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Multi-layer perceptron
A Multi-Layer Perceptron (MLP) or feedforward
neural network is composed of:

an input layer for the input vector 

one or several hidden layers allowing to project
non-linearly the input into a space of higher
dimensions .

an output layer for the output .

If there is a single hidden layer , it corresponds to
the feature space.

Each layer takes inputs from the previous layer.

If the hidden layer is adequately chosen, the output
neurons can learn to replicate the desired output .
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Fully-connected layer

The operation performed by each layer can be written in the form of a
matrix-vector multiplication:

Fully-connected layers (FC) transform an input vector  into a new
vector  by multiplying it by a weight matrix  and adding a bias vector

.

A non-linear activation function transforms each element of the net
activation.
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Activation functions
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Modern activation functions

Rectified linear function - ReLU (output is continuous and positive).

Parametric Rectifier Linear Unit - PReLU (output is continuous).

f(x) = max(0,x) =  {x if x ≥ 0
0 otherwise.

f(x) =  {x if x ≥ 0
αx otherwise.
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Softmax activation function

Source 

For classification problems, the softmax activation function can be used in the output layer to make sure
that the sum of the outputs  over all output neurons is one.

The higher the net activation , the higher the probability that the example belongs to class .

Softmax is not per se a transfer function (not local to each neuron), but the idea is similar.

http://cs231n.github.io/linear-classify

y = {y  }j

y  =j P (class = j) =  

 exp(net  )∑k k

exp(net  )j

net  j j
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Why non-linear activation functions?
Why not use the linear function  in the hidden layer?

The equivalent function would be linear…

Remember Cover’s theorem:

In practice it does not matter how non-linear the function is (e.g PReLU is almost linear), but there must
be at least one non-linearity.

f(x) = x

h = W x +1 b1

y = W h +2 b2

  

y = W (W x + b ) + b2 1 1 2

= (W W )x + (W b + b )2 1 2 1 2

= W x + b

A complex pattern-classification problem, cast in a high dimensional space non-linearly, is more
likely to be linearly separable than in a low-dimensional space, provided that the space is not densely
populated.

8 / 40



Training a MLP : loss functions
We have a training set composed of N input/output pairs .

What are the free parameters  (weights  and biases ) making the prediction  as close as possible from the desired output ?

We define a loss function  of the free parameters which should be minimized:

For regression problems, we take the mean square error (mse):

For classification problems, we take the cross-entropy or negative log-likelihood on a softmax
output layer:

(x  , t  )  i i i=1..N

Optimization problem

θ W ,W1 2 b ,b1 2 y t

L(θ)

L  (θ) =reg E  [∣∣t −x,t∈D y∣∣ ]2

L  (θ) =class E  [−⟨t ⋅x,t∼D logy⟩]
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Training a MLP : optimizer
To minimize the chosen loss function, we are going to use stochastic gradient descent iteratively until the
network converges:

We will see later that other optimizers than SGD can be used.

The question is now how to compute efficiently these gradients w.r.t all the weights and biases.

The algorithm to achieve this is called backpropagation, which is simply a smart implementation of the
chain rule.

  

⎩
⎨

⎧ΔW = −η ∇  L(θ)1
W 1

Δb = −η ∇  L(θ)1
b1

ΔW = −η ∇  L(θ)2
W 2

Δb = −η ∇  L(θ)2
b2

Rumelhart, Hinton, Williams (1986). “Learning representations by back-propagating errors”. Nature. 10 / 40



2 - Backpropagation
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Backpropagation on a shallow network

The chain rule gives us for the parameters of the output layer:

and for the hidden layer:

If we can compute all these partial derivatives / gradients individually, the problem is solved.
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Gradient of the loss function
We have already seen for the linear algorithms that the derivative of the loss function w.r.t the net
activation of the output  is proportional to the prediction error :

mse for regression:

cross-entropy using a softmax output layer:

 is called the output error.

The output error is going to appear in all partial derivatives, i.e. in all learning rules.

