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1 - Convolutional neural networks
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Deep Neural Network

e The different layers of a deep network extract increasingly complex features.

= edges — contours — shapes — objects
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Problem with fully connected networks

e Using full images as inputs leads to an explosion of the
number of weights to be learned:

= A moderately big 800 * 600 image has 480,000 pixels with
RGB values.

= The number of dimensions of the input space is 800 * 600
* 3 =1.44 million.

= Even if you take only 1000 neurons in the first hidden layer,
you get 1.44 billion weights to learn, just for the first layer.

e To obtain a generalization error in the range of 10%, you would
need at least 14 billion training examples...

VCdim
E
N
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Problem with fully connected networks

Early features (edges) are usually local, there is no need to
learn weights from the whole image.

Natural images are stationary: the statistics of the pixel in a
small patch are the same, regardless the position on the
Image.

Idea: One only needs to extract features locally and share the
weights between the different locations.

This is a convolution operation: a filter/kernel is applied on
small patches and slided over the whole image.

Note: implemented as a cross-correlation, but it does not
matter...
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The convolutional layer
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Source: https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
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The convolutional layer

32

@*>Qoooo

Source: https://github.com/vdumoulin/conv_arithmetic

sz )

In a convolutional layer, d filters are defined with
very small sizes (3x3, 5x5...).

Each filter is convoluted over the input image (or
the previous layer) to create a feature map.

The set of d feature maps becomes a new 3D
structure: a tensor.

hy = Wi xhiy_1 4+ by

If the input image is 32x32x3, the resulting tensor
will be 32x32xd.

The convolutional layer has only very few
parameters: each feature map has 3x3x3 values in
the filter plus a bias, i.e. 28 parameters.

As in image processing, a padding method must be
chosen (what to do when a pixel is outside the

image).
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Max-pooling

224x224x64

l

pool

—
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|

= 112
downsampling

112

Source: http://cs231n.github.io/convolutional-networks/

e The number of elements in a convolutional layer is still too high. We need to reduce the spatial dimension
of a convolutional layer by downsampling it.

e For each feature, a max-pooling layer takes the maximum value of a feature for each subregion of the

image (generally 2x2).

Single depth slice

max pool with 2x2 filters
and stride 2

(R 2 | 4
SR /7 | 8
3 | 2 I
1 | 2

>

e Mean-pooling layers are also possible, but they are not used anymore.

e Pooling allows translation invariance: the same input pattern will be detected whatever its position in the

Input image.
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Convolutional Neural Networks

C3: f. maps 16@10x10

C1: feature maps S4: f. maps 16@5x5

INPUT
6@28x28
32x32 @28x S2: f. maps

C5: layer
150 FE layer IC}UTF’UT

YN\

‘ FuII cnnrluectmn GaUSS|an connections
Convolutions Subsampling Convolutions Subsamplmg Full connectmn

A convolutional neural network (CNN) is a cascade of convolution and pooling operations, extracting

layer by layer increasingly complex features.

e The spatial dimensions decrease after each pooling operation, but the number of extracted features

increases after each convolution.

e One usually stops when the spatial dimensions are around 7x7.

e The last layers are fully connected (classical MLP).

e Training a CNN uses backpropagation all along: the convolution and pooling operations are differentiable.
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Backpropagation through a convolutional layer

e How can we do backpropagation through a convolutional layer?

Yoo

Yo

¥1n

Y11

Xoofoo | Xoufor | Xozfoz Xo3 Xpa
Trofio | X1ufin | X2fi2 Xy X4
Xaafoo | Xoafor | Xoafor | 2y X4
Xan X4 X2 X33 X34
X0 X1 Xy Xa3 Xia

Yoo = Xpofoo + Xorfor + Xoofor ¥ Xi0fio + xX00f110 + X2fie F Xoofoe + Xarfor T Xaa S

Source: https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710

e In the example above, the four neurons of the feature map will receive a gradient from the upper layers.

e How can we use it to learn the filter values and pass the gradient to the lower layers?

10/55


https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710

Backpropagation through a convolutional layer

o Answer: simply by convolving the output gradients with the flipped filter!
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Source: https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710
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Backpropagation through a convolutional layer

o The filter just has to be flipped (180° symmetry) before the convolution.

