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Linear regression
We have a training set of N examples 

.

In linear regression, we want to learn a linear
model (hypothesis)  that is linearly dependent on
the input :

The free parameters of the model are

the slope ,

the intercept .

The data  is given (fixed).

D =
(x  , t )  i i i=1..N

y

x

y = f  (x) =w,b wx + b

w

b

D = (x  , t  )  i i i=1..N
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Linear regression
Mathematical model:

This corresponds to a single artificial neuron 
with:

one input ,

one weight ,

one bias ,

a linear activation function.

We will see that this generalizes to multiple inputs
and outputs.

Net 
activation Output

Activation
function.

.

.

Bias

Inputs

Weights

y = f  (x) =w,b wx + b

y

x

w

b
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Linear regression
The goal of the linear regression (or least mean squares - LMS) is to minimize the mean square error
(mse) between the targets and the predictions.

It is defined as the mathematical expectation of the quadratic error over the training data:

L(w, b) = E  [(t  −x  ,t  ∈Di i i y  ) ]i
2
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Linear regression
As the training set is finite and the samples i.i.d (independent and identically distributed), we can simply
replace the expectation by a sampling average:

L(w, b) =   (t  −
N

1

i=1

∑
N

i y  )i 2
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Linear regression
The minimum of the mse is achieved when the prediction  is equal to the ground truth 
for all training examples.

In other words, we want to minimize the residual error of the model on the data.

It is not always possible to obtain the global minimum (0) but the closer, the better.

y  =i f  (x  )w,b i t  i
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Gradient descent for linear regression
We search for  and  which minimize the mean square error:

We will apply gradient descent to iteratively modify estimates of  and :

w b

L(w, b) =   (t  −
N

1

i=1

∑
N

i y  )i 2

w b

Δw = −η  

∂w
∂L(w, b)

Δb = −η  

∂b
∂L(w, b)
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Gradient descent for linear regression
Let’s search for the partial derivative (gradient) of the quadratic error with respect to :

Partial derivatives are linear, so the derivative of a sum is the sum of the derivatives:

This means we can compute a gradient for each training example instead of for the whole training set
(see later the distinction batch/online):

w

 =
∂w

∂L(w, b)
 [   (t  −

∂w
∂

N

1

i=1

∑
N

i y  ) ]i
2

 =
∂w

∂L(w, b)
   (t  −

N

1

i=1

∑
N

∂w
∂

i y  )i 2

 =
∂w

∂L(w, b)
   l  (w, b) with l  (w, b) =

N

1

i=1

∑
N

∂w
∂

i i (t  −i y  )i 2
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Gradient descent for linear regression
The individual loss  is the composition of two functions:

a square error function .

the prediction .

The chain rule tells us how to derive such composite functions:

The first derivative considers  to be a single variable.

Applied to our problem, this gives:

l  (w, b) =i (t  −i y  )i 2

g  (y  ) =i i (t  −i y  )i 2

y  =i f  (x  ) =w,b i wx  +i b

 =
dx

df(g(x))
 ×

dg(x)
df(g(x))

 =
dx

dg(x)
 ×

dy

df(y)
 

dx

dg(x)

g(x)

 l  (w, b) =
∂w
∂

i  ×
∂y  i

∂g  (y  )i i
 

∂w
∂y  i
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Gradient descent for linear regression
The square error function  is easy to differentiate w.r.t :

The prediction  also w.r.t  and :

The partial derivative of the individual loss is:

g  (y) =i (t  −i y)2 y

 =
∂y  i

∂g  (y  )i i −2 (t  −i y  )i

y  =i wx  +i b w b

 =
∂w
∂y  i

x  i

 =
∂b
∂y  i 1

 =
∂w

∂l  (w, b)i −2 (t  −i y  )x  i i

 =
∂b

∂l  (w, b)i −2 (t  −i y  )i
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Gradient descent for linear regression
This gives us:

Gradient descent is then defined by the learning rules (absorbing the 2 in ):

 =
∂w

∂L(w, b)
−   (t  −
N

2

i=1

∑
N

i y  )x  i i

 =
∂b

∂L(w, b)
−   (t  −
N

2

i=1

∑
N

i y  )i

η

Δw = η   (t  −
N

1

i=1

∑
N

i y  )x  i i

Δb = η   (t  −
N

1

i=1

∑
N

i y  )i
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Least Mean Squares (LMS) - Ordinary Least Squares (OLS)
LMS is a batch algorithm: the parameter changes
are computed over the whole dataset.