The backpropagation algorithm is sometimes called backpropagation of the error.

net  y t − y

δ  =y −  =
∂net  y

∂l  (θ)reg −  ×
∂y

∂l  (θ)reg
 =

∂net  y

∂y
2 (t − y) f (net  )′

y

δ  =y −  =
∂net  y

∂l  (θ)class (t − y)

δ  =y −  

∂net  y

∂l(θ)
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Gradient in the output layer
We now have everything we need to train the output layer:

As , we get for the cross-entropy loss:

i.e. exactly the same delta learning rule as a softmax linear classifier or multiple linear regression using the
vector  as an input.

 =
∂W 2

∂l(θ)
 ×

∂net  y
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 =

∂W 2

∂net  y −δ  ×y  
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∂net  y
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∂l(θ)
−δy
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  ⎩⎨
⎧ΔW = η δ  × h = η (t − y) × h2

y
T T

Δb = η δ  = η (t − y)2
y
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Gradient in the hidden layer
Let’s note  the hidden error, i.e. minus the gradient of the loss function w.r.t the net activation of the
hidden layer:

Using this hidden error, we can compute the gradients w.r.t  and :

As , we get:

δ  h

δ  =h −  =
∂net  h

∂l(θ)
−  ×

∂net  y

∂l(θ)
 ×

∂h
∂net  y
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∂net  y

 

∂net  h

∂h

W 1 b1

 =
∂W 1
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 =
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∂net  h
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Gradient in the hidden layer

If we know the hidden error , the update rules for the input weights  and  also take the form of
the delta learning rule:

This is the classical form eta * error * input.

All we need to know is the backpropagated error  and we can apply the delta learning rule!

 =
∂W 1

∂l(θ)
−δ  ×h xT

 =
∂b1

∂l(θ)
−δ  h

δ  h W 1 b1

  ⎩⎨
⎧ΔW = η δ  × x1

h
T

Δb = η δ  

1
h

δ  h
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Backpropagated error
The backpropagated error  is a vector assigning an error to each
of the hidden neurons:

As :

we obtain:

If  and  have  elements and  and  have  elements, the matrix  is  as 
must be a vector with  elements.

 is therefore a vector with  elements, which is then multiplied element-wise with the
derivative of the transfer function to obtain .
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Backpropagation for a shallow MLP
For a shallow MLP with one hidden layer:

the output error:

is backpropagated to the hidden layer:

what allows to apply the delta learning rule to all parameters:
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Derivative of the activation functions
Threshold and sign functions are not differentiable, we simply consider the derivative is 1.

The logistic or sigmoid function has the nice property that its derivative can be expressed as a function of
itself:

The hyperbolic tangent function too:

ReLU is even simpler:

f(x) =  →{1 if x ≥ 0
0 or 1 otherwise.

f (x) =′ 1

f(x) =  →
1 + exp(−x)

1
f (x) =′ f(x) (1 − f(x))

f(x) = tanh(x) → f (x) =′ 1 − f(x)2

f(x) = max(0,x) =  →{x if x ≥ 0
0 otherwise.

f (x) =′
 {1 if x ≥ 0

0 otherwise.
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What is backpropagated?
Let’s have a closer look at what is backpropagated
using single neurons and weights.

The output neuron  computes:

All output weights  are updated proportionally
to the output error of the neuron :

This is possible because we know the output error directly from the data .
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What is backpropagated?
The hidden neuron  computes:

We want to learn the hidden weights  using the
delta learning rule:

but we do not know the ground truth of the hidden
neuron in the data:

We need to estimate the backpropagated error using the output error.

Input
layer

Hidden
layer

Output
layer

Desired 
output h  j
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δ  =h  j (? − h  )j
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What is backpropagated?

If we omit the derivative of the transfer function, the
backpropagated error for the hidden neuron  is:

The backpropagated error is an average of the output errors 
, weighted by the output weights between the hidden

neuron  and the output neurons .

