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1 - Convolutional neural networks
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Deep Neural Network
The different layers of a deep network extract increasingly complex features.

edges  contours  shapes  objects→ → →
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Problem with fully connected networks
Using full images as inputs leads to an explosion of the
number of weights to be learned:

A moderately big 800 * 600 image has 480,000 pixels with
RGB values.

The number of dimensions of the input space is 800 * 600
* 3 = 1.44 million.

Even if you take only 1000 neurons in the first hidden layer,
you get 1.44 billion weights to learn, just for the first layer.

To obtain a generalization error in the range of 10%, you would
need at least 14 billion training examples…
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Problem with fully connected networks
Early features (edges) are usually local, there is no need to
learn weights from the whole image.

Natural images are stationary: the statistics of the pixel in a
small patch are the same, regardless the position on the
image.

Idea: One only needs to extract features locally and share the
weights between the different locations.

This is a convolution operation: a filter/kernel is applied on
small patches and slided over the whole image.

Note: implemented as a cross-correlation, but it does not
matter…
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The convolutional layer

Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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The convolutional layer
In a convolutional layer,  filters are defined with
very small sizes (3x3, 5x5…).

Each filter is convoluted over the input image (or
the previous layer) to create a feature map.

The set of  feature maps becomes a new 3D
structure: a tensor.

If the input image is 32x32x3, the resulting tensor
will be 32x32xd.

The convolutional layer has only very few
parameters: each feature map has 3x3x3 values in
the filter plus a bias, i.e. 28 parameters.

As in image processing, a padding method must be
chosen (what to do when a pixel is outside the
image).

Source: https://github.com/vdumoulin/conv_arithmetic
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Max-pooling
 

The number of elements in a convolutional layer is still too high. We need to reduce the spatial dimension
of a convolutional layer by downsampling it.

For each feature, a max-pooling layer takes the maximum value of a feature for each subregion of the
image (generally 2x2).

Mean-pooling layers are also possible, but they are not used anymore.

Pooling allows translation invariance: the same input pattern will be detected whatever its position in the
input image.

Source: http://cs231n.github.io/convolutional-networks/
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Convolutional Neural Networks

A convolutional neural network (CNN) is a cascade of convolution and pooling operations, extracting
layer by layer increasingly complex features.

The spatial dimensions decrease after each pooling operation, but the number of extracted features
increases after each convolution.

One usually stops when the spatial dimensions are around 7x7.

The last layers are fully connected (classical MLP).

Training a CNN uses backpropagation all along: the convolution and pooling operations are differentiable.
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Backpropagation through a convolutional layer
How can we do backpropagation through a convolutional layer?

In the example above, the four neurons of the feature map will receive a gradient from the upper layers.

How can we use it to learn the filter values and pass the gradient to the lower layers?

Source: https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
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Backpropagation through a convolutional layer
Answer: simply by convolving the output gradients with the flipped filter!

Source: https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
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Backpropagation through a convolutional layer
The filter just has to be flipped (  symmetry) before the convolution.

The convolution operation is differentiable, so we can apply backpropagation and learn the filters.

180o

Source: https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
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Backpropagation through a max-pooling layer

We can also use backpropagation through a max-pooling layer.

We need to remember which location was the winning location in order to backpropagate the gradient.

A max-pooling layer has no parameter, we do not need to learn anything, just to pass the gradient
backwards.

Source: https://mukulrathi.com/demystifying-deep-learning/conv-net-backpropagation-maths-intuition-derivation/
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Convolutional layer on MNIST

Let’s see what happens when a convolutional layer
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Convolutional layer on MNIST
Each feature map extracts edges of different orientations.

Here are the weights learned in the convolutional layer:
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Convolutional layer on MNIST
A convolutional layer is like a bank of (adaptive) filters applied on the image.

Feature maps are the results of the convolution of these weights with the input image:
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Convolution with strides
Convolution with strides is an alternative to max-
pooling layers.

The convolution simply “jumps” one pixel when
sliding over the image (stride 2).

This results in a smaller feature map.

Much less operations to do than convolution with
stride 1 followed by max-pooling, for the same
performance.

Particularly useful for generative models (VAE,
GAN, etc).

Source: https://github.com/vdumoulin/conv_arithmetic

Springerberg et al. (2014). Striving for Simplicity: The All Convolutional Net. arXiv:1412.6806 17 / 55
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Dilated convolutions
A dilated convolution is a convolution with holes (à trous).

The filter has a bigger spatial extent than its number of values.

Source: https://github.com/vdumoulin/conv_arithmetic
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Implementing a CNN in keras
Convolutional and max-pooling layers are regular objects in keras/tensorflow/pytorch/etc.

You do not need to care about their implementation, they are designed to run fast on GPUs.