Source: https://medium.com/@mayank.utexas/backpropagation-for-convolution-with-strides-8137e4fc2710

e The convolution operation is differentiable, so we can apply backpropagation and learn the filters.
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Backpropagation through a max-pooling layer

max-pooling

Activations

< unpooling

Gradients

Mask

X

max locations

Source: https://mukulrathi.com/demystifying-deep-learning/conv-net-backpropagation-maths-intuition-derivation/

e We can also use backpropagation through a max-pooling layer.

 We need to remember which location was the winning location in order to backpropagate the gradient.

e A max-pooling layer has no parameter, we do not need to learn anything, just to pass the gradient

backwards.
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Convolutional layer on MNIST
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Convolutional layer on MNIST

e Each feature map extracts edges of different orientations.

e Here are the weights learned in the convolutional layer:
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Convolutional layer on MNIST

e A convolutional layer is like a bank of (adaptive) filters applied on the image.

e Feature maps are the results of the convolution of these weights with the input image:
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Convolution with strides

e Convolution with strides is an alternative to max-

e T
S

e T

Source: https://github.com/vdumoulin/conv_arithmetic

pooling layers.

ne convolution simply “jumps” one pixel when
iding over the image (stride 2).

nis results in a smaller feature map.

e Much less operations to do than convolution with
stride 1 followed by max-pooling, for the same
performance.

e Particularly useful for generative models (VAE,
GAN, etc).

Springerberg et al. (2014). Striving for Simplicity: The All Convolutional Net. arXiv:1412.6806
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Dilated convolutions

o A dilated convolution is a convolution with holes (a trous).

e The filter has a bigger spatial extent than its number of values.

Source: https://github.com/vdumoulin/conv_arithmetic
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Implementing a CNN in keras

e Convolutional and max-pooling layers are regular objects in keras/tensorflow/pytorch/etc.

e You do not need to care about their implementation, they are designed to run fast on GPUs.

e You have to apply to the CNN all the usual tricks: optimizers, dropout, batch normalization, etc.

model = Sequential() model.add(Flatten())
model.add(Input(X_train.shapell:])) model.add(Dense(512))
model.add(Activation('relu'))

model.add(Conv2D(32, (3, 3
model.add(Activation('relu

( ), Dropout(0.5))
( ')
model.add(Conv2D(32, (3, 3))
( ')
( 1
(

Dense(num_classes))
Activation('softmax'))

padding="'same')) model. add
model. add
model.add

e e e e e

model.add(Activation('relu

)
)
)
S

model.add (MaxPooling2D(pool_size=(2, 2))) opt = RMSprop(
model.add(Dropout(0.25)) 1r=0.0001,

decay=1e-6
model.add(Conv2D(64, (3, 3), padding='same')) )
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3)))L model. compile(
model.add(Activation('relu')) loss="'categorical_crossentropy',
model.add(MaxPooling2D(pool_size=(2, 2))) optimizer=opt,
model.add(Dropout(0.25)) metrics=['accuracy']
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2 - Some famous convolutional networks
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NeoCognitron

Efj,,. Uc: Us2 = Ue2

Source: https://uplLoad.wikimedia.org/wikipedia/uk/4/42/Neocognitron.jpg

e The Neocognitron (Fukushima, 1980) was actually the first CNN able to recognize handwritten digits.

e Training is not based on backpropagation, but a set of biologically realistic learning rules (Add-if-silent,
margined WTA).

e Inspired by the human visual system.

Fukushima (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics
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LeNet
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6@14}(14 150 F6 layer OUTF’UT

o

| AN\

‘ ‘ FuII cnnrluectlnn Gaussnan connections
Convolutions Subsampling Convolutions Subsamplmg Full cgnnec’ugn

e 1998: LeNet (AT&T labs) was one of the first CNN able to learn from raw data using backpropagation.

e |t has two convolutional layers, two mean-pooling layers, two fully-connected layers and an output layer.

e |t uses tanh as the activation function and works on CPU only.

o Used for handwriting recognition (for example ZIP codes).

LeCun et al. (1998). Gradient Based Learning Applied to Document Recognition. Proceedings of the IEEE.
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ImageNet object recognition challenge (image-net.org)

e The ImageNet challenge was a benchmark for computer vision algorithms, providing millions of
annotated images for object recognition, detection and segmentation.

e 14 millions images (224x224), 1000 classes.

sk x ol

— placental — carnivore —— canine —— dog —working dog— husky

— watercraft — sailing vessel —  sailboat trimaran
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AlexNet
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e 2012: AlexNet (Toronto University) started the DL revolution by winning ImageNet 2012.

e Similar architecture to LeNet, but trained on two GPUs using augmented data.

e Uses RelLU, max-pooling, dropout, SGD with momentum, L2 regularization.