The backpropagated error is the contribution of each hidden neuron  to the output error:

If there is no output error, there is no hidden error.

If a hidden neuron sends strong weights  to an output neuron  with a strong prediction error 
, this means that it participates strongly to the output error and should learn from it.

If the weight  is small, it means that the hidden neuron does not take part in the output error.
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MLP: the universal approximation theorem

Cybenko, 1989

Let  be a nonconstant, bounded, and monotonically-increasing continuous function. Let  denote the -dimensional unit hypercube .
The space of continuous functions on  is denoted by . Then, given any function  and , there exists an integer  and
sets of real constants  and , where  and  such that we may define:

as an approximate realization of the function f; that is,

for all .

This theorem shows that for any input/output mapping function  in supervised learning, there exists a
MLP with  neurons in the hidden layer which is able to approximate it with a desired precision!

Universal approximation theorem

φ() I  m  0 m  0 [0, 1]m  0

I  m  0 C(I  )m  0 f ∈ C(I  )m  0 ϵ > 0 m  1

α  , b  i i w  ∈ij ℜ i = 1, ...,m  1 j = 1, ...,m  0

F (x) =  α  ⋅
i=1

∑
m  1

i φ  w  ⋅ x  + b  (
j=1

∑
m  0

ij j i)

∣F (x) − f(x)∣ < ϵ

x ∈ I  m

f

m  1
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Properties of MLP
The universal approximation theorem only proves the existence of a shallow MLP with  neurons in the
hidden layer that can approximate any function, but it does not tell how to find this number.

A rule of thumb to find this number is that the generalization error is empirically close to:

where  is the total number of weights and biases in the model, and  the number of training
samples.

The more neurons in the hidden layer, the better the training error, but the worse the generalization error
(overfitting).

The optimal number should be found with cross-validation methods.

For most functions, the optimal number  is high and becomes quickly computationally untractable. We
need to go deep!

m  1

ϵ =  

N

VC  (MLP)dim

VC  (MLP)dim N

m  1
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3 - Deep neural networks
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Deep Neural Network
A MLP with more than one hidden layer is a deep neural network.

26 / 40



Backpropagation for deep neural networks
Backpropagation still works if we have many hidden layers :

If each layer is differentiable, i.e. one can compute its gradient , we can chain backwards each
partial derivatives to know how to update each layer:

Backpropagation is simply an efficient implementation of the chain rule: the partial derivatives are
iteratively reused in the backwards phase.

h  , … ,h  1 n

 ∂h  k−1

∂h  k

Source: David Silver, Tutorial: Deep Reinforcement Learning 27 / 40



Gradient of a fully connected layer
A fully connected layer transforms an input vector 

 into an output vector  using a weight
matrix , a bias vector  and a non-linear
activation function :

The gradient of its output w.r.t the input  is (using the chain rule):

The gradients of its output w.r.t the free parameters  and  are:

hk−1 h  k

W k bk

f

h  =k f(net  ) =hk f(W h  +k
k−1 b )k
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∂h  k
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 =
∂W k

∂h  k
f (net  )h  

′
hk k−1

 =
∂b  k

∂h  k
f (net  )′

hk
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Gradient of a fully connected layer
A fully connected layer 
receives the gradient of the loss function w.r.t. its
output  from the layer above:

It adds to this gradient its own contribution and transmits it to the previous layer:

It then updates its parameters  and  with:
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Training a deep neural network with backpropagation
A feedforward neural network is an acyclic graph of differentiable and parameterized layers.

The backpropagation algorithm is used to assign the gradient of the loss function  to each layer
using backward chaining:

Stochastic gradient descent is then used to update the parameters of each layer:

x → h  →1 h  →2 … → h  →n y

L(θ)

 =
∂h  k−1

∂L(θ)
 ×

∂h  k

∂L(θ)
 

∂h  k−1

∂h  k

ΔW =k −η  =
∂W k

∂L(θ)
−η  ×

∂h  k

∂L(θ)
 

∂W k

∂h  k

Rumelhart, Hinton, Williams (1986). “Learning representations by back-propagating errors”. Nature. 30 / 40



4 - Example
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MLP example
Let’s try to solve this non-linear binary classification problem:
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MLP example
We can create a shallow MLP with:

Two input neurons  for the two input
variables.

