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1 - Hard linear classification
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Binary classification
The training data  is composed of  examples  , with a d-dimensional input vector 

 and a binary output 

The data points where  are called the positive class, the other the negative class.

D N (x  , t  )  i i i=1..N x  ∈i

ℜd t  ∈i {−1, +1}

t = +1
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Binary classification
For example, the inputs  can be images (one dimension per pixel) and the positive class corresponds to
cats ( ), the negative class to dogs ( ).

x  i

t  =i +1 t  =i −1

http://adilmoujahid.com/posts/2016/06/introduction-deep-learning-python-caffe 4 / 63
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Binary linear classification
We want to find the hyperplane  of  that correctly separates the two classes.(w, b) ℜd
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Binary linear classification
For a point ,  is the projection of

 onto the hyperplane .

If , the point is above the
hyperplane.

If , the point is below the
hyperplane.

If , the point is on the
hyperplane.

By looking at the sign of , we can
predict the class of the input:

x ∈ D ⟨w ⋅ x⟩ + b

x (w, b)

⟨w ⋅ x⟩ + b > 0

⟨w ⋅ x⟩ + b < 0

⟨w ⋅ x⟩ + b = 0

⟨w ⋅ x⟩ + b

X

sign(⟨w ⋅ x⟩ + b) =  {+1 if ⟨w ⋅ x⟩ + b ≥ 0
−1 if ⟨w ⋅ x⟩ + b < 0
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Binary linear classification
Binary linear classification can be made by a single artificial neuron using the sign transfer function.

 is the weight vector and  is the bias.

y = f  (x) =w,b sign(⟨w ⋅ x⟩ + b) = sign(  w  x  +
j=1

∑
d

j j b)

Net 
activation Output

Activation
function.

.

.

Bias

Inputs

Weights

w b
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Linearly separable datasets

Linear classification is the process of finding an hyperplane  that correctly separates the two
classes.

If such an hyperplane can be found, the training set is said linearly separable.

Otherwise, the problem is non-linearly separable and other methods have to be applied (MLP, SVM…).

(w, b)
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Linear classification as an optimization problem
The Perceptron algorithm tries to find the weights and biases minimizing the mean square error (mse) or
quadratic loss:

When the prediction  is the same as the data  for all examples in the training set (perfect
classification), the mse is minimal and equal to 0.

We can apply gradient descent to find this minimum.

L(w, b) = E  [(t  −D i y  ) ] ≈i
2

  (t  −
N

1

i=1

∑
N

i y  )i 2

y  i t  i

  ⎩⎨
⎧Δw = −η ∇  L(w, b)w

Δb = −η ∇  L(w, b)b

9 / 63



Linear classification as an optimization problem
Let’s search for the partial derivative of the quadratic error function with respect to the weight vector:

Everything is similar to linear regression until we get:

In order to continue with the chain rule, we would need to
differentiate .

But the sign function is not differentiable…

∇  L(w, b) =w ∇    (t  −w
N

1

i=1

∑
N

i y  ) =i
2

  ∇  (t  −
N

1

i=1

∑
N

w i y  ) =i
2

  ∇  l  (w, b)
N

1

i=1

∑
N

w i

∇  l  (w, b) =w i −2 (t  −i y  ) ∇  sign(⟨w ⋅i w x  ⟩ +i b)

sign(x)

∇  l  (w, b) =w i −2 (t  −i y  ) sign (⟨w ⋅i
′ x  ⟩ +i b)x  i
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Linear classification as an optimization problem
We will simply pretend that the sign() function is linear, with a derivative of 1:

The update rule for the weight vector  and the bias  is therefore the same as in linear regression:

∇  l  (w, b) =w i −2 (t  −i y  )x  i i

w b

  

⎩
⎨
⎧

Δw = η   (t  − y  )x  

N

1

i=1

∑
N

i i i

Δb = η   (t  − y  )
N

1

i=1

∑
N

i i
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Batch version of linear classification
By applying gradient descent on the quadratic error function, one obtains the following algorithm:

for  epochs:

for each sample :

This is called the batch version of the Perceptron algorithm.