Krizhevsky, Sutskever and Hinton (2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS.
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VGG-16
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e 2014: VGG-16 (Visual Geometry Group, Oxford) placed second at ImageNet 2014.

e It went much deeper than AlexNet with 16 parameterized layers (a VGG-19 version is also available with

19 layers).

e |ts main novelty is that two convolutions are made successively before the max-pooling, implicitly

increasing the receptive field (2 consecutive 3x3 filters cover 5x5 pixels).

e Drawback: 140M parameters (mostly from the last convolutional layer to the first fully connected) quickly

fill up the memory of the GPU.

Simonyan and Zisserman (2014). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556.
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THAT'S NOT ENOUGH

',\ !

'WE HAVETO GO DEEPER




GoogLeNet - Inception v1
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Pooling

Other

e 2014: GooglLeNet (Google Brain) used Inception modules (Network-in-Network) to further complexify
each stage.

e Won ImageNet 2014 with 22 layers. Dropout, SGD with Nesterov momentum.

Szegedy et al. (2014) Going Deeper with Convolutions, CVPR'14. arXiv:1409.4842.
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Inception module

Filter
concatenation

3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions . A 4

1x1 convolutions 1x1 convolutions 3x3 max pooling
ké//’— -

Frevious layer

e Inside GoogleNet, each Inception module learns features at different resolutions using convolutions and
max poolings of different sizes.

e 1x1 convolutions are shared MLPS: they transform a (w, h, dy ) tensor into (w, h, ds) pixel per pixel.

e The resulting feature maps are concatenated along the feature dimension and passed to the next module.

Szegedy et al. (2014) Going Deeper with Convolutions, CVPR'14. arXiv:1409.4842. 28 / 55



GoogLeNet - Inception v1
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e Three softmax layers predict the classes at different levels of the network. Combined loss:

L(0) =Ep|—t logy; —t logys — t logys|

e Only the deeper softmax layer matters for the prediction.

e The additional losses improve convergence by fight vanishing gradients: the early layers get useful
gradients from the lower softmax layers.

Szegedy et al. (2014). Going deeper with convolutions, CVPR'14. arXiv:1409.4842.
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Inception networks

Input: 299x299x3, Oulput:8x8x2048

|

------ BOGOGDBDHIN

Convolution Input: SLED;EdE

AvgPool 209x299x3 Xox

M:gxPT;I / Final part:8x8x2048 -> 1001
mm Concat
me Dropout

Fully connected

e Softmax /

Source: https://cloud.google.com/tpu/docs/inception-v3-advanced

e Several variants of GoogleNet have been later proposed: Inception v2, v3, InceptionResNet, Xception...

e Xception has currently the best top-1 accuracy on ImageNet: 126 layers, 22M parameters (88 MB).
e Pretrained weights are available in keras:

tf.keras.applications.Xception(include_top=True, weights="imagenet")

References

Szegedy C, Vanhoucke V, loffe S, Shlens J, Wojna Z. (2015). Rethinking the Inception Architecture for Computer Vision. arXiv:151200567.
Chollet F. (2017). Xception: Deep Learning with Depthwise Separable Convolutions. arXiv:161002357.
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Residual networks : ResNets

He and al. (2016). Deep Residual Learning for Image Recognition. ICML16
P d ™ ™  BE = /R A®° _ _ _  _ _f£5\N VAT 1. RANIL oL SSAT ™
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Residual networks : ResNets

Skip connections help overcome the vanishing gradients
problem, as the contribution of bypassed layers to the
backpropagated gradient is 1.

hn — fW(hn—l) -+ hn—l

oh,  Ofw(h, 1)
8hn—l B 8hfn,—l t

The norm of the gradient stays roughly around one, limiting
vanishing.

Skip connections can bypass whole blocks of layers.

ResNet can have many layers without vanishing gradients.
The most popular variants are:

s ResNet-50.
= ResNet-101.
= ResNet-152.

It was the first network to make an heavy use of batch
normalization.

