REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Neurocomputing

Multi-layer Perceptron

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/40

1 - Multi-layer perceptron

Multi-layer perceptron

Input Hidden Output Desired o A Multi-Layer Perceptron (MLP) or feedforward
layer layer layer output neural network is composed of:
h = an input layer for the input vector x

‘ = one or several hidden layers allowing to project
Yy t non-linearly the input into a space of higher

A
‘ Q the feature space.

X
. dimensions hi, hy, hs,
. 5>
\’—“ Q‘ Q = an output layer for the output y.

e If there is a single hidden layer h, it corresponds to

e Each layer takes inputs from the previous layer.

e |f the hidden layer is adequately chosen, the output

neurons can learn to replicate the desired output t.

3/40

Fully-connected layer

input Wl?:ights
Weights (W) x Input bias output
b4 — + =
o gl et e The operation performed by each layer can be written in the form of a
h matrix-vector multiplication:

h = f(nety) = f(W'x + b')

y = f(net,) = f(W?h + b?)

O

e Fully-connected layers (FC) transform an input vector x into a new
vector h by multiplying it by a weight matrix 1/ and adding a bias vector

b.

e A non-linear activation function transforms each element of the net
activation.

Wt bl W2 b?

4/40

Activation functions

rectifier f{x) = max(0, x) piecewise linear f(x) = |x|2
4 2
2 1
| iy 0 2 4 —4 —2 0 2 -
sigmoid f{x) = 1/(1 + exp(—x)) tanh flx) = tanh(x)
1.00

0.75

5740

Modern activation functions

A A

RelU PRelLU

e Rectified linear function - ReLU (output is continuous and positive).

r it >0

) = ma(0,) - {

e Parametric Rectifier Linear Unit - PReLU (output is continuous).

f(w){w it >0

axr otherwise.

0 otherwise.

6 /40

Softmax activation function

matrix multiply + bias offset

0.01 | -0.05 | 0.1 0-05 -15 0.0 cross-entropy loss (Softmax)
07 | 02 | 005 | 0.16 22 | 4| 02 s i Ll
exp normalize
- 10g(0.353)
00 | -045 | -0.2 | 0.03 44 03| 7| %8 |—| 236 — 0.631 | ~
to one) 1.04
W 56 b 0.28 1.32 0.353
L

Source http://cs231n.github.io/linear-classify

e For classification problems, the softmax activation function can be used in the output layer to make sure
that the sum of the outputs y = {y, } over all output neurons is one.

exp(net,)
2k €xp(nety)

y; = P(class =j) =

» The higher the net activation net;, the higher the probability that the example belongs to class 3.

e Softmax is not per se a transfer function (not local to each neuron), but the idea is similar.

7140

http://cs231n.github.io/linear-classify

Why non-linear activation functions?

Why not use the linear function f(x) = x in the hidden layer?

h=W!'x+b!

y = W?h + b?
The equivalent function would be linear...

y = W? (W'x +b') 4+ b’
= (W*WHx+ (W?b' +b?)
= Wx+Db

Remember Cover's theorem:

A complex pattern-classification problem, cast in a high dimensional space non-linearly, is more

likely to be linearly separable than in a low-dimensional space, provided that the space is not densely
populated.

In practice it does not matter how non-linear the function is (e.g PReLU is almost linear), but there must
be at least one non-linearity.

8 /40

Training a MLP : loss functions

 We have a training set composed of N input/output pairs (X;, t;)i—1. N

Optimization problem

What are the free parameters 6 (weights Wl, W? and biases bl, b2) making the prediction y as close as possible from the desired output t?

 We define a loss function £(8) of the free parameters which should be minimized:

= For regression problems, we take the mean square error (mse):

Lres(6) = Eneen|llt —]2

= For classification problems, we take the cross-entropy or negative log-likelihood on a softmax
output layer:

Lclass (9) — {"X,tND[_<t) log Y>]

9740

Training a MLP : optimizer

e To minimize the chosen loss function, we are going to use stochastic gradient descent iteratively until the
network converges:

Abl — 1N Vbl E(H)

o We will see later that other optimizers than SGD can be used.

e T

e T
C

nain rule.

ne question is now how to compute efficiently these gradients w.r.t all the weights and biases.
ne algorithm to achieve this is called backpropagation, which is simply a smart implementation of the

Rumelhart, Hinton, Williams (1986). “Learning representations by back-propagating errors”. Nature.