You have to apply to the CNN all the usual tricks: optimizers, dropout, batch normalization, etc. 

model = Sequential() 
model.add(Input(X_train.shape[1:])) 

model.add(Conv2D(32, (3, 3), padding='same')) 
model.add(Activation('relu')) 
model.add(Conv2D(32, (3, 3))) 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25)) 

model.add(Conv2D(64, (3, 3), padding='same')) 
model.add(Activation('relu')) 
model.add(Conv2D(64, (3, 3)))L 
model.add(Activation('relu')) 
model.add(MaxPooling2D(pool_size=(2, 2))) 
model.add(Dropout(0.25))

model.add(Flatten()) 
model.add(Dense(512)) 
model.add(Activation('relu')) 
model.add(Dropout(0.5)) 
model.add(Dense(num_classes)) 
model.add(Activation('softmax')) 

opt = RMSprop( 
    lr=0.0001, 
    decay=1e-6 
) 

model.compile( 
    loss='categorical_crossentropy', 
    optimizer=opt, 
    metrics=['accuracy'] 
)
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2 - Some famous convolutional networks
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NeoCognitron

The Neocognitron (Fukushima, 1980) was actually the first CNN able to recognize handwritten digits.

Training is not based on backpropagation, but a set of biologically realistic learning rules (Add-if-silent,
margined WTA).

Inspired by the human visual system.

Source: https://uplLoad.wikimedia.org/wikipedia/uk/4/42/Neocognitron.jpg

Fukushima (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 21 / 55
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LeNet

1998: LeNet (AT&T labs) was one of the first CNN able to learn from raw data using backpropagation.

It has two convolutional layers, two mean-pooling layers, two fully-connected layers and an output layer.

It uses tanh as the activation function and works on CPU only.

Used for handwriting recognition (for example ZIP codes).

LeCun et al. (1998). Gradient Based Learning Applied to Document Recognition. Proceedings of the IEEE. 22 / 55



ImageNet object recognition challenge (image-net.org)
The ImageNet challenge was a benchmark for computer vision algorithms, providing millions of
annotated images for object recognition, detection and segmentation.

14 millions images (224x224), 1000 classes.
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AlexNet

2012: AlexNet (Toronto University) started the DL revolution by winning ImageNet 2012.

Similar architecture to LeNet, but trained on two GPUs using augmented data.

Uses ReLU, max-pooling, dropout, SGD with momentum, L2 regularization.

Krizhevsky, Sutskever and Hinton (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS. 24 / 55



VGG-16

2014: VGG-16 (Visual Geometry Group, Oxford) placed second at ImageNet 2014.

It went much deeper than AlexNet with 16 parameterized layers (a VGG-19 version is also available with
19 layers).

Its main novelty is that two convolutions are made successively before the max-pooling, implicitly
increasing the receptive field (2 consecutive 3x3 filters cover 5x5 pixels).

Drawback: 140M parameters (mostly from the last convolutional layer to the first fully connected) quickly
fill up the memory of the GPU.

Simonyan and Zisserman (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556. 25 / 55
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GoogLeNet - Inception v1

2014: GoogLeNet (Google Brain) used Inception modules (Network-in-Network) to further complexify
each stage.

Won ImageNet 2014 with 22 layers. Dropout, SGD with Nesterov momentum.

Szegedy et al. (2014) Going Deeper with Convolutions, CVPR’14. arXiv:1409.4842. 27 / 55



Inception module

Inside GoogleNet, each Inception module learns features at different resolutions using convolutions and
max poolings of different sizes.

1x1 convolutions are shared MLPS: they transform a  tensor into  pixel per pixel.

The resulting feature maps are concatenated along the feature dimension and passed to the next module.

(w,h, d  )1 (w,h, d  )2

Szegedy et al. (2014) Going Deeper with Convolutions, CVPR’14. arXiv:1409.4842. 28 / 55



GoogLeNet - Inception v1

Three softmax layers predict the classes at different levels of the network. Combined loss:

Only the deeper softmax layer matters for the prediction.

The additional losses improve convergence by fight vanishing gradients: the early layers get useful
gradients from the lower softmax layers.

L(θ) = E  [−t log y  −D 1 t log y  −2 t log y  ]3

Szegedy et al. (2014). Going deeper with convolutions, CVPR’14. arXiv:1409.4842. 29 / 55



Inception networks

Several variants of GoogleNet have been later proposed: Inception v2, v3, InceptionResNet, Xception…

Xception has currently the best top-1 accuracy on ImageNet: 126 layers, 22M parameters (88 MB).

Pretrained weights are available in keras:

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. (2015). Rethinking the Inception Architecture for Computer Vision. arXiv:151200567.

Chollet F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. arXiv:161002357.