Input

Convolution

Batch Norm

Convolution

Batch Norm

Addition

Output

Figure 1. A RestNet basic block

He and al. (2016). Deep Residual Learning for Image Recognition. ICML16
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HighNets: Highway networks
geatnananatetaannasasasnannaenat;

e Highway networks (IDSIA) are residual networks which also learn to balance inputs with feature
extraction:

hn — TW’ fW(hn—l) + (1 — TW’) hn—l

e The balance between the primary pathway and the skip pathway adapts to the task.

e Has been used up to 1000 layers.

e Improved state-of-the-art accuracy on MNIST and CIFAR-10.

Srivastava, Greff and Schmidhuber (2016). Highway networks. ICML15

33/55



DenseNets: Dense networks

e Dense networks (Cornell University &
Facebook Al) are residual networks that
can learn bypasses between any layer of
the network (up to 5).

npVt

e 100 layers altogether.

e Improved state-of-the-art accuracy on
flve major benchmarks.

Huang, Liu and Weinberger (2016). Densely Connected Convolutional Networks. arXiv:1608.06993* 34 /55



Model zoos

e These famous models are described in their
respective papers, you could reimplement
them and train them on ImageNet.

e Fortunately, their code is often released on
Github by the authors or reimplemented by
others.

e Most frameworks maintain model zoos of the
most popular networks.

e Some models also have pretrained weights
available, mostly on ImageNet.

o Very useful for transfer learning (see later).

e Overview website:

https://modelzoo.co

e Caffe:

https://github.com/BVLC/caffe/wiki/Model-Zoo

e Tensorflow:

https://github.com/tensorflow/models

e Pytorch:

https://pytorch.org/docs/stable/torchvision/models.html

e Papers with code:

https://paperswithcode.com/
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Comparison of the most popular networks

e Several criteria have to be considered when choosing an architecture:

= Accuracy on ImageNet.
= Number of parameters (RAM consumption).

= Speed (flops).

Inception-v4

80 - _
Inception-v3 . : ResNet-152
,s |ResNet-50 . | VGG-16 VGG-19
| ResNet-101

. ResNet-34

= 70 - ResNet-18
=
@ °° GooglLeNet
- EMNet
H 65
%‘ o BMN-NIN
* 60 - 5M 35M 65M 95M 125M  155M
BM-AlexMNet
35 AlexNet
50 4 : : . : : : : .
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Operations [G-Ops]

Source: https://dataconomy.com/2017/04/history-neural-networks
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3 - Applications



Object recognition

black widow
cockroach
tick
starfish

\

a scnr cat

er Viad
agaric monkey
| grille mushroom grape spider monkey
pickup elly fungus elderberry titi
beach wagon gill fungus rdshire bullterrier indri
fire engine || dead-man’'s-fingers currant howler monkey

e Object recognition has become very easy, each image is associated to a label.

o With huge datasets like ImageNet (14 millions images), a CNN can learn to recognize 1000 classes of

objects with a better accuracy than humans.

e Just get enough examples of an object and it can be recognized.
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Facial recognition

= 1 B
e\l
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. : c3: L4: L5: L6: F7: Fa:
Calista Flockhart 0002, jpg Frontalization: 32x11x11x3 32x3x3x32 16x9x9x32 16x2x9x16 16x7x7x16  16x5x5x16 4096d 4030d
Detection & Localization @152X152x3 142xld2 @71x71 R e 55x55 M25x25 oa1x21
facebook 5 B e Facebook used 4.4 million annotated faces from
Who's in These Photos? 4030 users to train DeepFace.
":FII:WF? Eﬂ;gtfasnvgli ﬁ?jgta:l;;ﬁr;n ELT:E:? aukomatically so you can quickly label and notify Friends in these pictures, ° A C Cura Cy Of 97.35% fOI’ r e C O gn|Z|n g fa C eS, On p ar
with humans.
e Used now to recognize new faces from single
examples (transfer learning, one-shot learning).
Who is this? Who is this? Who is this?

Who is this? Wiho js this? Who is this?