The parameter changes have to be applied multiple
times (epochs) in order for the parameters to
converge.

One can stop when the parameters do not change
much, or after a fixed number of epochs.

for M epochs:

for each sample :

  

⎩
⎨
⎧

Δw = η   (t  − y  )x  

N

1

i=1

∑
N

i i i

Δb = η   (t  − y  )
N

1

i=1

∑
N

i i

Least Mean Squares algorithm

w = 0 ; b = 0

dw = 0 ; db = 0

(x  , t  )i i

y  =i wx  +i b

dw = dw + (t  −i y  )x  i i

db = db + (t  −i y  )i
Δw = η  dw

N
1

Δb = η  dbN
1
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Least mean squares in action
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Least mean squares
During learning, the mean square error (mse) decreases with the number of epochs but does not reach
zero because of the noise in the data.
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Delta learning rule: Online version of LMS
LMS is very slow, because it changes the weights
only after the whole training set has been
evaluated.

for M epochs:

for each sample :

It is also possible to update the weights immediately after each example using the delta learning rule:

The batch version is more stable, but the online version is faster: the weights have already learned
something when arriving at the end of the first epoch.

  

⎩
⎨
⎧

Δw = η   (t  − y  )x  

N

1

i=1

∑
N

i i i

Δb = η   (t  − y  )
N

1

i=1

∑
N

i i

Online version of LMS : delta learning rule

w = 0 ; b = 0

(x  , t  )i i

y  =i wx  +i b

Δw = η (t  −i y  )x  i i

Δb = η (t  −i y  )i

  ⎩⎨
⎧Δw = η (t  − y  )x  i i i

Δb = η (t  − y  )i i
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Delta learning rule in action (same learning rate!)
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Delta learning rule
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2 - Multiple linear regression
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Multiple linear regression
The key idea of linear regression (one input , one output ) can be generalized to multiple inputs and
outputs.

Multiple Linear Regression (MLR) predicts
several output variables based on several
explanatory variables or features:

All we have is some samples: we want to
know the best model for the data.

x y

  ⎩⎨
⎧y  = w  x  + w  x  + b  1 1 1 2 2 1

y  = w  x  + w  x  + b  2 3 1 4 2 2
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MLR example: fuel consumption and CO2 emissions
Let’s suppose you have 13971 measurements in some Excel file, linking engine size, number of cylinders,
fuel consumption and CO2 emissions of various cars.

You want to predict fuel consumption and CO2 emissions when you know the engine size and the number
of cylinders.

Engine size Cylinders Fuel consumption CO2 emissions

2 4 8.5 196

2.4 4 9.6 221

1.5 4 5.9 136

3.5 6 11 255

3.5 6 11 244

3.5 6 10 230

3.5 6 10 232

3.7 6 11 255

3.7 6 12 267

… … … …
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MLR example: fuel consumption and CO2 emissions
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MLR example: fuel consumption and CO2 emissions
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MLR example: fuel consumption and CO2 emissions
Noting the variables , , , , we can define our MLR problem:

and use the least mean squares method to obtain the value of the parameters.

Note: using the Python library scikit-learn ( ), this is done in two lines of code:

x  1 x  2 y  1 y  2

  ⎩⎨
⎧y  = w  x  + w  x  + b  1 1 1 2 2 1

y  = w  x  + w  x  + b  2 3 1 4 2 2

https://scikit-learn.org

from sklearn.linear_model import LinearRegression 
reg = LinearRegression().fit(X, y)
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Multiple linear regression
The system of equations:

can be put in a matrix-vector form:

We simply create the corresponding vectors and matrices:

 is the input vector,  is the output vector,  is the target vector.

 is called the weight matrix and  the bias vector.