Source: https://cloud.google.com/tpu/docs/inception-v3-advanced

tf.keras.applications.Xception(include_top=True, weights="imagenet")

References
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Residual networks : ResNets

2015: ResNet (Microsoft) Won ImageNet 2015
He and al. (2016). Deep Residual Learning for Image Recognition. ICML16 31 / 55



Residual networks : ResNets
Skip connections help overcome the vanishing gradients
problem, as the contribution of bypassed layers to the
backpropagated gradient is 1.

The norm of the gradient stays roughly around one, limiting
vanishing.

Skip connections can bypass whole blocks of layers.

ResNet can have many layers without vanishing gradients.
The most popular variants are:

ResNet-50.

ResNet-101.

ResNet-152.

It was the first network to make an heavy use of batch
normalization.

h  =n f  (h  ) +W n−1 h  n−1

 =
∂h  n−1

∂h  n
 +

∂h  n−1

∂f  (h  )W n−1 1

He and al. (2016). Deep Residual Learning for Image Recognition. ICML16 32 / 55



HighNets: Highway networks

Highway networks (IDSIA) are residual networks which also learn to balance inputs with feature
extraction:

The balance between the primary pathway and the skip pathway adapts to the task.

Has been used up to 1000 layers.

Improved state-of-the-art accuracy on MNIST and CIFAR-10.

h  =n T  f  (h  ) +W ′ W n−1 (1 − T  )h  W ′ n−1

Srivastava, Greff and Schmidhuber (2016). Highway networks. ICML15 33 / 55



DenseNets: Dense networks
Dense networks (Cornell University &
Facebook AI) are residual networks that
can learn bypasses between any layer of
the network (up to 5).

100 layers altogether.

Improved state-of-the-art accuracy on
five major benchmarks.

Huang, Liu and Weinberger (2016). Densely Connected Convolutional Networks. arXiv:1608.06993* 34 / 55



Model zoos
These famous models are described in their
respective papers, you could reimplement
them and train them on ImageNet.

Fortunately, their code is often released on
Github by the authors or reimplemented by
others.

Most frameworks maintain model zoos of the
most popular networks.

Some models also have pretrained weights
available, mostly on ImageNet.

Very useful for transfer learning (see later).

Overview website:

Caffe:

Tensorflow:

Pytorch:

Papers with code:

https://modelzoo.co

https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/tensorflow/models

https://pytorch.org/docs/stable/torchvision/models.html

https://paperswithcode.com/
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Comparison of the most popular networks
Several criteria have to be considered when choosing an architecture:

Accuracy on ImageNet.

Number of parameters (RAM consumption).

Speed (flops).

Source: https://dataconomy.com/2017/04/history-neural-networks
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3 - Applications
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Object recognition

Object recognition has become very easy, each image is associated to a label.

With huge datasets like ImageNet (14 millions images), a CNN can learn to recognize 1000 classes of
objects with a better accuracy than humans.

Just get enough examples of an object and it can be recognized.
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Facial recognition

Facebook used 4.4 million annotated faces from
4030 users to train DeepFace.

Accuracy of 97.35% for recognizing faces, on par
with humans.

Used now to recognize new faces from single
examples (transfer learning, one-shot learning).

Yaniv Taigman; Ming Yang; Marc’Aurelio Ranzato; Lior Wolf (2014), “DeepFace: Closing the Gap to Human-Level Performance in Face Verification”, CVPR. 39 / 55



Pose estimation
PoseNet is a Inception-based CNN able to predict 3D information from 2D images.

It can be for example the calibration matrix of a camera, 3D coordinates of joints or facial features.

There is a free tensorflow.js implementation that can be used in the browser.  

Source: https://blog.tensorflow.org/2019/01/tensorflow-lite-now-faster-
with-mobile.html

Source: https://www.tensorflow.org/lite/models/pose_estimation/overview

Kendall A, Grimes M, Cipolla R. (2016). PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. arXiv:150507427 40 / 55
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Speech recognition

To perform speech recognition, one could treat
speech signals like images: one direction is time,
the other are frequencies (e.g. mel spectrum).

A CNN can learn to associate phonemes to the
corresponding signal.

DeepSpeech from Baidu is one of the state-of-the-
art approaches.

Convolutional networks can be used on any signals
where early features are local.

It uses additionally recurrent networks, which we
will see later.

Hannun et al (2014). Deep Speech: Scaling up end-to-end speech recognition. arXiv:1412.5567 41 / 55



Sentiment analysis

It is also possible to apply convolutions on text.

Sentiment analysis assigns a positive or negative judgment to sentences.

Each word is represented by a vector of values (word2vec).

The convolutional layer can slide over all over words to find out the sentiment of the sentence.