If the data is linearly separable and  is well chosen, it converges to the minimum of the mean square
error.

Batch linear classification

M

dw = 0 db = 0

(x  , t  )i i

y  =i sign(⟨w ⋅ x  ⟩ +i b)

dw = dw + (t  −i y  )x  i i

db = db + (t  −i y  )i

Δw = η  dwN
1

Δb = η  dbN
1

η
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Linear classification: batch version
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Linear classification: batch version

14 / 63



Online version of linear classification : the Perceptron algorithm
The Perceptron algorithm was invented by the psychologist Frank Rosenblatt in 1958. It was the first
algorithmic neural network able to learn linear classification.

for  epochs:

for each sample :

This algorithm iterates over all examples of the training set and applies the delta learning rule to each of
them immediately, not at the end on the whole training set.

One could check whether there are still classification errors on the training set at the end of each epoch
and stop the algorithm.

The delta learning rule depends on the learning rate , the error made by the prediction ( ) and the
input .

Perceptron algorithm

M

(x  , t  )i i

y  =i sign(⟨w ⋅ x  ⟩ +i b)

Δw = η (t  −i y  )x  i i

Δb = η (t  −i y  )i

η t  −i y  i

x  i
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Linear classification: online version
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Linear classification: online version
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Batch vs. Online learning
The mean square error is defined as the expectation over the data:

Batch learning uses the whole training set as
samples to estimate the mse:

Online learning uses a single sample to estimate
the mse:

Batch learning has less bias (central limit theorem) and is less sensible to noise in the data, but is very
slow.

Online learning converges faster, but can be instable and overfits (high variance).

L(w, b) = E  [(t  −D i y  ) ]i
2

L(w, b) ≈   (t  −
N

1

i=1

∑
N

i y  )i 2

Δw = η   (t  −
N

1

i=1

∑
N

i y  )x  i i

L(w, b) ≈ (t  −i y  )i 2

Δw = η (t  −i y  )x  i i
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Stochastic Gradient Descent - SGD
In practice, we use a trade-off between batch and online learning called Stochastic Gradient Descent
(SGD) or Minibatch Gradient Descent.

The training set is randomly split at each epoch into
small chunks of data (a minibatch, usually 32 or 64
examples) and the batch learning rule is applied on
each chunk.

If the batch size is well chosen, SGD is as stable as
batch learning and as fast as online learning.

The minibatches are randomly selected at each
epoch (i.i.d).

Online learning is a stochastic gradient descent with a batch size of 1.

Δw = η   (t  −
K

1

i=1

∑
K

i y  )x  i i
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2 - Maximum Likelihood Estimation
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Maximum Likelihood Estimation
Let’s consider  samples  independently
taken from a normal distribution .

The probability density function (pdf) of a normal
distribution is:

where  is the mean of the distribution and  its
standard deviation.

The problem is to find the values of  and  which explain best the observations .

N {x  }  i i=1
N

X

f(x;μ,σ) =  exp −  

 2πσ2

1
2σ2

(x − μ)2

μ σ

μ σ {x  }  i i=1
N
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Maximum Likelihood Estimation
The idea of MLE is to maximize the joint density
function for all observations. This function is
expressed by the likelihood function:

When the pdf takes high values for all samples, it is
quite likely that the samples come from this
particular distribution.

The likelihood function reflects how well the parameters  and  explain the observations .

Note: the samples must be i.i.d. so that the likelihood is a product.

L(μ,σ) = P (x;μ,σ) =  f(x  ;μ,σ)
i=1

∏
N

i

μ σ {x  }  i i=1
N
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Maximum Likelihood Estimation
We therefore search for the values  and  which maximize the likelihood function.