10/40

2 - Backpropagation

Backpropagation on a shallow network

Input Hidden Output Desired

layer layer layer output
x (.
y t

e and for the hidden layer:

e The chain rule gives us for the parameters of the output layer:

oL(6) OL(H) By

oWl

h = f(nety) = f(W'x + b')

y = f(nety) = f(W?h + b?)

oL() OL(O) By

Onet,

X
Oy Onet,

dL() OL©B) By

Ob!

e |f we can compute all these partial derivatives / gradients individually, the problem is solved.

X
oy Onet,

oW? ~ Oy Omet, = OW2
0L(O) 0L(0) y oy y Onet,
Ob2 Oy Onet, 0b?
y Onet, y oh y Onety,
Oh Onety oW1l
Onet, oh Onety,
X X X

oh 8neth 81)1

12/40

Gradient of the loss function

e We have already seen for the linear algorithms that the derivative of the loss function w.r.t the net
activation of the output nety, is proportional to the prediction error t — y:

= mse for regression:

Olig(0) Oleg() By

O = Onet, B oy . Onet, =2(t —y) S (nety)

= cross-entropy using a softmax output layer:

5y _ alclass (9) _ (t B y)

Onet,

ol(6
¢ Oy = () is called the output error.
Onet,

e The output error is going to appear in all partial derivatives, i.e. in all learning rules.

 The backpropagation algorithm is sometimes called backpropagation of the error.

13/40

Gradient in the output layer

 We now have everything we need to train the output layer:

ol(e) ol(0) y Onet, . Onet,
OW?2 Omet, OW2 7 W2
ol(#) ol(#) Onety 5 Onet,
ob2 dmet, = b2 ¥ b
e Asnet, = W?h + b? we get for the cross-entropy loss:
ol(0) - ol(0)
G2 —Jy X h* and Ih2 —0y

i.e. exactly the same delta learning rule as a softmax linear classifier or multiple linear regression using the

vector h as an input.

(AW? =7d, x hT =n(t —y) x h?

iAbz =ndy =7n(t—y)

14 /40

Gradient in the hidden layer

e Let's note 0y, the hidden error, i.e. minus the gradient of the loss function w.r.t the net activation of the

hidden layer:

81(6)

(5 J— J—
h Onety

e Using this hidden error, we can compute the gradients w.r.t W' andb':

al ()

oWl

al()

obl

e Asnety, = W!x + bl weget:

Oh Onety

ol(0) y Onet, y oh _ 5, Onet,
Onet, oh Onety,
ol(0) y Onet, 5 s Onety,
Onety, oWl — 7 oWt
81((9) « 8neth — 85 % Bneth
Onety, obl ~— ©° Ob!
ol(6
3V(Vl) — —Op X XT
0l(0) _ 5

Ob!

15740

Gradient in the hidden layer

9l(6)

oWt~ on XX
o)
obt — "

o If we know the hidden error dy,, the update rules for the input weights W1 and b also take the form of
the delta learning rule:

AWl — 775}1 X XT

Ab! = 1y

e This is the classical form eta * error * input.

 All we need to know is the backpropagated error 01, and we can apply the delta learning rule!

16 /40

Backpropagated error

:25;‘: ::,iydff” ,‘;‘yﬁﬁ”t Efg[ﬁd e The backpropagated error dy, is a vector assigning an error to each
h of the hidden neurons:
X
(. y t ; ou9) _ . Omety ~ Oh
h — p— X
Y Oh Onety

‘\V”— * . Onety

w nety = W?h + b’

W1l bl W2, b2 h = f(nety,)

we obtain:

on = f'(nety) (W?)! x &,

e If h and &y, have K elements and y and d, have C' elements, the matrix W2is C x K asW?* x h
must be a vector with C' elements.

. (W2)T X 0y is therefore a vector with K elements, which is then multiplied element-wise with the
derivative of the transfer function to obtain 0y,.

17 /40

Backpropagation for a shallow MLP

Input Hidden Output Desired For a shallow MLP with one hidden layer:
layer layer layer output
h _ _ 1 1
N @ h = f(net,) = f(W x+ b")
@ L f(nety) = f(W?h +b?)
y p— ne y p— —|—
NSO O—C
‘@%‘ Q the output error:
91(6)
0y = = (t —
‘W/ y dnet, (y)

is backpropagated to the hidden layer:

5}1 — f’(neth) (W2)T X 5y

what allows to apply the delta learning rule to all parameters:

AW? =néd, x h'
Ab? = nd,
AW?! = 775}1 x x?t
Abl — 775}1

18/40

Derivative of the activation functions

e Threshold and sign functions are not differentiable, we simply consider the derivative is 1.