  ⎩⎨
⎧y  = w  x  + w  x  + b  1 1 1 2 2 1

y  = w  x  + w  x  + b  2 3 1 4 2 2

 =[y  1

y  2
]   ×[w  1

w  3

w  2

w  4
]  +[x  1

x  2
]  [b  1

b  2
]

x =  y =[x  1

x  2
]  t =[y  1

y  2
]  b =[t  1

t  2
]  W =[b  1

b  2
]   [w  1

w  3

w  2

w  4
]

x y t
W b

y = f  (x) =W ,b W × x + b
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Multiple linear regression

The model is now defined by:

The problem is exactly the same as before, except that we use
vectors and matrices instead of scalars:  and  can have
any number of dimensions, the same procedure will apply.

This corresponds to a linear neural network (or linear
perceptron), with one output neuron per predicted value 
using the linear activation function.

y = f  (x) =W ,b W × x + b

x y

y  i
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Multiple linear regression
The mean square error still needs to be a scalar in order to be minimized. We can define it as the squared
norm of the error vector:

In order to apply gradient descent, one needs to calculate partial derivatives w.r.t the weight matrix 
and the bias vector , i.e. gradients:

Some more advanced linear algebra becomes important to know how to compute these gradients:

 L(W ,b) =
W ,b
min E  [∣∣t −D y∣∣ ] =2 E  [((t  −D 1 y  ) +1

2 (t  −2 y  ) )]2
2

W

b

  ⎩⎨
⎧ΔW = −η ∇  L(W ,b)W

Δb = −η ∇  L(W ,b)b

https://web.stanford.edu/class/cs224n/readings/gradient-notes.pdf
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Multiple linear regression
We search the minimum of the mse loss function:

The individual loss function  is the squared -norm of the error vector, what can be expressed
as a dot product or a vector multiplication:

Remember:

 L(W ,b) =
W ,b
min E  [∣∣t −D y∣∣ ] ≈2

  ∣∣t  −
N

1

i=1

∑
N

i y  ∣∣ =i
2

  l  (W ,b)
N

1

i=1

∑
N

i

l  (W ,b)i L2

l  (W ,b) =i ∣∣t  −i y  ∣∣ =i
2 ⟨t  −i y  ⋅i t  −i y  ⟩ =i (t  −i y  ) ×i

T (t  −i y  )i

x ×T x =     ×[x  1 x  2 … x  n]    =

⎣
⎡x  1

x  2

⋮
x  n
⎦
⎤

x  x  +1 1 x  x  +2 2 … + x  x  =n n ⟨x ⋅ x⟩ = ∣∣x∣∣  2
2
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Multiple linear regression
The chain rule tells us in principle that:

The gradient w.r.t the output vector  is quite easy to obtain, as it a quadratic function of :

The proof relies on product differentiation :

Note: We use the properties  and  to get rid of the transpose.

∇  l  (W ,b) =W i ∇  l  (W ,b) ×y  i i ∇  y  W i

y  i t  −i y  i

∇  l  (W ,b) =y  i i ∇  (t  −y  i i y  ) ×i
T (t  −i y  )i

(f × g) =′ f g +′ f g′

∇  (t  − y  ) × (t  − y  )y  i i i
T

i i = (∇ (t  − y  )) × (t  − y  ) + (t  − y  ) × ∇  (t  − y  )y  i i i i i i i y  i i i

= −(t  − y  ) − (t  − y  )i i i i

= −2 (t  − y  )i i

∇  x ×x
T z = z ∇  x ×z

T z = x
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Multiple linear regression

The “problem” is when computing :

 is a vector and  a matrix.

 is then a Jacobian (matrix), not a gradient (vector).

Intuitively, differentiating  w.r.t  should return , but it is a vector, not a matrix…

The gradient (or Jacobian) of  w.r.t  should be a matrix of the same size as  so that we can
apply gradient descent:

∇  y  =W i ∇  (W ×W x  +i b)

y  i W

∇  y  W i

W × x  +i b W x  i

l  (W ,b)i W W

ΔW = −η ∇  L(W ,b)W

30 / 68



Multiple linear regression
We already know that:

If  has  elements and   elements,  is a  matrix.