For the normal distribution, the likelihood function is:

μ σ

max  L(μ,σ) =μ,σ  f(x  ;μ,σ)
i=1

∏
N

i

  

L(μ,σ) =  f(x  ;μ,σ)
i=1

∏
N

i

=   exp −  

i=1

∏
N

 2πσ2

1
2σ2

(x  − μ)i
2

= (  )  exp −  

 2πσ2

1 N

i=1

∏
N

2σ2

(x  − μ)i
2

= (  ) exp −  

 2πσ2

1 N

2σ2

 (x  − μ)∑i=1
N

i
2
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Maximum Likelihood Estimation
To find the maximum of , we need to search where the gradient is equal to zero:

The likelihood function is complex to differentiate, so we consider its logarithm 
which has a maximum for the same value of  as the log function is monotonic.

 is called the log-likelihood function.

L(μ,σ)

  ⎩⎨
⎧

 = 0
∂μ

∂L(μ,σ)

 = 0
∂σ

∂L(μ,σ)

l(μ,σ) = log(L(μ,σ))
(μ,σ)

  

l(μ,σ) = log(L(μ,σ))

= log (  ) exp −  (
 2πσ2

1 N

2σ2

 (x  − μ)∑i=1
N

i
2)

= −  log(2πσ ) −  

2
N 2

2σ2

 (x  − μ)∑i=1
N

i
2

l(μ,σ)
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Maximum Likelihood Estimation

The maximum of the log-likelihood function respects:

We obtain:

  l(μ,σ) = −  log(2πσ ) −  

2
N 2

2σ2

 (x  − μ)∑i=1
N

i
2

 

∂μ
∂l(μ,σ)

 

∂σ
∂l(μ,σ)

=  = 0
σ2

 (x  − μ)∑i=1
N

i

= −   +  

2
N

2πσ2

4πσ
σ3

 (x  − μ)∑i=1
N

i
2

= −  +  = 0
σ

N

σ3

 (x  − μ)∑i=1
N

i
2

μ =   x  σ =
N

1

i=1

∑
N

i
2

  (x  −
N

1

i=1

∑
N

i μ)2
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Maximum Likelihood Estimation
Unsurprisingly, the mean and variance of the normal distribution which best explains the data are the
mean and variance of the data…

The same principle can be applied to estimate the parameters of any distribution: normal, exponential,
Bernouilli, Poisson, etc…

When a machine learning method has an probabilistic interpretation (i.e. it outputs probabilities), MLE can
be used to find its parameters.

One can use global optimization like here, or gradient descent to estimate the parameters iteratively.

μ =   x  σ =
N

1

i=1

∑
N

i
2

  (x  −
N

1

i=1

∑
N

i μ)2
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3 - Soft linear classification : Logistic regression
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Reminder: Logistic regression
We want to perform a regression, but where the targets  are bounded betwen 0 and 1.

We can use a logistic function instead of a linear function in order to transform the net activation into an
output:

t  i

y = σ(wx + b) =  

1 + exp(−wx − b)
1
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Use of logistic regression for soft classification
Logistic regression can be used in binary classification if we consider  as the probability
that the example belongs to the positive class ( ).

The output  therefore comes from a Bernouilli distribution  of parameter . The
probability mass function (pmf) is:

If we consider our training samples  as independently taken from this distribution, our task is:

to find the parameterized distribution that best explains the data, which means:

to find the parameters  and  maximizing the likelihood that the samples  come from a Bernouilli
distribution when ,  and  are given.

We only need to apply Maximum Likelihood Estimation (MLE) on this Bernouilli distribution!

y = σ(wx + b)
t = 1

P (t = 1∣x;w, b) = y; P (t = 0∣x;w, b) = 1 − y

t B p = y = f  (x)w,b

f(t∣x;w, b) = y (1 −t y)1−t

(x  , t  )i i

w b t

x w b
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MLE for logistic regression
The likelihood function for logistic regression is :

The likelihood function is quite hard to differentiate, so we take the log-likelihood function:

or even better: the negative log-likelihood which will be minimized using gradient descent:

  

L(w, b) = P (t∣x;w, b) =  f(t  ∣x  ;w, b)
i=1

∏
N

i i

=  y  (1 − y  )
i=1

∏
N

i
t  i

i
1−t  i

  

l(w, b) = logL(w, b)

=  [t  log y  + (1 − t  ) log(1 − y  )]
i=1

∑
N

i i i i

L(w, b) = −  [t  log y  +
i=1

∑
N

i i (1 − t  ) log(1 −i y  )]i
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MLE for logistic regression
We then search for the minimum of the negative log-likelihood function by computing its gradient (here
for a single sample):

Same gradient as the linear perceptron, but with a non-linear output function!

