REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Neurocomputing

Linear classification

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/63

1 - Hard linear classification

2/63

Binary classification

e The training data D is composed of N examples (X;, t;);—1..nv , With a d-dimensional input vector x; €
R and a binary output t; € {—1,+1}

o The data points where t = +1 are called the positive class, the other the negative class.

180 o
= . »
@ - e
170 - o
o’ » ®
160 ¢ . o
@ o °*
‘v 150 - * .
- o @
v =
= 140 - ®
=
g) ’
= 130 @ o =
o
120 y e »
@ ®e @
. ®
110 * o ©®
100 * o @
36 37 38 39 40 41

X1 (body temperature)

3/63

Binary classification

o For example, the inputs x; can be images (one dimension per pixel) and the positive class corresponds to
cats (t; = +1), the negative class to dogs (; = —1).

Cats Dogs

Sample of cats & dogs images from Kaggle Dataset

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe

4/63

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe

Binary linear classification

e We want to find the hyperplane (w, b) of *? that correctly separates the two classes.

X, (blood pressure)

180

170

160

150

140

130

120

110

100

36

37

38 39
X1 (body temperature)

40

41

5/63

Binary linear classification

e Forapointx € D, (w - X) + bis the projection of ;

A
X onto the hyperplane (w, b). (wox) AT .

« If (W - x) + b > 0, the point is above the FiAw o)+ X
hyperplane. O~

= If (W - X) + b < 0, the point is below the HESSEE
hyperplane. TR

= If (W-Xx) 4+ b = 0, the point is on the dw
hyperplane. T

o By looking at the sign of (w - x) + b, we can .

predict the class of the input:

+1if (w-x)+b>0
—1lif (w-x)+b<0

sign((w - x) +b) =

6/63

Binary linear classification

e Binary linear classification can be made by a single artificial neuron using the sign transfer function.

y = fwp(x) = sign((w - x) +b) = sign(} w;z; + b)

j=1
180
Weights Bias
170
w1 b
160
Net
_ w2 activation Output
U 150
3 Yy
EMD w3 Z ad () >
o
o
2 130 Activation
o Wy function

120

110

100

36 37 38 39 40 41
x1 (body temperature)

e W is the weight vector and b is the bias.

7163

Linearly separable datasets

Linearly separable Non-linearly separable

e Linear classification is the process of finding an hyperplane (w, b) that correctly separates the two
classes.

e |f such an hyperplane can be found, the training set is said linearly separable.
o Otherwise, the problem is non-linearly separable and other methods have to be applied (MLP, SVM...).

8/63

Linear classification as an optimization problem

e The Perceptron algorithm tries to find the weights and biases minimizing the mean square error (mse) or
quadratic loss:

N

£(w,b) = Eo(t —)] ~ 5 D (t —)’

1=1

e When the prediction y; is the same as the data ¢; for all examples in the training set (perfect
classification), the mse is minimal and equal to 0.

e We can apply gradient descent to find this minimum.
{AW = —NVw ‘C(Wa b)

Ab = —1 Vb ﬁ(W, b)

9/63

Linear classification as an optimization problem

e Let's search for the partial derivative of the quadratic error function with respect to the weight vector:

N
1
Vwﬁ(w,b)szﬁ ZZ_;(t—yz = ZV (t; —vy;)* = ZV l;(w,b)
e Everything is similar to linear regression until we get: sign(x)
Vi li(w,b) = =2 (t; — yi) Vw sign((w - x;) + b) '

e In order to continue with the chain rule, we would need to '

differentiate sign(x). I
i

Vwli(w,b) = —2(t; — y;) sign’({w - x;) + b) x

e But the sign function is not differentiable...

10/63

Linear classification as an optimization problem

o We will simply pretend that the sign() function is linear, with a derivative of 1:
Vw lz (W, b) = —2 (tz — yz) X

e The update rule for the weight vector w and the bias b is therefore the same as in linear regression:

1
AW =10+ > (ti—y)x;

1=1

11 /63

Batch version of linear classification

e By applying gradient descent on the quadratic error function, one obtains the following algorithm:

Batch linear classification

e for M epochs:
» dw =0 db =0

= for each sample (x;,t;):

o yi = sign((w - x;) + b)
o dw =dw + (¢; — y;) x;
o db=db+ (ti — yi)

» Aw =+ dw

« Ab=1ndb

e This is called the batch version of the Perceptron algorithm.

e If the datais linearly separable and 1) is well chosen, it converges to the minimum of the mean square
error.