Remember the outer product between two vectors:

It is easy to see that the outer product between  and  gives a  matrix:

∇  l  (W ,b) =W i −2 (t  −i y  ) ×i ∇  y  W i

x  i n y  i m W m × n

u × v =T
      =

⎣
⎡u  1

u  2

u  3

u  4
⎦
⎤

[v  1 v  2 v  3]      .

⎣
⎡u  v  1 1

u  v  2 1

u  v  3 1

u  v  4 1

u  v  1 2

u  v  2 2

u  v  3 2

u  v  4 2

u  v  1 3

u  v  2 3

u  v  3 3

u  v  4 3
⎦
⎤

(t  −i y  )i x  i m × n

∇  l  (W ,b) =W i −2 (t  −i y  ) ×i x  i
T
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Example
Let’s prove it element per element:

The Jacobian w.r.t  can be explicitly formed using partial derivatives:

We can rearrange this matrix as an outer product:

y =  =[y  1

y  2
] W × x + b =   ×[w  1

w  3

w  2

w  4
]  +[x  1

x  2
]  [b  1

b  2
]

l(W ,b) = (t − y) ×T (t − y) =   ×[t − y  1 1 t  − y  2 2]  =[t  − y  1 1

t  − y  2 2
] (t  −1 y  ) +1

2 (t  −2 y  )2
2

W

∇  l(W ,b) =W     =

⎣
⎡

 

∂w  1

∂l(W ,b)

 

∂w  3

∂l(W ,b)

 

∂w  2

∂l(W ,b)

 

∂w  4

∂l(W ,b)⎦
⎤

    ⎣
⎡−2 (t  − y  )x  1 1 1

−2 (t  − y  )x  2 2 1

−2 (t  − y  )x  1 1 2

−2 (t  − y  )x  2 2 2
⎦
⎤

∇  l(W ,b) =W −2  ×[t  − y  1 1

t  − y  2 2
]   =[x  1 x  2] −2 (t − y) × xT
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Multiple linear regression
Batch version (least mean squares):

Online version (delta learning rule):
This is completely equivalent to having one
learning rule per parameter:

The delta learning rule is always of the form:  = eta  error  input. Biases have an input of 1.

  

⎩
⎨
⎧

ΔW = η   (t  − y  ) × x  

N

1

i=1

∑
N

i i i
T

Δb = η   (t  − y  )
N

1

i=1

∑
N

i i

  ⎩⎨
⎧ΔW = η (t  − y  ) × x  i i i

T

Δb = η (t  − y  )i i
   

⎩
⎨
⎧Δw  = η (t  − y  )x  1 1 1 1

Δw  = η (t  − y  )x  2 1 1 2

Δw  = η (t  − y  )x  3 2 2 1

Δw  = η (t  − y  )x  4 2 2 2

{Δb  = η (t  − y  )1 1 1

Δb  = η (t  − y  )2 2 2

Δw × ×
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3 - Logistic regression
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Logistic regression
Let’s suppose we want to perform a regression, but
where the outputs  are bounded between 0 and 1.

We could use a logistic (or sigmoid) function
instead of a linear function in order to transform
the input into an output:

The logistic function

has the nice property that

t  i

y = σ(wx + b) =  

1 + exp(−wx − b)
1

σ(x) =  

1 + exp(−x)
1

σ (x) =′ σ(x) (1 − σ(x))

35 / 68



Logistic regression
We can perform a logistic regression with the same online LMS method as in the linear case:

The partial derivative of the individual loss is easy to find using the chain rule:

The non-linear transfer function  adds its derivative into the gradient:

With the property , it even becomes:

so we do not even need to compute the derivative!

l  (w, b) =i (t  −i σ(wx  +i b))2

  

 

∂w
∂l  (w, b)i = 2 (t  − y  )  (t  − σ(wx  + b))i i ∂w

∂
i i

= −2 (t  − y  )σ (wx  + b)x  i i
′

i i

σ(x)

Δw = η (t  −i y  )σ (wx  +i
′

i b)x  i

σ (x) =′ σ(x) (1 − σ(x))

Δw = η (t  −i y  ) y  (1 −i i y  )x  i i
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Logistic regression
Model:

The delta learning rule in case of logistic regression
is:

Net 
activation Output

Activation
function.

