
Neurocomputing
Learning theory

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
30

Non-linear regression and classification
We have seen sofar linear learning algorithms for regression and classification.

Most interesting problems are non-linear: classes are not linearly separable, the output is not a linear
function of the input, etc…

Do we need totally new methods, or can we re-use our linear algorithms?

2
/
30

1 - VC dimension

3
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
How many data examples can be correctly classified by a linear model in ?

In , all dichotomies of three non-aligned examples can be correctly classified by a linear model (
).

ℜd

ℜ2 y =
w ​ +o w ​ ⋅1 x ​ +1 w ​ ⋅2 x ​2

4
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
How many data examples can be correctly classified by a linear model in ?

In , all dichotomies of three non-aligned examples can be correctly classified by a linear model (
).

ℜd

ℜ2 y =
w ​ +o w ​ ⋅1 x ​ +1 w ​ ⋅2 x ​2

5
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
How many data examples can be correctly classified by a linear model in ?

In , all dichotomies of three non-aligned examples can be correctly classified by a linear model (
).

ℜd

ℜ2 y =
w ​ +o w ​ ⋅1 x ​ +1 w ​ ⋅2 x ​2

6
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
How many data examples can be correctly classified by a linear model in ?

In , all dichotomies of three non-aligned examples can be correctly classified by a linear model (
).

ℜd

ℜ2 y =
w ​ +o w ​ ⋅1 x ​ +1 w ​ ⋅2 x ​2

7
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
How many data examples can be correctly classified by a linear model in ?

However, there exists sets of four examples in which can NOT be correctly classified by a linear model,
i.e. they are not linearly separable.

ℜd

ℜ2

8
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
How many data examples can be correctly classified by a linear model in ?

However, there exists sets of four examples in which can NOT be correctly classified by a linear model,
i.e. they are not linearly separable.

ℜd

ℜ2

9
/
30

Non-linearly separable data
The XOR function in is for example not linearly separable, i.e. the Perceptron algorithm can not
converge.

The probability that a set of 3 (non-aligned) points in is linearly separable is 1, but the probability that
a set of four points is linearly separable is smaller than 1 (but not zero).

When a class of hypotheses can correctly classify all points of a training set , we say that
shatters .

ℜ2

x ​1 x ​2 y

0 0 0

0 1 1

1 0 1

1 1 0

ℜ2

H D H

D

10
/
30

Vapnik-Chervonenkis dimension of an hypothesis class
The Vapnik-Chervonenkis dimension of an hypothesis class is defined as the maximal
number of training examples that can shatter.

We saw that in , this dimension is 3:

This can be generalized to linear classifiers in :

This corresponds to the number of free parameters of the linear classifier:

 parameters for the weight vector, 1 for the bias.

Given any set of examples in , there exists a linear classifier able to classify them perfectly.

For other types of (non-linear) hypotheses, the VC dimension is generally proportional to the number of
free parameters.

But regularization reduces the VC dimension of the classifier.

VC ​(H)dim H

H

ℜ2

VC ​(Linear(ℜ)) =dim
2 3

ℜd

VC ​(Linear(ℜ)) =dim
d d + 1

d

(d + 1) ℜd

11
/
30

Vapnik-Chervonenkis theorem
The generalization error of an hypothesis taken from a class of finite VC dimension and trained
on samples of is bounded by the sum of the training error and the VC complexity term:

with probability , if .

ϵ(h) h H

N S ​(h)ϵ̂S

ϵ(h) ≤ ​(h) +ϵ̂S ​
​

N

VC ​(H) ⋅ (1 + log(​)) − log(​)dim VC ​(H)dim

2⋅N
4
δ

1 − δ VC ​(H) <<dim N

Vapnik, Vladimir (2000). The nature of statistical learning theory. Springer. 12
/
30

Structural risk minimization

ϵ(h) ≤ ​ +ϵ̂S(h) ​​

N

VC ​(H) ⋅ (1 + log(​)) − log(​)dim VC ​(H)dim

2⋅N
4
δ

13
/
30

Structural risk minimization

The generalization error increases with the VC dimension, while the training error decreases.

Structural risk minimization is an alternative method to cross-validation.

The VC dimensions of various classes of hypothesis are already known (~ number of free parameters).

This bounds tells how many training samples are needed by a given hypothesis class in order to obtain a
satisfying generalization error.

The more complex the model, the more training data you will need to get a good generalization
error!

A learning algorithm should only try to minimize the training error, as the VC complexity term only
depends on the model.

This term is only an upper bound: most of the time, the real bound is usually 100 times smaller.