12/63

Linear classification: batch version

1.0

02 | & o e

0.0
0.0 0.2 0.4

0.6

0.8

1.0

13/63

1.4

=
-

O
o0

Mean Square error
O
o

O
=~

0.2

0.0

Linear classification: batch version

20

40

Epoch

60

80

100

14 /63

Online version of linear classification : the Perceptron algorithm

e The Perceptron algorithm was invented by the psychologist Frank Rosenblatt in 1958. It was the first
algorithmic neural network able to learn linear classification.

Perceptron algorithm

e for M epochs:

= for each sample (x;,t;):

o y; = sign({w - x;) + b)

o Aw =n(t; — y;) X;
o Ab=n(ti — yi)

e This algorithm iterates over all examples of the training set and applies the delta learning rule to each of
them immediately, not at the end on the whole training set.

e One could
and stop t

e The delta
Input X;.

check whether there are still classification errors on the training set at the end of each epoch
ne algorithm.

earning rule depends on the learning rate 7, the error made by the prediction (¢; — y;) and the

15/63

Linear classification: online version

1.0

0.8

0.6

0.4

0.2

0.0
0.0 0.2 0.4 0.6 0.8 1.0

16 /63

Linear classification: online version

1.0

O O
o o

Mean Square error
i~
=

0.2

0.0

Epoch

60

80

100

17 /63

Batch vs. Online learning

e The mean square error is defined as the expectation over the data:

L(w,b) = Ep|(ti — vi)"]

e Batch learning uses the whole training set as e Online learning uses a single sample to estimate
samples to estimate the mse: the mse:
N 2
1 E(W, b) ~ (tz' — yz)
E(W, b) ~ N Z(tz — yi)z
i=1 Aw =1 (t; — ¥i) X
1 N
Aw =1 N z(tz — Yi) Xi
1=

e Batch learning has less bias (central limit theorem) and is less sensible to noise in the data, but is very
slow.

e Online learning converges faster, but can be instable and overfits (high variance).

18 /63

Stochastic Gradient Descent - SGD

In practice, we use a trade-off between batch and online learning called Stochastic Gradient Descent
(SGD) or Minibatch Gradient Descent.

The training set is randomly split at each epoch into -:- Traini N
small chunks of data (a minibatch, usually 32 or 64 raining €

examples) and the batch learning rule is applied on
each chunk. Sample size =3 l with pasting method

1 K . . Subsample #1
Aw =17 I7e Z(tz — Yi) X
1=1 . . . Subsample #2

If the batch size is well chosen, SGD is as stable as
. . . Subsample #3
batch learning and as fast as online learning.

Random sampling

The minibatches are randomly selected at each
epoch (i.i.d).

Online learning is a stochastic gradient descent with a batch size of 1.

19/63

2 - Maximum Likelihood Estimation

Maximum Likelihood Estimation

e Let's consider /N samples {wz i]\il independently

taken from a normal distribution X .

e The probability density function (pdf) of a normal
distribution is:

1 (z — p)°
— €X
V2102 P 207

fz; pu,0)

where u is the mean of the distribution and o its
standard deviation.

e The problem is to find the values of i and o which explain best the observations {x;

21/63

Maximum Likelihood Estimation

e The idea of MLE is to maximize the joint density
function for all observations. This function is
expressed by the likelihood function:

N

L(m,0) = P(x;p,0) = | | f(@is1,0)

 When the pdf takes high values for all samples, it is

quite likely that the samples come from this
particular distribution.

e Note: the samples must be i.i.d. so that the likelihood is a product.