.

.

Bias

Inputs

Weights

y = σ(wx + b) =  

1 + exp(−wx − b)
1

  ⎩⎨
⎧Δw = η (t  − y  ) y  (1 − y  )x  i i i i i

Δb = η (t  − y  ) y  (1 − y  )i i i i
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Generalized form of the delta learning rule
Model:

Loss function (mse):

Delta learning rule:

 denotes element-wise multiplication, i.e.   is also a vector.

In the linear case, .

One can use any non-linear function, e.g hyperbolic tangent tanh(), ReLU, etc.

Transfer functions are chosen for neural networks so that we can compute their derivative easily.

y = f(W × x + b)

L(W ,b) = E  [∣∣t −x,t∈D y∣∣ ]2

  ⎩⎨
⎧ΔW = η [(t − y) ⊙ f (W × x + b)] × x′ T

Δb = η (t − y) ⊙ f (W × x + b)′

⊙ (t − y) ⊙ f (W ×′ x + b)

f (x) =′ 1

38 / 68



4 - Polynomial regression
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Polynomial regression

The functions underlying real data are rarely linear plus some noise around the ideal value.

In the figure, the input/output function would be better modeled by a second-order polynomial (or higher):

y = f  (x) =w,b w  x +1 w  x +2
2 b
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Polynomial regression
Model:

We can transform the input into a vector of coordinates:

The problem becomes:

We can simply apply multiple linear regression (MLR) to find  and b:

y = f  (x) =w,b w  x +1 w  x +2
2 b

x =  w =[ x

x2]  [w  1

w  2
]

y = ⟨w.x⟩ + b =  w  x  +
j

∑ j j b

w

  ⎩⎨
⎧Δw = η (t − y)x

Δb = η (t − y)
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Polynomial regression
This generalizes to polynomials of any order :

We create a vector of powers of  (called polynomial features):

And apply multiple linear regression (MLR) to find  and b:

Non-linear problem solved! The only unknown is which order for the polynomial matches best the data.

One can perform regression with any kind of parameterized function using gradient descent.

p

y = f  (x) =w,b w  x +1 w  x +2
2 … + w  x +p

p b

x

x = w =

⎣
⎡ x

x2

…
xp⎦
⎤

   

⎣
⎡w  1

w  2

…
w  p
⎦
⎤

w

  ⎩⎨
⎧Δw = η (t − y)x

Δb = η (t − y)
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5 - A bit of learning theory
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What matters during training?
Before going further, let’s think about what we have been doing so far. We had a bunch of data samples 

 (the training set) and we decided to apply a (linear) model on it:

We then minimized the mean square error (mse) on that training set using gradient descent. At the end of
learning, we can measure the residual error of the model on the data:

We get a number, for example 0.04567. Is that good?

D = (x  , t  )  i i i=1..N

y  =i wx +i b

ϵ  =D   (t  −
N

1

i=1

∑
N

i y  )i 2
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Regression error
The mean square error mse is not very informative, as its value depends on how the outputs are scaled:

If you multiply both the data  and the prediction  by 10, the residual error will be 100 times higher,
without any change to the quality of the model.

ϵ  =D   (t  −
N

1

i=1

∑
N

i y  )i 2

t y
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Coefficient of determination
The coefficient of determination  is a rescaled variant of the mse comparing the variance of the
residuals to the variance of the data around its mean :

 should be as close from 1 as possible. For example, if , we can say that the model explains
80% of the variance of the data.

R2

t̂

R =2 1 −  =
Var(data)

Var(residuals)
1 −  

 (t  − )∑i=1
N

i t̂ 2

 (t  − y  )∑i=1
N

i i
2

R2 R =2 0.8

Source: https://towardsdatascience.com/introduction-to-linear-regression-in-python-c12a072bedf0 46 / 68
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Sensibility to outliers
Suppose we have a training set with one outlier (bad measurement, bad luck, etc).
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Sensibility to outliers
LMS would find the minimum of the mse, but it is clearly a bad fit for most points.
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Sensibility to outliers
This model feels much better, but its residual mse is higher…
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Polynomial regression
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Polynomial regression
When only looking at the residual mse
on the training data, one could think that
the higher the order of the polynomial,
the better.