 

∂w
∂l  (w, b)i = −  [t  log y  + (1 − t  ) log(1 − y  )]

∂w
∂

i i i i

= −t   log y  − (1 − t  )  log(1 − y  )i ∂w
∂

i i ∂w
∂

i

= −t   − (1 − t  )  i
y  i

 y  ∂w
∂

i
i 1 − y  i

 (1 − y  )∂w
∂

i

= −t   + (1 − t  )  i
y  i

y  (1 − y  )x  i i i
i 1 − y  i

y  (1 − y  )x  i i i

= −(t  − y  )x  i i i
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Logistic regression for soft classification
Logistic regression is a regression method used for classification. It uses a non-linear transfer function 

 applied on the net activation:

The continuous output  is interpreted as the probability of belonging to the positive class.

We minimize the negative log-likelihood loss function using gradient descent:

We obtain the delta learning rule, using the class as a target and the probability as a prediction:

σ(x) =  1+exp(−x)
1

y  =i σ(⟨w ⋅ x  ⟩ +i b)

y

P (t  =i 1∣x  ;w, b) =i y  ; P (t  =i i 0∣x  ;w, b) =i 1 − y  i

L(w, b) = −  [t  log y  +
i=1

∑
N

i i (1 − t  ) log(1 −i y  )]i

  ⎩⎨
⎧Δw = η (t  − y  )x  i i i

Δb = η (t  − y  )i i
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Logistic regression

for  epochs:

for each sample :

Logistic regression works just like linear classification, except
in the way the prediction is done.

To know to which class  belongs, simply draw a random
number between 0 and 1:

if it is smaller than  (probability ), it belongs to the
positive class.

if it is bigger than  (probability ), it belongs to the
negative class.

Alternatively, you can put a hard limit at 0.5:

if  then the class is positive.

if  then the class is negative.

Logistic regression

w = 0 b = 0

M

(x  , t  )i i

y  =i σ(⟨w ⋅ x  ⟩ +i b)

Δw = η (t  −i y  )x  i i

Δb = η (t  −i y  )i

xi

y  i y  i

y  i 1 − y  i

y  >i 0.5

y  <i 0.5
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Logistic regression
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Logistic regression and confidence score
Logistic regression also provides a confidence
score:

the closer  is from 0 or 1, the more confident
we can be that the classification is correct.

This is particularly important in safety critical
applications:

If you detect the positive class but with a
confidence of 0.51, you should perhaps not
trust the prediction.

If the confidence score is 0.99, you can
probably trust the prediction.

y
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4 - Multi-class classification
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Multi-class classification
Can we perform multi-class classification using the previous methods when  instead of 

 or ?
t ∈ {A,B,C}

t = +1 −1
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Multi-class classification
Two main solutions:

One-vs-All (or One-vs-the-rest): one trains simultaneously a binary (linear) classifier for each class. The
examples belonging to this class form the positive class, all others are the negative class:

A vs. B and C

B vs. A and C

C vs. A and B

If multiple classes are predicted for a single example, ones needs a confidence level for each classifier
saying how sure it is of its prediction.

One-vs-One: one trains a classifier for each pair of class:

A vs. B

B vs. C

C vs. A

A majority vote is then performed to find the correct class.
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Multi-class classification
Example of One-vs-All classification: one binary classifier per class.

Source http://cs231n.github.io/linear-classify 39 / 63
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Softmax linear classifier
Suppose we have  classes (dog vs. cat vs. ship vs…).