The likelihood function reflects how well the parameters 1 and o explain the observations {x;

22 /63

Maximum Likelihood Estimation

o We therefore search for the values u and o which maximize the likelihood function.
N

max,, s L(:U'a U) — H f(ajza M J)

1=1

e For the normal distribution, the likelihood function is:

N
= 1] f@i;p,0
1=1

ﬂ 1 (i — p)°
1=1 \/2 202

1 (zi — p)°
= V2mo? N 21_[1 i 202
(1)N exp fo\; (2 — ,U)z

23 /63

Maximum Likelihood Estimation

e To find the maximum of L(u, o), we need to search where the gradient is equal to zero:

OL(u,0)

O
OL(p,0)

Oo

=0

o The likelihood function is complex to differentiate, so we consider its logarithm I(u, o) = log(L(u, o))
which has a maximum for the same value of (u, o) as the log function is monotonic.

l(:u“a 0-) — 1Og(L(H’7 0))
_ TRy Zf\il (z; — p)°
= log | ()" exp 5

V2mo? 20

N
= log(2mo?)

o [(u, o) is called the log-likelihood function.

24 /63

Maximum Likelihood Estimation

l(lua U) — —g 1()g(27-(-0-2) Zizl (xz — ,u)

207
e The maximum of the log-likelihood function respects:
N
Ol(p, o) _ Zi:1(wz’ —) —0
ou o’
N
OUpo) _ N dmo B (zi—p)’
Oo 2 2ng? o3
N
_ N | Zizl (m’t o lu’)z — 0
o o3
e We obtain:
1« 1«
_ 2 N2
p= e Sa =Y e

25/63

Maximum Likelihood Estimation

e Unsurprisingly, the mean and variance of the normal distribution which best explains the data are the
mean and variance of the data...

1 & 1 &
M:NE:%’ UQZNE:(%‘—M)Z
i:::l i:::1

e The same principle can be applied to estimate the parameters of any distribution: normal, exponential,
Bernouilli, Poisson, etc...

e When a machine learning method has an probabilistic interpretation (i.e. it outputs probabilities), MLE can
be used to find its parameters.

e One can use global optimization like here, or gradient descent to estimate the parameters iteratively.

26 /63

3 - Soft linear classification : Logistic regression

Reminder: Logistic regression

e We want to perform a regression, but where the targets ¢; are bounded betwen 0 and 1.

—10.0 —7.5 =5.0 25 olo 2.5 5.0 1.5 10.0

e We can use a logistic function instead of a linear function in order to transform the net activation into an
output;

1
~ 1+exp(—wz — b)

y = o(wx + b)

28 /63

Use of logistic regression for soft classification

o Logistic regression can be used in binary classification if we consider y = o(w x + b) as the probability
that the example belongs to the positive class (t = 1).

P(t =1lz;w,b) =y; P(t=0lz;w,b)=1—y

o The output ¢ therefore comes from a Bernouilli distribution B of parameter p = y = f,, (). The
probability mass function (pmf) is:

ftlz;w,b) =y (1 —y)""

» If we consider our training samples (x;, t;) as independently taken from this distribution, our task is:

= to find the parameterized distribution that best explains the data, which means:

= to find the parameters w and b maximizing the likelihood that the samples ¢ come from a Bernouilli
distribution when 2, w and b are given.

e We only need to apply Maximum Likelihood Estimation (MLE) on this Bernouilli distribution!

29 /63

MLE for logistic regression

e The likelihood function for logistic regression is :

N
L(w,b) = P(t|lz;w,b) = | [£(t:|zi;w,b)
1=1
N
= H?Jzz (1—wy) ™
1=1

e The likelihood function is quite hard to differentiate, so we take the log-likelihood function:
[(w,b) = log L(w, b)

= Z[tz’ logy; + (1 —t;) log(1 — y;)]

e Or even better: the negative log-likelihood which will be minimized using gradient descent:

L(w,b) = — Z[ti logy; + (1 —t;) log(1 — ;)]

1=1

30/63

MLE for logistic regression

e We then search for the minimum of the negative log-likelihood function by computing its gradient (here
for a single sample):

o8 — 2t logyy + (1) log(1 —)
0 0
— —t; 9 logy; — (1 —t;) 9w log(1 — i)
G, 9
iy 0 (1 —y;
Yi 1 —y;
— ¢, Yi (1_%)337, | (]-_tz) Yi (1_y’i)xz
Yi 1 —y;
= —(t; — yi) x

e Same gradient as the linear perceptron, but with a non-linear output function!