But it is obvious that the interpolation
quickly becomes very bad when the
order is too high.

A complex model (with a lot of
parameters) is useless for predicting
new values.

We actually do not care about the error
on the training set.

We care about generalization.

51 / 68



Cross-validation
Let’s suppose we dispose of  models  that could be used to fit (or classify) some
data .

Such a class could be the ensemble of polynomes with different orders, different algorithms (NN, SVM) or
the same algorithm with different values for the hyperparameters (learning rate, regularization
parameters…).

The naive and wrong method to find the best hypothesis would be:

For all models :

Train  on  to obtain an hypothesis .

Compute the training error  of  on  :

Select the hypothesis  with the minimal training error : 

This method leads to overfitting, as only the training error is used.

m M = {M  , ...,M  }1 m

D = {x  , t  }  i i i=1
N

Wrong method!

M  i

M  i D h  i

ϵ  (h  )D i h  i D

ϵ  (h  ) =D i E  [(h  (x) −(x,t)∈D i t) ]2

h  i
∗ h  =i

∗ argmin  ϵ  (h  )h  ∈Mi D i
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Cross-validation: training and test sets
The solution is randomly take some
samples out of the training set to form
the test set.

Typical values are 20 or 30 % of the
samples in the test set.

Method:

1. Train the model on the training set
(70% of the data).

2. Test the performance of the model
on the test set (30% of the data).

The test performance will better
measure how well the model generalizes
to new examples.
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Simple hold-out cross-validation

Split the training data  into  and .

For all models :

Train  on  to obtain an hypothesis .

Compute the empirical error  of  on  :

Select the hypothesis  with the minimal empirical error : 

Disadvantages:

20 or 30% of the data is wasted and not used for learning. It may be a problem when data is rare or
expensive.

The test set must be representative of the difficulty of the training set (same distribution).

Algorithm

D S  train S  test

M  i

M  i S  train h  i

ϵ  (h  )test i h  i S  test

ϵ  (h  ) =test i E  [(h  (x) −(x,t)∈S  test i t) ]2

h  i
∗ h  =i

∗ argmin  ϵ  (h  )h  ∈Mi test i

54 / 68



k-fold cross-validation
Idea:

build several different training/test sets with the same data.

train and test each model repeatedly on each partition.

choose the hypothesis that works best on average.

Source https://upload.wikimedia.org/wikipedia/commons/1/1c/K-fold_cross_validation_EN.jpg 55 / 68

https://upload.wikimedia.org/wikipedia/commons/1/1c/K-fold_cross_validation_EN.jpg


k-fold cross-validation

Randomly split the data  into  subsets of  examples 

For all models :

For all  subsets :

Train  on  to obtain an hypothesis 

Compute the empirical error  of  on 

The empirical error of the model  on  is the average of empirical errors made on 

Select the model  with the minimal empirical error on .

In general . Extreme cases take : leave-one-out cross-validation.

k-fold cross-validation works well, but needs a lot of repeated learning.

Algorithm

D k  k
N {S  , … , S  }1 k

M  i

k S  j

M  i D − S  j h  ij

ϵ  (h  )S  j ij h  ij S  j

M  i D (S  )j j=1
k

ϵ  (M  ) =D i  ⋅
k

1
 ϵ  (h  )

j=1

∑
k

S  j ij

M  i
∗ D

k = 10 k = N
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Validation data
The bare minimum in ML is to have separate training and test sets. However, the test set should only be
used once:

If you try many variations of the same algorithm on a single test set and keep the best one, you end
up overfitting the test set: the model may not generalize well to novel data…

A third validation set is typically used to track overfitting during training and perform model selection.

The test set is ultimately used to report the final performance.

Train model on Training Set Evaluate model on Validation Set

Tweak model according to
results on Validation Set

Pick model that does best
on Validation Set

Confirm results on
Test Set

Source: https://developers.google.com/machine-learning/crash-course/validation/another-partition
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Training and test errors

While the training mse always decrease with more complex models, the validation/test mse increases
after a while.