The One-vs-All scheme involves  binary classifiers , each with
a weight vector and a bias, working on the same input .

Putting all neurons together, we obtain a linear perceptron similar to
multiple linear regression:

The  weight vectors form a  weight matrix , the biases form a
vector .

C

C (w  , b  )i i

x

y  =i f(⟨w  ⋅i x⟩ + b  )i

y = f(W × x + b)

C C × d W

b
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Softmax linear classifier

The net activations form a vector :

Each element  of the vector  is called the logit score of the class:

the higher the score, the more likely the input belongs to this class.

The logit scores are not probabilities, as they can be negative and do not sum to 1.

z

z = f  (x) =W ,b W × x + b

z  j z

Source http://cs231n.github.io/linear-classify 41 / 63
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One-hot encoding
How do we represent the ground truth  for each neuron?

The target vector  is represented using one-hot encoding.

The binary vector has one element per class: only one element is 1, the others are 0.

Example:

t

t

t = [cat, dog, ship, house, car] = [0, 1, 0, 0, 0]
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One-hot encoding
The labels can be seen as a probability distribution over the training set, in this case a multinomial
distribution (a dice with  sides).

For a given image  (e.g. a picture of a dog), the conditional pmf is defined by the one-hot encoded vector
:

We need to transform the logit score  into a probability distribution  that should be as close as
possible from .

C

x
t

P (t∣x) = [P (cat∣x),P (dog∣x),P (ship∣x),P (house∣x),P (car∣x)] = [0, 1, 0, 0, 0]

z P (y∣x)
P (t∣x)
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Softmax linear classifier
The softmax operator makes sure that the sum of the outputs  over all classes is 1.

The higher , the higher the probability that the example belongs to class .

This is very similar to logistic regression for soft classification, except that we have multiple classes.

y = {y  }i

y  =j P (class = j∣x) = S(z  ) =j  

 exp(z  )∑k k

exp(z  )j

z  j j

Source http://cs231n.github.io/linear-classify 44 / 63
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Cross-entropy loss function
We cannot use the mse as a loss function, as the softmax function would be hard to differentiate:

We actually want to minimize the statistical distance netween two distributions:

The model outputs a multinomial probability distribution  for an input : .

The one-hot encoded classes also come from a multinomial probability distribution .

We search which parameters  make the two distributions  and  close.

mse(W ,b) =  (t  −
j

∑ j  )
 exp(z  )∑k k

exp(z  )j 2

y x P (y∣x;W ,b)

P (t∣x)

(W ,b) P (y∣x;W ,b) P (t∣x)
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Cross-entropy loss function
The training data  represents samples from .

 is a good model of the data when the two distributions are close, i.e. when the negative
log-likelihood of each sample under the model is small.

samples from X

For an input , we minimize the cross-entropy between the target distribution and the predicted outputs:

{x  , t  }i i P (t∣x)

P (y∣x;W ,b)

x

l(W ,b) = H(t∣x,y∣x) = E  [− logP (y =t∼P (t∣x) t∣x)]
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Cross-entropy and negative log-likelihood

The cross-entropy samples from :

For a given input ,  is non-zero only for the correct class , as  is a one-hot encoded vector 
:

If we note  the index of the correct class , the cross entropy is simply:

t∣x

l(W ,b) = H(t∣x,y∣x) = E  [− logP (y =t∼P (t∣x) t∣x)] = −  P (t  ∣x) logP (y  =
j=1

∑
C

j j t  ∣x)j

x t t∗ t
[0, 1, 0, 0, 0]

l(W ,b) = − logP (y = t ∣x)∗

j∗ t∗

l(W ,b) = − log y  j∗
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Cross-entropy and negative log-likelihood
As only one element of  is non-zero, the cross-
entropy is the same as the negative log-likelihood
of the prediction for the true label:

The minimum of  is obtained when :

We want to classifier to output a probability 1
for the true label.