ϵ(h) ≤ ​ +ϵ̂S(h) ​
​

N

VC ​(H) ⋅ (1 + log(​)) − log(​)dim VC ​(H)dim

2⋅N
4
δ

ϵ(h) ≈ ​

N

VC ​(H)dim

14
/
30

Implication for non-linear classifiers
The VC dimension of linear classifiers in is:

Given any set of examples in , there exists a linear classifier able to classify them perfectly.

For the probability of having training errors becomes huge (the data is generally not linearly
separable).

If we project the input data onto a space with sufficiently high dimensions, it becomes then possible
to find a linear classifier on this projection space that is able to classify the data!

However, if the space has too many dimensions, the VC dimension will increase and the generalization
error will increase.

Basic principle of all non-linear methods: multi-layer perceptron, radial-basis-function networks, support-
vector machines…

ℜd

VC ​(Linear(ℜ)) =dim
d d + 1

(d + 1) ℜd

N >> d

15
/
30

2 - Feature space

16
/
30

Cover’s theorem on the separability of patterns (1965)
A complex pattern-classification problem, cast in a high dimensional space non-linearly, is more likely to be
linearly separable than in a low-dimensional space, provided that the space is not densely populated.

The highly dimensional space where the input data is projected is called the feature space.

When the number of dimensions of the feature space increases:

the training error decreases (the pattern is more likely linearly separable);

the generalization error increases (the VC dimension increases).

17
/
30

Feature space

Performing nonlinear classification via linear separation in higher dimensional spacePerforming nonlinear classification via linear separation in higher dimensional space
ShareShare

18
/
30

https://www.youtube.com/watch?v=9NrALgHFwTo

Polynomial features
For the polynomial regression of order :

the vector defines a feature space for the input .

The elements of the feature space are called polynomial
features.

We can define polynomial features of more than one variable,
e.g. , , etc.

We then apply multiple linear regression (MLR) on the
polynomial feature space to find the parameters:

p

y = f ​(x) =w,b w ​ x +1 w ​ x +2
2 … + w ​ x +p

p b

x = ​ ​ ​

⎣
⎡ x

x2

…
xp⎦
⎤

x

x y2 x y3 4

Δw = η (t − y)x

19
/
30

Radial-basis function networks
Radial-basis function (RBF) networks samples a
subset of training examples and form the
feature space using a gaussian kernel:

with decreasing
with the distance between the vectors.

K

ϕ(x) = ​ ​ ​

⎣
⎡φ(x − x ​)1

φ(x − x ​)2

…
φ(x − x ​)K

⎦
⎤

φ(x − x ​) =i exp −β ∣∣x − x ​∣∣i 2

Source: https://mccormickml.com/2013/08/15/radial-basis-function-
network-rbfn-tutorial/

20
/
30

https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

Radial-basis function networks
By applying a linear classification algorithm on the
RBF feature space:

we obtain a smooth non-linear partition of the input
space.

The width of the gaussian kernel allows distance-
based generalization.

y = f(W × ϕ(x) + b)

Source: https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

21
/
30

https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

3 - Kernel algorithms (optional)

22
/
30

Kernel perceptron
What happens during online Perceptron learning?

If an example is correctly classified (),
the weight vector does not change.

If an example is miscorrectly classified (
), the weight vector is increased from .

for epochs:

for each sample :

If you initialize the weight vector to 0, its final value will therefore be a linear combination of the input
samples:

The coefficients represent the embedding strength of each example, i.e. how often they were
misclassified.

x ​i y ​ =i t ​i

w ← w

x ​i y ​ =i  t ​i

t ​ x ​i i

w ← w + 2 η t ​ x ​i i

Primal form of the online Perceptron algorithm

M

(x ​, t ​)i i

y ​ =i sign(⟨w ⋅ x ​⟩ +i b)

Δw = η (t ​ −i y ​)x ​i i

Δb = η (t ​ −i y ​)i

w = ​α t ​ x ​

i=1

∑
N

i i i

α ​i

23
/
30

Kernel perceptron

With , the prediction for an
input only depends on the training samples and
their value:

To make a prediction , we need the dot product
between the input and all training examples .

We ignore the bias here, but it can be added back.

for epochs:

for each sample :

if :

This dual form of the Perceptron algorithm is strictly equivalent to its primal form.

It needs one parameter per training example instead of a weight vector (), but relies on dot
products between vectors.

w = ​ α ​ t ​ x ​∑i=1
N

i i i

x
α ​i

y = sign(​α ​ t ​ ⟨x ​ ⋅
i=1

∑
N

i i i x⟩)

y

x x ​i

Dual form of the online Perceptron algorithm

M

(x ​, t ​)i i

y ​ =i sign(​ α ​ t ​ ⟨x ​ ⋅∑j=1
N

j j j x ​⟩)i

y ​ =i  t ​i

α ​ ←i α ​ +i 1

α ​i N >> d

24
/
30

Kernel perceptron
Why is it interesting to have an algorithm relying on
dot products?

