)

h f (x) <′ 0

h x

f (x)′

x

x

x

x

10
/
31

Gradient descent
Gradient descent (GD) is a first-order method to iteratively find the minimum of a function .

It creates a series of estimates that converges to a local minimum of .

Each element of the series is calculated based on the previous element and the derivative of the function
in that element:

 is a small parameter between 0 and 1 called the learning rate.

f(x)

[x ​,x ​,x , …]0 1 2 f

x ​ =n+1 x ​ +n Δx = x ​ −n η f (x ​)′
n

η

11
/
31

Gradient descent

We start with an initially wrong estimate of :

for :

We compute or estimate the derivative of the loss function in :

We compute a new value for the estimate using the gradient descent update rule:

There is theoretically no end to the GD algorithm: we iterate forever and always get closer to the
minimum.

The algorithm can be stopped when the change is below a threshold.

Gradient descent algorithm

x x ​0

n ∈ [0, ∞]

x ​n f (x ​)′
n

x ​n+1

Δx = x ​ −n+1 x ​ =n −η f (x ​)′
n

Δx

12
/
31

Gradient descent

13
/
31

Multivariate gradient descent
Gradient descent can be applied to multivariate
functions:

Each variable is updated independently using
partial derivatives:

We can also use the vector notation to use the
gradient operator:

which gives:

​ f(x, y, z)
x,y,z
min

Δx = x ​ −n+1 x ​ =n −η ​

∂x
∂f(x ​, y ​, z ​)n n n

Δy = y ​ −n+1 y ​ =n −η ​

∂y
∂f(x ​, y ​, z ​)n n n

Δz = z ​ −n+1 z ​ =n −η ​

∂z
∂f(x ​, y ​, z ​)n n n

x ​ =n ​ ​ ​ and ∇ ​ f(x) =⎣
⎡x ​n

y ​n

z ​n
⎦
⎤

x ​ ​ ​

⎣

⎡
​

∂x
∂f(x, y, z)

​

∂y
∂f(x, y, z)

​

∂z
∂f(x, y, z)⎦

⎤

Δx = −η ∇ ​ f(x ​)x n

14
/
31

Multivariate gradient descent

15
/
31

Influence of the learning rate

The parameter is called the learning rate (or step size) and regulates the speed of convergence.

The choice of the learning rate is critical:

If it is too small, the algorithm will need a lot of iterations to converge.

If it is too big, the algorithm can oscillate around the desired values without ever converging.

η

η

16
/
31

Optimality of gradient descent

Gradient descent is not optimal: it always finds a local minimum, but there is no guarantee that it is the
global minimum.

The found solution depends on the initial choice of . If you initialize the parameters near to the global
minimum, you are lucky. But how?

This will be a big issue in neural networks.

x ​0

17
/
31

3 - Regularization

18
/
31

Regularization
Most of the time, there are many minima to a function, if not an infinity.

As GD only converges to the “closest” local minimum, you are never sure that you get a good solution.

Consider the following function:

As it does not depend on , whatever initial value will be considered as a solution.

As we will see later, this is something we do not want.

f(x, y) = (x − 1)2

y y ​0

19
/
31

Regularization

20
/
31

L2 - Regularization
We may want to put the additional constraint that and should be as small as possible.

One possibility is to also minimize the Euclidian norm (or L2-norm) of the vector .

Note that this objective is in contradiction with the original objective: minimizes the norm, but not
the function .

We construct a new function as the sum of and the norm of , weighted by the regularization
parameter :

x y

x = [x, y]

​ ∣∣x∣∣ =
x,y

min 2 x +2 y2

(0, 0)
f(x, y)

f(x, y) x
λ

L(x, y) = f(x, y) + λ (x +2 y)2

21
/
31

L2 - Regularization
For a fixed value of , for example 0.1, we now minimize using gradient descent the following loss
function function:

We just need to compute its gradient:

and apply gradient descent iteratively:

λ

L(x, y) = f(x, y) + λ (x +2 y)2

∇ ​ L(x, y) =x,y ​ ​ ​

⎣
⎡

​ + 2λx
∂x

∂f(x, y)

​ + 2λ y
∂y

∂f(x, y) ⎦
⎤

Δ ​ =[x
y

] −η ∇ ​ L(x, y) =x,y −η ​ ​ ​

⎣
⎡

​ + 2λx
∂x

∂f(x, y)

​ + 2λ y
∂y

∂f(x, y) ⎦
⎤

22
/
31

L2 - Regularization

23
/
31

L2 - Regularization
You may notice that the result of the optimization is a bit off, it is not exactly .

This is because we do not optimize directly, but .

Let’s look at the real landscape of the function.

(1, 0)

f(x, y) L(x, y)

L(x, y) = f(x, y) + λ (x +2 y)2

24
/
31

L2 - Regularization

25
/
31

L2 - Regularization
The optimization with GD works, it is just that the function is different.

The constraint on the Euclidian norm “attracts” or “distorts” the function towards .

This may seem counter-intuitive, but we will see with deep networks that we can live with it.

Let’s now look at what happens when we increase (to 5.0).

(0, 0)

λ

26
/
31

L2 - Regularization

27
/
31

L2 - Regularization

28
/
31

L2 - Regularization
Now the result of the optimization is totally wrong: the constraint on the norm completely dominates the
optimization process.

 controls which of the two objectives, or , has the priority:

When is small, dominates and the norm of can be anything.

When is big, dominates, the result will be very small but will have any value.

The right value for is hard to find. We will see later methods to experimentally find its most adequate
value.

L(x, y) = f(x, y) + λ (x +2 y)2

λ f(x, y) x +2 y2

λ f(x, y) x

λ x +2 y2 f(x, y)

λ

29
/
31

L1 - Regularization
Another form of regularization is L1 - regularization using the L1-norm (absolute values):

Its gradient only depend on the sign of and :

It tends to lead to sparser value of , i.e. either or will be 0.

L(x, y) = f(x, y) + λ (∣x∣ + ∣y∣)

x y

∇ ​ L(x, y) =x,y ​ ​ ​

⎣
⎡

​ + λ sign(x)
∂x

∂f(x, y)

​ + λ sign(y)
∂y

∂f(x, y) ⎦
⎤

(x, y) x y

30
/
31

L1 - Regularization

31
/
31