Because of the softmax activation function, the
probability for the other classes should become
closer from 0.

Minimizing the cross-entropy / negative log-likelihood pushes the output distribution  to be as close
as possible to the target distribution .

t

l(W ,b) = − log y  j∗

− log y y = 1

y  =j P (class = j) =  

 exp(z  )∑k k

exp(z  )j

y∣x
t∣x
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Cross-entropy loss function
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Cross-entropy loss function
As  is a binary vector , the cross-entropy / negative log-likelihood can also be noted as the
dot product between  and :

Input Logit score Probabilities True labels
x z y t

W, b

Linear
model

Softmax Cross-
entropy

2.5

0.3

-0.5

0.86

0.10

0.04

1

0

0

10.0
3.5
-4.0
11.2
-3,9
34.1
-45.8

The cross-entropy loss function is then the expectation over the training set of the individual cross-
entropies:

t [0, 1, 0, 0, 0]
t logy

l(W ,b) = −⟨t ⋅ logy⟩ = −  t log y  =
j=1

∑
C

j j − log y  j∗

L(W ,b) = E  [−⟨t ⋅x,t∼D logy⟩] ≈   −⟨t  ⋅
N

1

i=1

∑
N

i logy  ⟩i
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Cross-entropy loss function
The nice thing with the cross-entropy loss function, when used on a softmax activation function, is that
the partial derivative w.r.t the logit score  is simple:

i.e. the same as with the mse in linear regression!

Vector notation:

z

  

 

∂z  i

∂l(W ,b)
= −   t  log(y  ) = −  t   = −  t    

j

∑
∂z  i

∂
j j

j

∑ j ∂z  i

∂ log(y  )j

j

∑ j
y  j

1
∂z  i

∂y  j

= −   −    = −  y  (1 − y  ) −   (−y  y  )
y  i

t  i

∂z  i

∂y  i

j=i

∑
C

y  j

t  j

∂z  i

∂y  j

y  i

t  i
i i

j=i

∑
C

y  i

t  j
j i

= −t  + t  y  +  t  y  = −t  +  t  y  = −t  + y   t  i i i

j=i

∑
C

j i i

j=1

∑
C

j i i i

j=1

∑
C

j

= −(t  − y  )i i

 =
∂z

∂l(W ,b)
−(t − y)

See  for more explanations on the differentiation.https://peterroelants.github.io/posts/cross-entropy-softmax/ 51 / 63
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Cross-entropy loss function
As:

we can obtain the partial derivatives:

So gradient descent leads to the delta learning rule:

z = W × x + b

  

⎩
⎨
⎧

 =  ×  = −(t − y) × x
∂W

∂l(W ,b)
∂z

∂l(W ,b)
∂W
∂z T

 =  ×  = −(t − y)
∂b

∂l(W ,b)
∂z

∂l(W ,b)
∂b
∂z

  ⎩⎨
⎧ΔW = η (t − y) × xT

Δb = η (t − y)

52 / 63



Softmax linear classifier
We first compute the logit scores  using a linear
layer:

We turn them into probabilities  using the softmax
activation function:

We minimize the cross-entropy / negative log-likelihood on the training set:

which simplifies into the delta learning rule:

Input Logit score Probabilities True labels
x z y t

W, b

Linear
model

Softmax Cross-
entropy

2.5

0.3

-0.5

0.86

0.10

0.04

1

0

0

10.0
3.5
-4.0
11.2
-3,9
34.1
-45.8

z

z = W × x + b

y

y  =j  

 exp(z  )∑k k

exp(z  )j

L(W ,b) = E  [−⟨t ⋅x,t∼D logy⟩]

  ⎩⎨
⎧ΔW = η (t − y) × xT

Δb = η (t − y)
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Comparison of linear classification and regression
Classification and regression differ in the nature of their outputs: in classification they are discrete, in
regression they are continuous values.

However, when trying to minimize the mismatch between a model  and the
real data , we have found the same delta learning rule:

Regression and classification are in the end the same problem for us. The only
things that needs to be adapted is the activation function of the output and
the loss function.