1 if >0

f(z) = { — fl(z) =1

Oor1l otherwise.

e The logistic or sigmoid function has the nice property that its derivative can be expressed as a function of
itself:

1
1+ exp(—=x)

f(z)
e The hyperbolic tangent function too:

f(z) =tanh(z) — f'(z)=1- f(2)’

e RelLU is even simpler:

r it >0

f(w)maX(O,w){ _ f’(w){l if >0

0 otherwise. 0 otherwise.

19740

What is backpropagated?

Input Hidden Output Desired e Let's have a closer look at what is backpropagated
layer layer layer output , , :
b using single neurons and weights.
‘ e The output neuron y; computes:

()

¢

t
N> C .
W- C

‘ o All output weights W?2 ik, are updated proportionally
‘ to the output error of the neuron y:
WQ, b2

w1t bl

AWfk =ndy, hj =tk — y&) h;

e This is possible because we know the output error directly from the data ?;.

20 /40

What is backpropagated?

input Hidden Output Desired e The hidden neuron h; computes:
layer layer layer output J
h

‘ Z a:z—l—b1

t
v.q», C
~ %‘ O We want to learn the hidden weights T/V1 using the

()

¢

delta learning rule:
1
‘/ AW =1 0n,; T

W2, b?

Wl bl _
) but we do not know the ground truth of the hidden

neuron in the data:

5. = (7 — h;)

J

e We need to estimate the backpropagated error using the output error.

21/40

What is backpropagated?

Input Hidden Output Desired

layer layer layer output 5h — f,(neth) (WZ)T X 5}’
h
< ‘ e |f we omit the derivative of the transfer function, the
Yy t backpropagated error for the hidden neuron hj IS:

z < 5.:—CW-25
‘& ‘ O h; kz_; gk Y'Yk

‘ e The backpropagated error is an average of the output errors
‘ 5yk, weighted by the output weights between the hidden
Wi bl W2, b? neuron h; and the output neurons yy.

 The backpropagated error is the contribution of each hidden neuron h; to the output error:

= |f there is no output error, there is no hidden error.

= |f a hidden neuron sends strong weights \szk\ to an output neuron yj with a strong prediction error
5yk, this means that it participates strongly to the output error and should learn from it.

= |f the weight \szkI is small, it means that the hidden neuron does not take part in the output error.

22 /40

MLP: the universal approximation theorem

Universal approximation theorem

Cybenko, 1989

Let ¢() be a nonconstant, bounded, and monotonically-increasing continuous function. Let I,,,, denote the mg-dimensional unit hypercube [0, 1]™0.
The space of continuous functions on I,,,, is denoted by C'(1,,,,). Then, given any function f € C(I,,,,) and € > 0, there exists an integer m; and

sets of real constants «;, b; and w;; € R, wheret = 1,...,m1 and j = 1, ..., mg such that we may define:

F(x) = Za i (Zo’wz'j T +b»z)
i=1 j=1

as an approximate realization of the function f; that is,
F(x) — f(x)] <e

forallxz € I,,.

e This theorem shows that for any input/output mapping function f in supervised learning, there exists a
MLP with mq neurons in the hidden layer which is able to approximate it with a desired precision!

23 /40

Properties of MLP

e The universal approximation theorem only proves the existence of a shallow MLP with m neurons in the
hidden layer that can approximate any function, but it does not tell how to find this number.

e A rule of thumb to find this number is that the generalization error is empirically close to:

B V Cdim (MLP)
N N

€

where VCgim (MLP) is the total number of weights and biases in the model, and N the number of training
samples.

e The more neurons in the hidden layer, the better the training error, but the worse the generalization error
(overfitting).

e The optimal number should be found with cross-validation methods.

e For most functions, the optimal number m is high and becomes quickly computationally untractable. We
need to go deep!

24 /40

3 - Deep neural networks

25/40

Deep Neural Network

e A MLP with more than one hidden layer is a deep neural network.

Deep neural
networks learn
hierarchical feature _ -
representations — t

‘ hidden layer 1 hidden layver 2 hidden layer 3
input layver

a
|
A
o0
%
7
\
hh\.