31/63

Logistic regression for soft classification

Logistic regression is a regression method used for classification. It uses a non-linear transfer function
applied on the net activation:

1
1+exp(—)

o(z) =

yi = o((W - x;) +b)

The continuous output y is interpreted as the probability of belonging to the positive class.

P(t;i = 1|xi;w,b) = yi;

P(tz‘ — O\xi;w,b) =1 — Y

We minimize the negative log-likelihood loss function using gradient descent:

N

L(w,b) = — Z[tz’ logy; + (1 —¢;) log(1 — y;)]

1=1

We obtain the delta learning rule, using the class as a target and the probability as a prediction:

Aw =1 (t; — y;) X;

Ab

n(ti — yi)

32 /63

Logistic regression

e Logistic regression works just like linear classification, except
in the way the prediction is done.

Logistic regression

e w=020 b=20
o for M epochs:

number between 0 and 1;

= for each sample (x;, t;):

o yi =o((W-x;) +b)
o Aw =n(ti — yi) xi

o Ab=1n(t; —y;) = if it is bigger than y; (probability 1 — 1), it belongs to the

negative class.

n ify; > 0.0t
n ify; < 0.9t

-10.0 =7.5 =5.0 -25 olo 2.5 5.0 1.5 10.0

nen t

nen t

ne C

ne C

e To know to which class x; belongs, simply draw a random

= if it is smaller than y; (probability y;), it belongs to the
positive class.

e Alternatively, you can put a hard limit at 0.5:

ass is positive.

ass Is negative.

33/63

Logistic regression

1.0 1.0
0.8
0.6

- 0.5
0.4
0.2
0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0

34 /63

Logistic regression and confidence score

1.0

0.8

0.6

0.4

0.2

0.0

1.0 e Logistic regression also provides a confidence
score:

» the closer y is from 0 or 1, the more confident
we can be that the classification is correct.

e This is particularly important in safety critical
o applications:

= |f you detect the positive class but with a
confidence of 0.51, you should perhaps not

trust the prediction.

= |f the confidence score is 0.99, you can
probably trust the prediction.

0.0

35/63

4 - Multi-class classification

36 /63

Multi-class classification

e Can we perform multi-class classification using the previous methods when t & {A, B, C’} instead of

t=+1or—17?

Binary classification:

X X

Multi-class classification:

A

37 /63

Multi-class classification

Two main solutions:

e One-vs-All (or One-vs-the-rest): one trains simultaneously a binary (linear) classifier for each class. The
examples belonging to this class form the positive class, all others are the negative class:

= Avs.Band C
= Bvs. Aand C

»m Cvs. Aand B

If multiple classes are predicted for a single example, ones needs a confidence level for each classifier
saying how sure it is of its prediction.

e One-vs-One: one trains a classifier for each pair of class:

= Avs. B
m Bvs.C
= Cvs. A

A majority vote is then performed to find the correct class.

38 /63

Multi-class classification

o Example of One-vs-All classification: one binary classifier per class.

airplane classifier

deer classifier

Source http://cs231n.github.io/linear-classify

car classifier

39/63

http://cs231n.github.io/linear-classify

Softmax linear classifier

e Suppose we have C classes (dog vs. cat vs. ship vs...).

e The One-vs-All scheme involves C binary classifiers (w;, b;), each with

W.b

a weight vector and a bias, working on the same input x.

O <

"l yi = f((w; - x) + b;)

oL
‘ e Putting all neurons together, we obtain a linear perceptron similar to
": multiple linear regression:

<,

/

)

y = f(W x x+ b)

VOO~
)

e The C weight vectors form a C' x d weight matrix W, the biases form a
vector b.