For regression, we use linear activation functions
and the mean square error (mse):

For classification, we use the softmax activation
function and the cross-entropy (negative log-
likelihood) loss function.

y
t

  ⎩⎨
⎧ΔW = η (t − y) × xT

Δb = η (t − y)

L(W ,b) = E  [∣∣t −x,t∼D y∣∣ ]2

L(W ,b) = E  [−⟨t ⋅x,t∼D logy⟩]
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5 - Multi-label classification
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Multi-label classification
What if there is more than one label on the image?

The target vector  does not represent a probability
distribution anymore:

Normalizing the vector does not help: it is not a dog or a cat, it
is a dog and a cat.

GK Hart/Vikki Hart/Getty Images

t

t = [cat, dog, ship, house, car] = [1, 1, 0, 0, 0]

t = [cat, dog, ship, house, car] = [0.5, 0.5, 0, 0, 0]
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Multi-label classification
For multi-label classification, we can simply use the logistic activation
function for the output neurons:

The outputs are between 0 and 1, but they do not sum to one. Each
output neuron performs logistic regression for soft classification on
their class:

Each output neuron  has a binary target  (one-vs-the-rest) and has to
minimize the negative log-likelihood:

The binary cross-entropy loss is the sum of the negative log-likelihood for each class:

y = σ(W × x + b)

y  =j P (class = j∣x)

y  j t  j

l  (W ,b) =j −t  log y  +j j (1 − t  ) log(1 −j y  )j

L(W ,b) = E  [−  t  log y  +D

j=1

∑
C

j j (1 − t  ) log(1 −j y  )]j
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6 - Metrics
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Training vs. Generalization error
The training error is the error made on the training set.

Easy to measure for classification: number of
misclassified examples divided by the total number.

Totally irrelevant on usage: reading the training set has a
training error of 0%.

What matters is the generalization error, which is the error that will be made on new examples (not used
during learning).

Much harder to measure (potentially infinite number of new examples, what is the correct answer?).

Often approximated by the empirical error on the test set: one keeps a number of training examples
out of the learning phase and one tests the performance on them.

Need for cross-validation to detect overfitting.

ϵ  =D  

number of examples
number of misclassifications
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Overfitting in regression

Overfitting in classification
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Classification errors
Confusion matrix Classification errors can also depend on the class:

False Positive errors (FP, false alarm, type I) is
when the classifier predicts a positive class for
a negative example.

False Negative errors (FN, miss, type II) is
when the classifier predicts a negative class for
a positive example.

True Positive (TP) and True Negative (TN) are
correctly classified examples.

Is it better to fail to detect a cancer (FN) or to
incorrectly predict one (FP)?

Source:
https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?
n=Lectures.PrecisionRecall

61 / 63

https://alliance.seas.upenn.edu/~cis520/dynamic/2017/wiki/index.php?n=Lectures.PrecisionRecall


Classification errors
Error

Accuracy (1 - error)

Recall (hit rate, sensitivity) and Precision (specificity)

F1 score = harmonic mean of precision and recall

relevant elements

selected elements

false positivestrue positives

false negatives true negatives

Precision = Recall =

How many selected
items are relevant?

How many relevant
items are selected?

Source:
https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg

ϵ =  

TP + FP + TN + FN
FP + FN

acc =  

TP + FP + TN + FN
TP + TN

R =  P =
TP + FN

TP
 

TP + FP
TP

F1 =  

P + R

2P R

62 / 63

https://upload.wikimedia.org/wikipedia/commons/2/26/Precisionrecall.svg


Confusion matrix
For multiclass classification problems, the
confusion matrix tells how many examples are
correctly classified and where confusion happens.

One axis is the predicted class, the other is the
target class.

Each element of the matrix tells how many
examples are classified or misclassified.

The matrix should be as diagonal as possible.

Using scikit-learn:

from sklearn.metrics import confusion_matrix 

m = confusion_matrix(t, y)
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