You can project the inputs to a feature space
 and apply the same algorithm:

But you do not need to compute the dot product in the feature space, all you need to know is its result.

Kernel trick: A kernel allows to compute the dot product between the feature space
representation of two vectors without ever computing these representations!

y = sign(​α ​ t ​ ⟨x ​ ⋅
i=1

∑
N

i i i x⟩)

x
ϕ(x)

y = sign(​α ​ t ​ ⟨ϕ(x ​) ⋅
i=1

∑
N

i i i ϕ(x)⟩)

K(x ​,x) =i ⟨ϕ(x ​) ⋅i ϕ(x)⟩

K(x, z)

25
/
30

Example of the polynomial kernel
Let’s consider the quadratic kernel in :

The quadratic kernel implicitely transforms an input space with three dimensions into a feature space of
9 dimensions.

ℜ3

∀(x, z) ∈ ℜ × ℜ3 3

K(x, z) = (⟨x ⋅ z⟩)2

= (​x ​ ⋅ z ​) ⋅ (​x ​ ⋅ z ​)
i=1

∑
3

i i

j=1

∑
3

j j

= ​ ​(x ​ ⋅ x ​) ⋅ (z ​ ⋅ z ​)
i=1

∑
3

j=1

∑
3

i j i j

= ⟨ϕ(x) ⋅ ϕ(z)⟩

with: ϕ(x) = ​ ​ ​

⎣

⎡x ​ ⋅ x ​1 1

x ​ ⋅ x ​1 2

x ​ ⋅ x ​1 3

x ​ ⋅ x ​2 1

x ​ ⋅ x ​2 2

x ​ ⋅ x ​2 3

x ​ ⋅ x ​3 1

x ​ ⋅ x ​3 2

x ​ ⋅ x ​3 3
⎦

⎤

26
/
30

Example of the polynomial kernel
More generally, the polynomial kernel in of degree :

transforms the input from a space with dimensions into a feature space of dimensions.

While the inner product in the feature space would require operations, the calculation of the kernel
directly in the input space only requires operations.

This is called the kernel trick: when a linear algorithm only relies on the dot product between input
vectors, it can be safely projected into a higher dimensional feature space through a kernel function,
without increasing too much its computational complexity, and without ever computing the values in the
feature space.

ℜd p

∀(x, z) ∈ ℜ × ℜ K(x, z)d d = (⟨x ⋅ z⟩)p

= ⟨ϕ(x) ⋅ ϕ(z)⟩

d dp

O(d)p

O(d)

27
/
30

Kernel perceptron
The kernel perceptron is the dual form of the
Perceptron algorithm using a kernel.

for epochs:

for each sample :

if :

Depending on the kernel, the implicit dimensionality
of the feature space can even be infinite!

Linear kernel: dimensions.

Polynomial kernel: dimensions.

Gaussian kernel (or RBF kernel):
dimensions.

Hyperbolic tangent kernel: dimensions.

Kernel Perceptron

M

(x ​, t ​)i i

y ​ =i sign(​ α ​ t ​ K(x ​,x ​))∑j=1
N

j j j i

y ​ =i  t ​i

α ​ ←i α ​ +i 1

d

K(x, z) = ⟨x ⋅ z⟩

dp

K(x, z) = (⟨x ⋅ z⟩)p

∞

K(x, z) = exp(− ​)
2σ2

∥x − z∥2

∞

k(x, z) = tanh(⟨κx ⋅ z⟩ + c)

28
/
30

Examples of kernels

Source:

In practice, the choice of the kernel family depends more on the nature of data (text, image…) and its
distribution than on the complexity of the learning problem.

RBF kernels tend to “group” positive examples together.

Polynomial kernels are more like “distorted” hyperplanes.

Kernels have parameters (, …) which have to found using cross-validation.

http://beta.cambridgespark.com/courses/jpm/05-module.html

p σ

29
/
30

http://beta.cambridgespark.com/courses/jpm/05-module.html

Support vector machines
Support vector machines (SVM) extend the idea of
a kernel perceptron using a different linear learning
algorithm, the maximum margin classifier.

Using Lagrange optimization and regularization, the
maximal margin classifer tries to maximize the
“safety zone” (geometric margin) between the
classifier and the training examples.

It also tries to reduce the number of non-zero
coefficients to keep the complexity of the classifier
bounded, thereby improving the generalization:

Coupled with a good kernel, a SVM can efficiently solve non-linear classification problems without
overfitting.

SVMs were the weapon of choice before the deep learning era, which deals better with huge datasets.

α ​i

y = sign(​α ​ t ​ K(x ​,x) +
i=1

∑
N ​SV

i i i b)

XX XX

XX

XX

XX

XX XX

11

O

O O

O
O

O
O

support
vectors

30
/
30

