ぎ華

UNIVERSITY OF TECHNOLOGY
in the european capital of culture CHEMNITZ

Neurocomputing

Learning theory

Julien Vitay

Professur für Künstliche Intelligenz－Fakultät für Informatik

Non-linear regression and classification

- We have seen sofar linear learning algorithms for regression and classification.
- Most interesting problems are non-linear: classes are not linearly separable, the output is not a linear function of the input, etc...
- Do we need totally new methods, or can we re-use our linear algorithms?

1 - VC dimension

Vapnik-Chervonenkis dimension of an hypothesis class

How many data examples can be correctly classified by a linear model in \Re^{d} ?

In \Re^{2}, all dichotomies of three non-aligned examples can be correctly classified by a linear model ($y=$ $\left.w_{o}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)$.

Vapnik-Chervonenkis dimension of an hypothesis class

How many data examples can be correctly classified by a linear model in \Re^{d} ?

In \Re^{2}, all dichotomies of three non-aligned examples can be correctly classified by a linear model ($y=$ $\left.w_{o}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)$.

Vapnik-Chervonenkis dimension of an hypothesis class

How many data examples can be correctly classified by a linear model in \Re^{d} ?

In \Re^{2}, all dichotomies of three non-aligned examples can be correctly classified by a linear model ($y=$ $\left.w_{o}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)$.

Vapnik-Chervonenkis dimension of an hypothesis class

How many data examples can be correctly classified by a linear model in \Re^{d} ?

In \Re^{2}, all dichotomies of three non-aligned examples can be correctly classified by a linear model ($y=$ $\left.w_{o}+w_{1} \cdot x_{1}+w_{2} \cdot x_{2}\right)$.

Vapnik-Chervonenkis dimension of an hypothesis class

How many data examples can be correctly classified by a linear model in \Re^{d} ?

However, there exists sets of four examples in \Re^{2} which can NOT be correctly classified by a linear model, i.e. they are not linearly separable.

Vapnik-Chervonenkis dimension of an hypothesis class

How many data examples can be correctly classified by a linear model in \Re^{d} ?

However, there exists sets of four examples in \Re^{2} which can NOT be correctly classified by a linear model, i.e. they are not linearly separable.

Non-linearly separable data

- The XOR function in \Re^{2} is for example not linearly separable, i.e. the Perceptron algorithm can not converge.

x_{1}	x_{2}	y
0	0	0
0	1	1
1	0	1
1	1	0

- The probability that a set of 3 (non-aligned) points in \Re^{2} is linearly separable is 1 , but the probability that a set of four points is linearly separable is smaller than 1 (but not zero).
- When a class of hypotheses \mathcal{H} can correctly classify all points of a training set \mathcal{D}, we say that \mathcal{H} shatters \mathcal{D}.

Vapnik-Chervonenkis dimension of an hypothesis class

- The Vapnik-Chervonenkis dimension $\operatorname{VC}_{\operatorname{dim}}(\mathcal{H})$ of an hypothesis class \mathcal{H} is defined as the maximal number of training examples that \mathcal{H} can shatter.
- We saw that in \Re^{2}, this dimension is 3 :

$$
\operatorname{VC}_{\operatorname{dim}}\left(\operatorname{Linear}\left(\Re^{2}\right)\right)=3
$$

- This can be generalized to linear classifiers in \Re^{d} :

$$
\operatorname{VC}_{\operatorname{dim}}\left(\operatorname{Linear}\left(\Re^{d}\right)\right)=d+1
$$

- This corresponds to the number of free parameters of the linear classifier:
- d parameters for the weight vector, 1 for the bias.
- Given any set of $(d+1)$ examples in \Re^{d}, there exists a linear classifier able to classify them perfectly.
- For other types of (non-linear) hypotheses, the VC dimension is generally proportional to the number of free parameters.
- But regularization reduces the VC dimension of the classifier.

Vapnik-Chervonenkis theorem

- The generalization error $\epsilon(h)$ of an hypothesis h taken from a class \mathcal{H} of finite VC dimension and trained on N samples of \mathcal{S} is bounded by the sum of the training error $\hat{\epsilon}_{\mathcal{S}}(h)$ and the VC complexity term:

$$
\epsilon(h) \leq \hat{\epsilon}_{\mathcal{S}}(h)+\sqrt{\frac{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H}) \cdot\left(1+\log \left(\frac{2 \cdot N}{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H})}\right)\right)-\log \left(\frac{\delta}{4}\right)}{N}}
$$

with probability $1-\delta$, if $\mathrm{VC}_{\operatorname{dim}}(\mathcal{H}) \ll N$.