7%
i .
lll.l

|* E

= -

S

Tl

ik

&8

.:. "_ i ; . 1 :Il:f' 1

ll" ::] .':.l.'.-‘ - -.l“ r-"‘-". ::"I- -‘:‘
NS L A Q- =% g
SN R T4 RN
X, =3 : four .'::";'i'.'::‘.-'." TS _.'.r’: = o :-_‘1._ s L | a":"_:.i- o ‘h -
Tl o B i e S R S P i BT SN e ™
..ﬂ-t%":’:ﬁ!"-i’ﬁ":*:ﬁhﬁ -.:‘-":il-:&".‘.l-:'g*j_.::f s o ‘..:___E*g":-, L S 7, 3 =
R A S AT T g e o S Y -l-=:§ g WL

e T Y e, N kb N W S T, M el S g
ST T e ey, :ﬂ_-"‘a:-:ﬂﬁ;,;:'ff -
o R e
i .'-i__‘ ._.r._"__.-""_. _,‘__i-'.. o

]

OO OO O
"'I- ‘: ;' ".'i-"l-l

&

iy

¥

N

s W TP T L Ty L g e) 2
- St W ":-r“‘?;-*i*-f;;-*?é‘fi"=‘; e .
s A e e A SR B R R ek B Rt e
o .-?:r:»..'m:.‘-_‘;“;.;‘::s;ﬁ*;:e St ,* AW
T SRl Tl AR Rl N SR SR RO Y
Tt S, F ERT A N R B A i
g ¢ s ¥ g e el i NS 1‘:#'32!"
LR, B s N

3 i o g " I
e *‘i"i s @ oo as
-rf_nlr_'-',_ '-l:‘:a D ‘l‘n *:';. ! ,_":j_"ﬂ_*: ::.';_ ;-:.-,'_1:',:'| A
N oy
"-f.',-:.-_;:";fa.rfj.-.. e

Y

)
i
)
)

N \ output layer

26 /40

Backpropagation for deep neural networks

e Backpropagation still works if we have many hidden layers hy, ..., h,:

X—sh——...—h,——y——>|
W1 Wh

e |f each layer is differentiable, i.e. one can compute its gradient 3?11:: , we can chain backwards each

partial derivatives to know how to update each layer:

dhy O ho Ohn Oy

E?f I x E}! Ejfll EJ!?H 1 E}I ?}ﬁ;] E}f
Ox Ohy e Ohn Dy
r',i'.l'l'.'l J/ ,;”'-I,” l
.r',i'L-l,-'l Awn
ol ol
owq Own

o Backpropagation is simply an efficient implementation of the chain rule: the partial derivatives are
iteratively reused in the backwards phase.

Source: David Silver, Tutorial: Deep Reinforcement Learning

27 /40

Gradient of a fully connected layer

o A fully connected layer transforms an input vector
h;._1 into an output vector h;, using a weight

Weights (W)

input

matrix W* a bias vector b* and a non-linear

activation function f:

h;, = f(nety:) = f(W"h;_; + b")

e The gradient of its output w.r.t the input h;,_1 is (using the chain rule):

ohy
ohy_;

= f'(nety:) W*

e The gradients of its output w.r.t the free parameters W* and by, are:

ohy
8Wk’“ = [(netyr) hy_4

ohy,

8—]:)k — f,(nethk)

Weights
x input

bias

output

28 /40

Gradient of a fully connected layer

o e Afully connected layer hy = f(W*h;_; + b*)

n
n—1 ol Ihp Ol

Ohq 9 hy

ol Ox ol o
Ox Ohy e S Dhn Dy receives the gradient of the loss function w.r.t. its
Ohy l O hn l output hy, from the layer above:
s w1 Jwpn
ol ol
owq Ownp, 65(9)

ohy,

e |t adds to this gradient its own contribution and transmits it to the previous layer:

OL() OL(6) Oy AL (6)

_ B J £ kENT
Ohe y Ohy < Ohy,) metw) (W)
e |t then updates its parameters Wk and b;. with:
OL(0) OL(O) Ohy OL(6) . .
oWE ~ omg < gwk ~J (metw) T =X B

OL(©O) _ OL(6) Ohy dL(6)
l b, Oh, Oby

— f/(nethk) 8hk

29 /40

Training a deep neural network with backpropagation

o A feedforward neural network is an acyclic graph of differentiable and parameterized layers.

x—h —>hy—...—h,—y

e The backpropagation algorithm is used to assign the gradient of the loss function L(H) to each layer
using backward chaining:

OL(0) OL) Ohy

Oh;_q Ohy, . Ohy_4

A ho Jhn v

oI _ o« o1 " 1 9y Ok o

ox ohy e S oh, Dy
EJ'J"?]_ \l/ Ohn l
Owq Dwn
ol ol
dwy ow,,

o Stochastic gradient descent is then used to update the parameters of each layer:

AL (6) OL©) Ohy

AWE = _ _
v T oWt T on, ~ oWk

Rumelhart, Hinton, Williams (1986). “Learning representations by back-propagating errors”. Nature.