Kim (2014). Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882v2 42 / 55



Wavenet : text-to-speech synthesis

Text-To-Speech (TTS) is also possible using CNNs.

Google Home relies on Wavenet, a complex CNN using dilated convolutions to grasp long-term
dependencies.

Source: https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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4 - Transfer learning
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Transfer learning / Domain adaptation
Myth: ones needs at least one million labeled examples to use deep learning.

This is true if you train the CNN end-to-end with randomly initialized weights.

But there are alternatives:

1. Unsupervised learning (autoencoders) may help extract useful representations using only images.

2. Transfer learning allows to re-use weights obtained from a related task/domain.

Source: http://imatge-upc.github.io/telecombcn-2016-dlcv
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Transfer learning / Domain adaptation
Take a classical network (VGG-16, Inception, ResNet, etc.) trained on ImageNet (if your task is object
recognition).

Off-the-shelf

Cut the network before the last layer and use
directly the high-level feature representation.

Use a shallow classifier directly on these
representations (not obligatorily NN).

Fine-tuning

Use the trained weights as initial weight values and
re-train the network on your data (often only the
last layers, the early ones are frozen).

Source: http://imatge-upc.github.io/telecombcn-2016-dlcv
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Example of transfer learning

Microsoft wanted a system to automatically detect snow leopards into the wild, but there were not
enough labelled images to train a deep network end-to-end.

They used a pretrained ResNet50 as a feature extractor for a simple logistic regression classifier.

Source: https://blogs.technet.microsoft.com/machinelearning/2017/06/27/saving-snow-leopards-with-deep-learning-and-computer-vision-on-spark/
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Transfer learning in keras
Keras provides pre-trained CNNs that can be used as feature extractors: 

See  for the full list of pretrained networks.

from tf.keras.applications.vgg16 import VGG16 

# Download VGG without the FC layers 
model = VGG16(include_top=False,  
              input_shape=(300, 300, 3)) 

# Freeze learning in VGG16 
for layer in model.layers: 
    layer.trainable = False 

# Add a fresh MLP on top 
flat1 = Flatten()(model.layers[-1].output)
class1 = Dense(1024, activation='relu')(flat1) 
output = Dense(10, activation='softmax')(class1)

# New model 
model = Model( 
    inputs=model.inputs, outputs=output)

https://keras.io/api/applications/
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5 - Ensemble learning
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ImageNet recognition challenge: object recognition
Since 2016, only ensembles of existing networks win the competitions.
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Ensemble of networks

Ensemble learning is the process of combining multiple independent classifiers together, in order to
obtain a better performance.

As long the individual classifiers do not make mistakes for the same examples, a simple majority vote
might be enough to get better approximations.

Source https://flyyufelix.github.io/2017/04/16/kaggle-nature-conservancy.html
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Ensemble learning
Let’s consider we have three independent binary classifiers, each with an accuracy of 70% (P = 0.7 of
being correct). When using a majority vote, we get the following cases:

1. all three models are correct:

P = 0.7 * 0.7 * 0.7 = 0.3492

2. two models are correct

P = (0.7 * 0.7 * 0.3) + (0.7 * 0.3 * 0.7) + (0.3 * 0.7 * 0.7) = 0.4409

3. two models are wrong

P = (0.3 * 0.3 * 0.7) + (0.3 * 0.7 * 0.3) + (0.7 * 0.3 * 0.3) = 0.189

4. all three models are wrong

P = 0.3 * 0.3 * 0.3 = 0.027

The majority vote is correct with a probability of P = 0.3492 + 0.4409 = 0.78 !

The individual learners only have to be slightly better than chance, but they must be as independent as
possible.
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Ensemble learning: bagging
Bagging methods (bootstrap aggregation) trains multiple classifiers on randomly sampled subsets of the
data.

A random forest is a bagging method for decision trees, where the data and features are sampled..

One can use majority vote, unweighted average, weighted average or even a meta-learner to form the final
decision.

Source: http://www.sciencedirect.com/science/article/pii/S0957417409008781
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Ensemble learning: boosting
Bagging algorithms aim to reduce the complexity of models that overfit the training data.

Boosting is an approach to increase the complexity of models that suffer from high bias, that is, models
that underfit the training data.

Algorithms: Adaboost, XGBoost (gradient boosting)…

Not very useful with deep networks (overfitting), but there are some approaches like SelfieBoost
( ).

Source: https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/

https://arxiv.org/pdf/1411.3436.pdf
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Ensemble learning: stacking
Stacking is an ensemble learning technique that combines multiple models via a meta-classifier. The
meta-model is trained on the outputs of the basic models as features.

Winning approach of ImageNet 2016 and 2017.

See 

Source: doi:10.1371/journal.pone.0024386.g005

https://blog.statsbot.co/ensemble-learning-d1dcd548e936
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