Structural risk minimization

$$
\epsilon(h) \leq \hat{\epsilon}_{\mathcal{S}(h)}+\sqrt{\frac{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H}) \cdot\left(1+\log \left(\frac{2 \cdot N}{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H})}\right)\right)-\log \left(\frac{\delta}{4}\right)}{N}}
$$

Structural risk minimization

$$
\epsilon(h) \leq \hat{\epsilon}_{\mathcal{S}(h)}+\sqrt{\frac{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H}) \cdot\left(1+\log \left(\frac{2 \cdot N}{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H})}\right)\right)-\log \left(\frac{\delta}{4}\right)}{N}}
$$

- The generalization error increases with the VC dimension, while the training error decreases.
- Structural risk minimization is an alternative method to cross-validation.
- The VC dimensions of various classes of hypothesis are already known (\sim number of free parameters).
- This bounds tells how many training samples are needed by a given hypothesis class in order to obtain a satisfying generalization error.
- The more complex the model, the more training data you will need to get a good generalization error!

$$
\epsilon(h) \approx \frac{\mathrm{VC}_{\operatorname{dim}}(\mathcal{H})}{N}
$$

- A learning algorithm should only try to minimize the training error, as the VC complexity term only depends on the model.
- This term is only an upper bound: most of the time, the real bound is usually 100 times smaller.

Implication for non-linear classifiers

- The VC dimension of linear classifiers in \Re^{d} is:

$$
\operatorname{VC}_{\operatorname{dim}}\left(\operatorname{Linear}\left(\Re^{d}\right)\right)=d+1
$$

- Given any set of $(d+1)$ examples in \Re^{d}, there exists a linear classifier able to classify them perfectly.
- For $N \gg d$ the probability of having training errors becomes huge (the data is generally not linearly separable).
- If we project the input data onto a space with sufficiently high dimensions, it becomes then possible to find a linear classifier on this projection space that is able to classify the data!
- However, if the space has too many dimensions, the VC dimension will increase and the generalization error will increase.
- Basic principle of all non-linear methods: multi-layer perceptron, radial-basis-function networks, supportvector machines...

2 - Feature space

Cover's theorem on the separability of patterns (1965)

A complex pattern-classification problem, cast in a high dimensional space non-linearly, is more likely to be linearly separable than in a low-dimensional space, provided that the space is not densely populated.

Input Space
Feature Space

- The highly dimensional space where the input data is projected is called the feature space.
- When the number of dimensions of the feature space increases:
- the training error decreases (the pattern is more likely linearly separable);
- the generalization error increases (the VC dimension increases).

Feature space

Polynomial features

- For the polynomial regression of order p :

$$
y=f_{\mathbf{w}, b}(x)=w_{1} x+w_{2} x^{2}+\ldots+w_{p} x^{p}+b
$$

the vector $\mathbf{x}=\left[\begin{array}{c}x \\ x^{2} \\ \cdots \\ x^{p}\end{array}\right]$ defines a feature space for the input x.

- The elements of the feature space are called polynomial features.
- We can define polynomial features of more than one variable, e.g. $x^{2} y, x^{3} y^{4}$, etc.
- We then apply multiple linear regression (MLR) on the polynomial feature space to find the parameters:

$$
\Delta \mathbf{w}=\eta(t-y) \mathbf{x}
$$

Radial-basis function networks

- Radial-basis function (RBF) networks samples a subset of K training examples and form the feature space using a gaussian kernel:

$$
\phi(\mathbf{x})=\left[\begin{array}{c}
\varphi\left(\mathbf{x}-\mathbf{x}_{1}\right) \\
\varphi\left(\mathbf{x}-\mathbf{x}_{2}\right) \\
\cdots \\
\varphi\left(\mathbf{x}-\mathbf{x}_{K}\right)
\end{array}\right]
$$

with $\varphi\left(\mathbf{x}-\mathbf{x}_{i}\right)=\exp -\beta\left\|\mathbf{x}-\mathbf{x}_{i}\right\|^{2}$ decreasing with the distance between the vectors.