Enough hidden neurons (e.g. 20), with a
sigmoid or ReLU activation function.

One output neuron with the logistic activation
function.

The cross-entropy (negative log-likelihood) loss
function.

We train it on the input data using the
backpropagation algorithm and the SGD optimizer.

.

.

.

x  , x  1 2
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MLP example

Experiment live on !https://playground.tensorflow.org/
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Automatic differentiation Deep Learning frameworks
Current:

Tensorflow  released by Google in 2015 is one of the two standard DL
frameworks.

Keras  is a high-level Python API over tensorflow (but also theano, CNTK and MxNet)
written by Francois Chollet.

PyTorch  by Facebook is the other standard framework.

Historical:

Theano  released by U Toronto in 2010 is the predecessor of
tensorflow. Now abandoned.

Caffe  by U Berkeley was long the standard library for convolutional
networks.

CNTK  (Microsoft Cognitive Toolkit) is a free library by Microsoft!

MxNet  from Apache became the DL framework at Amazon.

https://www.tensorflow.org/

https://keras.io/

http://pytorch.org

http://deeplearning.net/software/theano/

http://caffe.berkeleyvision.org/

https://github.com/Microsoft/CNTK

https://github.com/apache/incubator-mxnet
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Example of a shallow neural network with keras
Let’s implement the previous MLP using keras.

We first need to generate the data using scikit-learn:

We then import tensorflow:

The neural network is called a Sequential model in keras:

import sklearn.datasets 
X, t = sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=0.15, factor=0.3)

import tensorflow as tf

model = tf.keras.Sequential()
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Example of a shallow neural network with keras
Creating a NN is simply stacking layers in the model. The input layer is just a placeholder for the data:

The hidden layer has 20 neurons, the ReLU activation and takes input from the previous layer:

The output layer has 1 neuron with the logistic/sigmoid activation function:

model.add( tf.keras.layers.Input(shape=(2, )) )

model.add( 
    tf.keras.layers.Dense( 
        20, # Number of hidden neurons 
        activation='relu' # Activation function 
    ) 
)

model.add( 
    tf.keras.layers.Dense( 
        1, # Number of output neurons 
        activation='sigmoid' # Soft classification 
    ) 
)
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Example of a shallow neural network with keras
We now choose an optimizer (SGD) with a learning rate :

We choose a loss function (binary cross-entropy, aka negative log-likelihood):

We compile the model (important!) and tell it to track the accuracy of the model:

η = 0.001

optimizer = tf.keras.optimizers.SGD(lr=0.001)

loss = tf.keras.losses.binary_crossentropy

model.compile( 
    loss=loss, 
    optimizer=optimizer,  
    metrics=tf.keras.metrics.categorical_accuracy 
)
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Example of a shallow neural network with keras
Et voilà! The network has been created.

print(model.summary())

Model: "sequential_1" 
_________________________________________________________________ 
Layer (type)                 Output Shape              Param #    
================================================================= 
dense (Dense)                (None, 20)                60         
_________________________________________________________________ 
dense_1 (Dense)              (None, 1)                 21         
================================================================= 
Total params: 81 
Trainable params: 81 
Non-trainable params: 0 
_________________________________________________________________ 
None
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Example of a shallow neural network with keras
We now train the model on the data for 100 epochs using a batch size of 10 and wait for it to finish:

With keras (and the other automatic differentiation frameworks), you only need to define the structure of
the network.

The rest (backpropagation, SGD) is done automatically.

To make predictions on new data, just do:

model.fit(X, t, batch_size=10, nb_epoch=100)

model.predict(X_test)
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