30 /40

4 - Example

31/40

MLP example

e Let's try to solve this non-linear binary classification problem:

®
@
1.0 ¢ *
] 1 - .. e o
I
o ® o ®
0.5
o o -
S e . o
2 @
® . ° o o ©® .:. o L o L]
o 0 o
0.0 o ¢ * :.‘ ¢ °
o ° & .
i L ®
* . ® P ® o
o o T ®
—-0.5 ‘ o]
' o)
° ¢ %
s . o @
° o
~1.0 ° °® °
® o

—1.0 —0.5 0.0 0.5 1.0

32/40

MLP example

e We can create a shallow MLP with:
= Two input neurons 1, o for the two input
variables.

= Enough hidden neurons (e.g. 20), with a
sigmoid or ReLU activation function.

= One output neuron with the logistic activation
function.

= The cross-entropy (negative log-likelihood) loss
function.

e We train it on the input data using the
backpropagation algorithm and the SGD optimizer.

33 /40

MLP example

L
®
®
1.0
¢ ° g * ®
@9
. =
0.5 . ¢ . .
® L] o ® ® 9
e . e g o° .:. ¢ -
0.0 L] o . o : ﬁ.
° °
. °
O o *
@
e °
~-0.5 o
. ¢ %
- . @
o * .
[]
~1.0 ®
® 8
~-1.0 —-0.5 0.0 0.5 1.0

e Experiment live on https://playground.tensorflow.org/!

34 /40

https://playground.tensorflow.org/

Automatic differentiation Deep Learning frameworks

Current:

e Tensorflow https://www.tensorflow.org/ released by Google in 2015 is one of the two standard DL
frameworks.

o Keras https://keras.io/ is a high-level Python API over tensorflow (but also theano, CNTK and MxNet)
written by Francois Chollet.

e PyTorch http://pytorch.org by Facebook is the other standard framework.

Historical:

e Theano http://deeplearning.net/software/theano/ released by U Toronto in 2010 is the predecessor of
tensorflow. Now abandoned.

o Caffe hitp://caffe.berkeleyvision.org/ by U Berkeley was long the standard library for convolutional
networks.

e CNTK https://github.com/Microsoft/CNTK (Microsoft Cognitive Toolkit) is a free library by Microsoft!

e MxNet https://github.com/apache/incubator-mxnet from Apache became the DL framework at Amazon.

35/40

https://www.tensorflow.org/
https://keras.io/
http://pytorch.org/
http://deeplearning.net/software/theano/
http://caffe.berkeleyvision.org/
https://github.com/Microsoft/CNTK
https://github.com/apache/incubator-mxnet

Example of a shallow neural network with keras

e Let'simplement the previous MLP using keras.

e We first need to generate the data using scikit—Llearn:

import sklearn.datasets
X, t = sklearn.datasets.make_circles(n_samples=100, shuffle=True, noise=0.15, factor=0.3)

e We then import tensorf Low:

import tensorflow as tf

e The neural network is called a Sequential modelin keras:

model = tf.keras.Sequential()

36 /40

Example of a shallow neural network with keras

e Creating a NN is simply stacking layers in the model. The input layer is just a placeholder for the data:

model.add(tf.keras.layers.Input(shape=(2,)))

e The hidden layer has 20 neurons, the RelLU activation and takes input from the previous layer:

model.add (
tf.keras. layers.Dense(
20, # Number of hidden neurons
activation='relu' # Activation function

)

e The output layer has 1 neuron with the logistic/sigmoid activation function:

model.add (
tf.keras. layers.Dense(
1, # Number of output neurons
activation='sigmoid' # Soft classification

37 /40

Example of a shallow neural network with keras

e We now choose an optimizer (SGD) with a learning rate n = 0.001:

optimizer = tf.keras.optimizers.SGD(1r=0.001)

e We choose a loss function (binary cross-entropy, aka negative log-likelihood):

loss = tf.keras. losses.binary_crossentropy

o We compile the model (important!) and tell it to track the accuracy of the model:

model.compile(
loss=1lo0ss,
optimizer=optimizer,
metrics=tf.keras.metrics.categorical_accuracy

38/40

Example of a shallow neural network with keras

e Etvoila! The network has been created.

print(model.summary())

Model: "sequential_1"

Layer (type) Output Shape Param #
dense (Dense) (None, 20) 60
dense_1 (Dense) (None, 1) 21

Total params: 81
Trainable params: 81
Non-trainable params: 0

None

39/40

Example of a shallow neural network with keras

e We now train the model on the data for 100 epochs using a batch size of 10 and wait for it to finish:
model.fit(X, t, batch_size=10, nb_epoch=100)

o With keras (and the other automatic differentiation frameworks), you only need to define the structure of
the network.

e The rest (backpropagation, SGD) is done automatically.

e To make predictions on new data, just do:

model.predict (X _test)

40 /40