Source: https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

Radial-basis function networks

- By applying a linear classification algorithm on the RBF feature space:

$$
\mathbf{y}=f(W \times \phi(\mathbf{x})+\mathbf{b})
$$

we obtain a smooth non-linear partition of the input space.

- The width of the gaussian kernel allows distancebased generalization.

Source: https://mccormickml.com/2013/08/15/radial-basis-function-network-rbfn-tutorial/

3 - Kernel algorithms (optional)

Kernel perceptron

- What happens during online Perceptron learning?
- If an example \mathbf{x}_{i} is correctly classified ($y_{i}=t_{i}$), the weight vector does not change.

$$
\mathbf{w} \leftarrow \mathbf{w}
$$

- If an example \mathbf{x}_{i} is miscorrectly classified ($y_{i} \neq t_{i}$

Primal form of the online Perceptron algorithm

- for M epochs:
- for each sample (\mathbf{x}_{i}, t_{i}):
- $y_{i}=\operatorname{sign}\left(\left\langle\mathbf{w} \cdot \mathbf{x}_{i}\right\rangle+b\right)$
- $\Delta \mathbf{w}=\eta\left(t_{i}-y_{i}\right) \mathbf{x}_{i}$
- $\Delta b=\eta\left(t_{i}-y_{i}\right)$), the weight vector is increased from $t_{i} \mathbf{x}_{i}$.

$$
\mathbf{w} \leftarrow \mathbf{w}+2 \eta t_{i} \mathbf{x}_{i}
$$

- If you initialize the weight vector to 0 , its final value will therefore be a linear combination of the input samples:

$$
\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t_{i} \mathbf{x}_{i}
$$

- The coefficients α_{i} represent the embedding strength of each example, i.e. how often they were misclassified.

Kernel perceptron

- With $\mathbf{w}=\sum_{i=1}^{N} \alpha_{i} t_{i} \mathbf{x}_{i}$, the prediction for an input \mathbf{x} only depends on the training samples and their α_{i} value:

$$
y=\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} t_{i}\left\langle\mathbf{x}_{i} \cdot \mathbf{x}\right\rangle\right)
$$

```
Dual form of the online Perceptron algorithm
- for M epochs:
    - for each sample ( }\mp@subsup{\mathbf{x}}{i}{},\mp@subsup{t}{i}{})\mathrm{ )
    - }\mp@subsup{y}{i}{}=\operatorname{sign}(\mp@subsup{\sum}{j=1}{N}\mp@subsup{\alpha}{j}{}\mp@subsup{t}{j}{}\langle\mp@subsup{\mathbf{x}}{j}{}\cdot\mp@subsup{\mathbf{x}}{i}{}\rangle
    - if }\mp@subsup{y}{i}{}\not=\mp@subsup{t}{i}{}\mathrm{ :
    \circ}\mp@subsup{\alpha}{i}{}\leftarrow\mp@subsup{\alpha}{i}{}+
```

- To make a prediction y, we need the dot product between the input \mathbf{x} and all training examples \mathbf{x}_{i}.
- We ignore the bias here, but it can be added back.
- This dual form of the Perceptron algorithm is strictly equivalent to its primal form.
- It needs one parameter α_{i} per training example instead of a weight vector ($N \gg d$), but relies on dot products between vectors.

Kernel perceptron

- Why is it interesting to have an algorithm relying on dot products?

$$
y=\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} t_{i}\left\langle\mathbf{x}_{i} \cdot \mathbf{x}\right\rangle\right)
$$

- You can project the inputs \mathbf{x} to a feature space $\phi(\mathbf{x})$ and apply the same algorithm:

$$
y=\operatorname{sign}\left(\sum_{i=1}^{N} \alpha_{i} t_{i}\left\langle\phi\left(\mathbf{x}_{i}\right) \cdot \phi(\mathbf{x})\right\rangle\right)
$$

- But you do not need to compute the dot product in the feature space, all you need to know is its result.

$$
K\left(\mathbf{x}_{i}, \mathbf{x}\right)=\left\langle\phi\left(\mathbf{x}_{i}\right) \cdot \phi(\mathbf{x})\right\rangle
$$

- Kernel trick: A kernel $K(\mathbf{x}, \mathbf{z})$ allows to compute the dot product between the feature space representation of two vectors without ever computing these representations!