40 /63

Softmax linear classifier

stretch pixels into single column

02 |-05| 01| 20 56 1.1 96.8 | cat score

1.5 | 1.3 [21 | 00 | 231 | 4|32 | | 37.9 | gogscore

- L = - .
nput image 0 025 | B2 0.3 24 1.2 1 95 shigt Stome
£Lj

e The net activations form a vector z:

z=fwp(x)=W xx+Db

e Each element z; of the vector z is called the logit score of the class:

= the higher the score, the more likely the input belongs to this class.

e The logit scores are not probabilities, as they can be negative and do not sum to 1.

Source http://cs231n.github.io/linear-classify 41 /63

http://cs231n.github.io/linear-classify

One-hot encoding

e How do we represent the ground truth t for each neuron?

e The target vector t is represented using one-hot encoding.

Target One hot encoded
label target vectors

- d
- Ed

g]

e The binary vector has one element per class: only one element is 1, the others are 0.
e Example:

t = |cat, dog, ship, house, car| = |0, 1,0, 0, 0]

One-hot encoding

e The labels can be seen as a probability distribution over the training set, in this case a multinomial
distribution (a dice with C' sides).

e For a givenimage x (e.g. a picture of a dog), the conditional pmf is defined by the one-hot encoded vector
t:

P(t|x) = |P(cat|x), P(dog|x), P(ship|x), P(house|x), P(car|x)| = |0, 1,0, 0, O]

Target t Logit score z Probabilities y
1.0 3
0.6
0.8 2 0.5
0.6 0.4
1
0.3
0.4
0 0.2
0.2 cat dog ship house car
0.1
-1
0.0 0.0
cat dog ship house «car cat dog ship house «car

 We need to transform the logit score z into a probability distribution P(y|x) that should be as close as
possible from P(t|x).

43 /63

Softmax linear classifier

o The softmax operator makes sure that the sum of the outputs y = {y; } over all classes is 1.

matrix multiply + bias offset

y; = P(class =j|x) = S(z;) = S~ exp(21)

 The higher z;, the higher the probability that the example belongs to class j.

0.01 | 005 | 0.1 | 0.05 15
0.7 0.2 0.05 0.16 22
0.0 045 | -0.2 0.03 44

W 56
&L

0.0

exp(z;)

0.2

-2.85

0.86

0.28

exp

0.058

2.36

1.32

cross-entropy loss (Softmax)

normalize

ﬁ
(to sum
to one)

0.016

0.631

0.353

- 10g(0.353)

1.04

e This is very similar to logistic regression for soft classification, except that we have multiple classes.

Source http://cs231n.github.io/linear-classify

44 /63

http://cs231n.github.io/linear-classify

Cross-entropy loss function

e We cannot use the mse as a loss function, as the softmax function would be hard to differentiate:

1.0

0.8

0.6

0.4

0.2

0.0

mse(W,b) =) (t;

Target t

cat

dog

ship house car

J

exp(2;)

Logit score z

cat

dog

ship house car

> €xp(zk)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

)2

Probabilities y

cat dog ship house car

e We actually want to minimize the statistical distance netween two distributions:

= The model outputs a multinomial probability distribution y for an input x: P(y|x; W, b).

= The one-hot encoded classes also come from a multinomial proba

 We search which parameters (W, b) make the two distributions P(y

vility distribution P(t]x).

x; W,b) and P(t|x) close.

45 /63

Cross-entropy loss function

o The training data {x;, t; } represents samples from P(t|x).

« P(y|x;W,Db) is agood model of the data when the two distributions are close, i.e. when the negative
log-likelihood of each sample under the model is small.

A
X Y

\

samples from X

e For an input X, we minimize the cross-entropy between the target distribution and the predicted outputs:

l(Wvb) — H(t|x,y|x) — 43t~13(1;|x)[_ logP(y — t‘X)]

46 / 63

Cross-entropy and negative log-likelihood

Target t Logit score z Probabilities y

e The cross-entropy samples from t|x:

C
(W, b) = H(t|x,y]x) = Eipep [log P(y = t|x)] = — > P(t;|x) log P(y; = t;|x)

J=1

e For a given input x, t is non-zero only for the correct class t*, as t is a one-hot encoded vector

0,1,0,0,0|:

[(W,b) = —log P(y = t"|x)

e If we note 7™ the index of the correct class t*, the cross entropy is simply:

[(W,b) = —logy,

47 /63

Cross-entropy and negative log-likelihood

5 e As only one element of t is hon-zero, the cross-

of the prediction for the true label:

! , e The minimum of — log y is obtained when y = 1:
= We want to classifier to output a probability 1

1 for the true label.

e Because of the softmax activation function, the
0 probability for the other classes should become
0.0 0.2 0.4 0.6 0.8 1.0

y closer from O.
exp(z;)

y; = P(class =j) =

D 1 €xP(2k)

e Minimizing the cross-entropy / negative log-likelihood pushes the output distribution y |x to be as close
as possible to the target distribution t |x.

entropy is the same as the negative log-likelihood

48 / 63

Cross-entropy loss function

1.0

0.8

0.6

0.4

0.2

0.0

car

—~

49 /63

Cross-entropy loss function

e Ast is abinary vector |0, 1,0, 0, 0], the cross-entropy / negative log-likelihood can also be noted as the
dot product between t and log y:

C
[(W,b) = —(t-logy) = — E t; logy; = —logy,-

j=1

Input Logit score Probabilities True labels

X Z y t

10.0 2.5 0.86 1

3.5 Linear Softmax Cross-

40 | model entropy

11.2 > 0.3 > 0.10 (= > 0

-3,9 W, b

34.1

45 8 -0.5 0.04 0

e The cross-entropy loss function is then the expectation over the training set of the individual cross-
entropies:

N
1
L(W,b) = Exe-p[—(t-logy)] = =} —(t; - logyi)

1=1

50/63

Cross-entropy loss function

e The nice thing with the cross-entropy loss function, when used on a softmax activation function, is that

the partial derivative w.r.t the logit score z is simple:

oUW, b) 0 0 log(y;) 1 Oy,
y — t]_) — t i L t J
O ; Oz ° e ; Rz Z Ty; 0z
¢ C
ti Oy: t; Oy, t; t;
— — (1 —) — Yy
yi 0z z:y‘7 0z; yzy(i) Zyz(Yj Yi)
J7 J7t
¢ C
= —1; —|—tyz‘|‘2t Yi = —t; _i_ztjyi:_ti_'_yiztj
J7 j=1 i1

—(t; — us)
I.e. the same as with the mse in linear regression!

e Vector notation:

See https://peterroelants.github.io/posts/cross-entropy-softmax/ for more explanations on the differentiation.

51/63

https://peterroelants.github.io/posts/cross-entropy-softmax/

Cross-entropy loss function

e AS:

z=—W xx+Db

we can obtain the partial derivatives:

ol(W,b) dl(W.,b) 0z

oW oa Cow \tT¥)xx
ol(w,b) Ol(W,b) 0z
o~ oz “op_ 7Y

e So gradient descent leads to the delta learning rule:

(AW =7 (t —y) x xT

iAbn@y)

52 /63

Softmax linear classifier

Input Logitscore Probabilites ~ Truelabels o We first compute the logit scores z using a linear
X £ y t layer:
10.0 2.5 0.86 - 1
3.5 Linear Softmax roSs-
40 | model entropy z =W xx+Db
11.2 > 0.3 > 0.10 |< ~ 0
-3,9 W, b . . .
34.1 e We turn them into probabilities y using the softmax
-45.8 -0.5 0.04 0 activation function:

- exp(z))
I 1, €xp(2k)

 We minimize the cross-entropy / negative log-likelihood on the training set:

L(W,b) =Exi.p|—(t-logy)]

which simplifies into the delta learning rule:

(AW =n(t —y) x x"

Ab =n(t—y)

53 /63

Comparison of linear classification and regression

o Classification and regression differ in the nature of their outputs: in classification they are discrete, in
regression they are continuous values.

® e However, when trying to minimize the mismatch between a model y and the
‘ Wb y real data t, we have found the same delta learning rule:
)

‘ AW =n(t —y) x x
‘\0{/

@ S
0 Ab =17 (t —y)
O
e Regression and classification are in the end the same problem for us. The only

/«’Q‘
things that needs to be adapted is the activation function of the output and

‘ the loss function.

e Forregression, we use linear activation functions e For classification, we use the softmax activation
and the mean square error (mse): function and the cross-entropy (negative log-

likelihood) loss function.