This is called overfitting: learning by heart the data without caring about generalization.

The two curves suggest that we should chose a polynomial order between 2 and 9.
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Underfitting / Overfitting

A model not complex enough for the data will underfit: its training error is high.

A model too complex for the data will overfit: its test error is high.

In between, there is the right complexity for the model: it learns the data correctly but does not overfit.
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What does complexity mean?
In polynomial regression, the complexity is related to the order of the polynomial, i.e. the number of
coefficients to estimate:

A polynomial of order  has  unknown parameters (free parameters): the  weights and the bias.

Generally, the complexity of a model relates to its number of free parameters:

The more free parameters, the more complex the model is, the more likely it will overfit.

y = f  (x) =w,b  w  x +
k=1

∑
p

k
k b

x = w =

⎣
⎡ x

x2

…
xp⎦
⎤

   

⎣
⎡w  1

w  2

…
w  p
⎦
⎤

p p + 1 p
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6 - Regularized regression
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Linear regression can either underfit or overfit depending on the data
Underfitting Overfitting

When linear regression underfits (both training and test errors are high), the data is not linear: we need to
use a neural network.

When linear regression overfits (the test error is higher than the training error), we would like to decrease
its complexity.
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Complexity of a linear regression
The problem is that the number of free parameters
in linear regression only depends on the number of
inputs (dimensions of the input space).

For  inputs, there are  free parameters: the 
weights and the bias.

We must find a way to reduce the complexity of the linear regression without changing the number of
parameters, which is impossible.

The solution is to constrain the values that the parameters can take: regularization.

Regularization reduces the variance at the cost of increasing the bias.

Net 
activation Output

Activation
function.

.

.

Bias

Inputs

Weights

y =  w  x  +
i=1

∑
d

i i b

d d + 1 d
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L2 regularization - Ridge regression
Using L2 regularization for linear regression leads to the Ridge regression algorithm.

The individual loss function is defined as:

The first part of the loss function is the classical mse on the training set: its role is to reduce the bias.

The second part minimizes the L2 norm of the weight vector (or matrix), reducing the variance:

Deriving the regularized delta learning rule is straightforward:

Ridge regression is also called weight decay: even if there is no error, all weights will decay to 0.

l  (w, b) =i (t  −i y  ) +i
2 λ ∣∣w∣∣2

∣∣w∣∣ =2
 w  

i=1

∑
d

i
2

Δw  =i η ((t  −i y  ) x  −i i λw  )i
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L1 regularization - LASSO regression
Using L1 regularization for linear regression leads to the LASSO regression algorithm (least absolute
shrinkage and selection operator).

The individual loss function is defined as:

The second part minimizes this time the L1 norm of the weight vector, i.e. its absolute value:

Regularized delta learning rule with LASSO:

Weight decay does not depend on the value of the weight, only its sign. Weights can decay very fast to 0.

l  (w, b) =i (t  −i y  ) +i
2 λ ∣w∣

∣w∣ =  ∣w  ∣
i=1

∑
d

i

Δw  =i η ((t  −i y  ) x  −i i λ sign(w  ))i
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Ridge and Lasso regression

Ridge regression finds the smallest value for the
weights that minimize the mse.

LASSO regression tries to set as many weight to 0
as possible (sparse code).

Both methods depend on the regularization parameter . Its value determines how important the
regularization term should.

Regularization introduce a bias, as the solution found is not the minimum of the mse, but reduces the
variance of the estimation, as small weights are less sensible to noise.

λ
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LASSO allows feature selection: features with a zero weight can be removed from the training set.

Linear regression LASSO

https://www.analyticsvidhya.com/blog/2017/06/a-comprehensive-guide-for-linear-ridge-and-lasso-regression/ 67 / 68
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L1+L2 regularization - ElasticNet

An ElasticNet is a linear regression using both L1 and L2 regression:

It combines the advantages of Ridge and LASSO, at the cost of having now two regularization parameters
to determine.

l  (w, b) =i (t  −i y  ) +i
2 λ  ∣w∣ +1 λ  ∣∣w∣∣2

2
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