Example of the polynomial kernel

- Let's consider the quadratic kernel in \Re^{3} :
$\forall(\mathbf{x}, \mathbf{z}) \in \Re^{3} \times \Re^{3}$

$$
\begin{aligned}
K(\mathbf{x}, \mathbf{z}) & =(\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{2} \\
& =\left(\sum_{i=1}^{3} x_{i} \cdot z_{i}\right) \cdot\left(\sum_{j=1}^{3} x_{j} \cdot z_{j}\right) \\
& =\sum_{i=1}^{3} \sum_{j=1}^{3}\left(x_{i} \cdot x_{j}\right) \cdot\left(z_{i} \cdot z_{j}\right) \\
& =\langle\phi(\mathbf{x}) \cdot \phi(\mathbf{z})\rangle
\end{aligned}
$$

- The quadratic kernel implicitely transforms an input space with three dimensions into a feature space of 9 dimensions.

Example of the polynomial kernel

- More generally, the polynomial kernel in \Re^{d} of degree p :

$$
\begin{aligned}
\forall(\mathbf{x}, \mathbf{z}) \in \Re^{d} \times \Re^{d} \quad K(\mathbf{x}, \mathbf{z}) & =(\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{p} \\
& =\langle\phi(\mathbf{x}) \cdot \phi(\mathbf{z})\rangle
\end{aligned}
$$

transforms the input from a space with d dimensions into a feature space of d^{p} dimensions.

- While the inner product in the feature space would require $O\left(d^{p}\right)$ operations, the calculation of the kernel directly in the input space only requires $O(d)$ operations.
- This is called the kernel trick: when a linear algorithm only relies on the dot product between input vectors, it can be safely projected into a higher dimensional feature space through a kernel function, without increasing too much its computational complexity, and without ever computing the values in the feature space.

Kernel perceptron

- The kernel perceptron is the dual form of the Perceptron algorithm using a kernel.

Kernel Perceptron

- for M epochs:
- for each sample $\left(\mathbf{x}_{i}, t_{i}\right)$:
- $y_{i}=\operatorname{sign}\left(\sum_{j=1}^{N} \alpha_{j} t_{j} K\left(\mathbf{x}_{j}, \mathbf{x}_{i}\right)\right)$
- if $y_{i} \neq t_{i}$:
- $\alpha_{i} \leftarrow \alpha_{i}+1$
- Depending on the kernel, the implicit dimensionality of the feature space can even be infinite!
- Linear kernel: d dimensions.

$$
K(\mathbf{x}, \mathbf{z})=\langle\mathbf{x} \cdot \mathbf{z}\rangle
$$

- Polynomial kernel: d^{p} dimensions.

$$
K(\mathbf{x}, \mathbf{z})=(\langle\mathbf{x} \cdot \mathbf{z}\rangle)^{p}
$$

- Gaussian kernel (or RBF kernel): ∞ dimensions.

$$
K(\mathbf{x}, \mathbf{z})=\exp \left(-\frac{\|\mathbf{x}-\mathbf{z}\|^{2}}{2 \sigma^{2}}\right)
$$

- Hyperbolic tangent kernel: ∞ dimensions.

$$
k(\mathbf{x}, \mathbf{z})=\tanh (\langle\kappa \mathbf{x} \cdot \mathbf{z}\rangle+c)
$$

Examples of kernels

Linear Kernel

Polynomial Kernel

RBF Kernel

Source: http://beta.cambridgespark.com/courses/jpm/05-module.html

- In practice, the choice of the kernel family depends more on the nature of data (text, image...) and its distribution than on the complexity of the learning problem.
- RBF kernels tend to "group" positive examples together.
- Polynomial kernels are more like "distorted" hyperplanes.
- Kernels have parameters (p, σ...) which have to found using cross-validation.

Support vector machines

- Support vector machines (SVM) extend the idea of a kernel perceptron using a different linear learning algorithm, the maximum margin classifier.
- Using Lagrange optimization and regularization, the maximal margin classifer tries to maximize the "safety zone" (geometric margin) between the classifier and the training examples.
- It also tries to reduce the number of non-zero α_{i} coefficients to keep the complexity of the classifier bounded, thereby improving the generalization:

$$
\mathbf{y}=\operatorname{sign}\left(\sum_{i=1}^{N_{S V}} \alpha_{i} t_{i} K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b\right)
$$

- Coupled with a good kernel, a SVM can efficiently solve non-linear classification problems without overfitting.
- SVMs were the weapon of choice before the deep learning era, which deals better with huge datasets.