L(W,b) = Ex¢pllt — y|I]

L(W,b) =Exi.p|—(t-logy)]

54 /63

5 - Multi-label classification

Multi-label classification

GK Hart/Vikki Hart/Getty Images

e What if there is more than one label on the image?

e The target vector t does not represent a probability
distribution anymore:

t = |cat, dog, ship, house, car] = [1,1, 0,0, O]

e Normalizing the vector does not help: it is not a dog or a cat, it
is a dog and a cat.

t = |cat, dog, ship, house, car] = [0.5,0.5, 0,0, 0]

56 /63

Multi-label classification

X e For multi-label classification, we can simply use the logistic activation

function for the output neurons:
‘ W,b Y

‘ \ "l e The outputs are between 0 and 1, but they do not sum to one. Each
‘ % output neuron performs logistic regression for soft classification on
‘ their class:
‘,“0

‘ /" y; = P(class = j|x)

e Each output neuron y; has a binary target ¢; (one-vs-the-rest) and has to
minimize the negative log-likelihood:

y = (W X x+ b)

[;(W,b) = —t; logy; + (1 —t;) log(1 — y;)

e The binary cross-entropy loss is the sum of the negative log-likelihood for each class:

C
L(W,b) =Ep[—) t;logy; + (1 —t;) log(1— y;)]
=1

57 /63

6 - Metrics

58 /63

Training vs. Generalization error

e The training error is the error made on the training set.

Tramning = Easy to measure for classification: number of
set
‘ misclassified examples divided by the total number.
Learning e — number of misclassifications
algorithm number of examples
. ‘-f + L predicted y - To’Fa!Iy irrelevant on usage: reading the training set has a
(living area of N’ (predicted price) tra|n|ng error Of 0%.

house.) of house)

o What matters is the generalization error, which is the error that will be made on new examples (not used
during learning).
= Much harder to measure (potentially infinite number of new examples, what is the correct answer?).

= Often approximated by the empirical error on the test set: one keeps a number of training examples
out of the learning phase and one tests the performance on them.

= Need for cross-validation to detect overfitting.

59 /63

Overfitting in regression

Underfitting Good Overfitting

Classification errors

Confusion matrix o Classification errors can also depend on the class:
= False Positive errors (FP, false alarm, type) is
actual value when the classifier predicts a positive class for
p n total a negative example.
= False Negative errors (FN, miss, type ll) is
, True False , , , ,
p " N P when the classifier predicts a negative class for
Positive Positive o
prediction a positive example.
outcome - .
False True e True Positive (TP) and True Negative (TN) are
n’ Negative || Negative N correctly classified examples.
e Is it better to fail to detect a cancer (FN) or to
total i N incorrectly predict one (FP)?
Source:

https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?
n=Lectures.PrecisionRecall

61/63

https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?n=Lectures.PrecisionRecall

Classification errors

relevant elements

false negatives

true positives

selected elements

How many selected
items are relevant?

Precision= ———

Source:

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

true negatives

false positives

How many relevant
items are selected?

Recall= —

Error

3 FP + FN
“~ TP - FP + TN + FN

Accuracy (1 - error)

TP 4+ TN
TP 4+ FP + TN + FN

aCC —

Recall (hit rate, sensitivity) and Precision (specificity)

TP TP

p— P:
" TP + FN TP + FP

F1 score = harmonic mean of precision and recall

| _2PR
- P+ R

62 /63

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

Confusion matrix

e For multiclass classification problems, the
confusion matrix tells how many examples are

correctly classified and where confusion happens.

e One axis is the predicted class, the other is the
target class.

e Each element of the matrix tells how many
examples are classified or misclassified.

e The matrix should be as diagonal as possible.

e Using scikit-Llearn:
from sklearn.metrics import confusion_matrix

m = confusion_matrix(t, vy)

Ground Truth label

L = = L ™ = R T

Confusion matrx

1000

800

- 600

- 400

- 200

0
0
0
2
2
0
0

L T O P D T T - T T R~
Predicted label

63 /63