Yaniv Taigman; Ming Yang; Marc’Aurelio Ranzato; Lior Wolf (2014), “DeepFace: Closing the Gap to Human-Level Performance in Face Verification”, CVPR. 39 /55



Pose estimation

e PoseNet is a Inception-based CNN able to predict 3D information from 2D images.

e |t can be for example the calibration matrix of a camera, 3D coordinates of joints or facial features.

e There is a free tensorflow.js implementation that can be used in the browser.

a Frl - e oy e

o Bt LN ) T

. P e, A T
A e i e N

Source: https://www.tensorflow.org/lite/models/pose_estimation/overview

Source: https://blog.tensorflow.org/2019/01/tensorflow-lite-now-faster-
with-mobile.html

Kendall A, Grimes M, Cipolla R. (2016). PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization. arXiv:150507427
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Speech recognition

Input Output

Sound wave of
me saying “Hello”

Plain text

e To perform speech recognition, one could treat
speech signals like images: one direction is time,
the other are frequencies (e.g. mel spectrum).

e A CNN can learn to associate phonemes to the
corresponding signal.

e DeepSpeech from Baidu is one of the state-of-the-
art approaches.

e Convolutional networks can be used on any signals
where early features are local.

e |t uses additionally recurrent networks, which we
will see later.

Hannun et al (2014). Deep Speech: Scaling up end-to-end speech recognition. arXiv:1412.5567
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Sentiment analysis

walt
for | | A
th':l e i, i, LI T - Ty,
. a [ETTT S "_":"-."-."""""---u.....
Eqdeﬂ —_— - "._'. % e s i, —
d *1&1&—“\1 Y 1‘1
E:jI.l Ty, - "-'._ % 11'."-_"-."-".
= b el L
0 = _ :l"'-.__."'-_'. _________
n't ' \ —
rent
it |
I | l | l I |
n ¥ k representation of Convolutional layer with Max-over-time Fully connected layer
sentence with static and multiple fiter widths and pooling with dropout and
nan-static channels feature maps softmax output

e Itis also possible to apply convolutions on text.
e Sentiment analysis assigns a positive or negative judgment to sentences.

e Each word is represented by a vector of values (word2vec).

e The convolutional layer can slide over all over words to find out the sentiment of the sentence.

Kim (2014). Convolutional Neural Networks for Sentence Classification. arXiv:1408.5882v2
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Wavenet : text-to-speech synthesis

Text

e Text-To-Speech (TTS) is also possible using CNNs.

@ PCM

Text-To-Speech

)

e Google Home relies on Wavenet, a complex CNN using dilated convolutions to grasp long-term

dependencies.
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Source: https://deepmind.com/blog/wavenet-generative-model-raw-audio/
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4 - Transfer learning
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Transfer learning / Domain adaptation

e Myth: ones needs at least one million labeled examples to use deep learning.
e This is true if you train the CNN end-to-end with randomly initialized weights.

e But there are alternatives:

1. Unsupervised learning (autoencoders) may help extract useful representations using only images.

2. Transfer learning allows to re-use weights obtained from a related task/domain.

[ Source labels ‘ { Target labels J-x
B aaiadl A Small
amount of
Il 1

l". data/labels
Large ] '. /‘ .
amount of ] \
dataflabels |  Source model | mﬁm >/ Target model |

[ Source data 1 r:‘F__IF_I;;_:-]
E.q Net aryet dd
___ e R § | Eg PASCAL

Source: http://imatge-upc.github.io/telecombcn-2016-dlcv
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Transfer learning / Domain adaptation

o Take a classical network (VGG-16, Inception, ResNet, etc.) trained on ImageNet (if your task is object

recognition).

Off-the-shelf

e Cut the network before the last layer and use
directly the high-level feature representation.

e Use a shallow classifier directly on these
representations (not obligatorily NN).

goftmax |

|
I - et

oo 3

Conmv s

oo 1

Data and kabeds (eg. Imagehlet)

TRANSFER

| Shallow dassifer 2.9, SW) ‘

-'—|""___- -___'|—'-"' features

| ki |

oo
i, | 11
convi

Target data and labeads

Source: http://imatge-upc.github.io/telecombcn-2016-dlcv

Fine-tuning

e Use the trained weights as initial weight values and
re-train the network on your data (often only the
last layers, the early ones are frozen).

LR =

=

i

fc2 +aofimanx

Fine tuned

ic1

conv3

Frozen

conv2

oonv

data laisais
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Example of transfer learning

' 7 3l |2 Classifier

34-layer residual

ipiedoal mous

Source: https://blogs.technet.microsoft.com/machinelearning/2017/06/27/saving-snow-leopards-with-deep-learning-and-computer-vision-on-spark/

e Microsoft wanted a system to automatically detect snow leopards into the wild, but there were not
enough labelled images to train a deep network end-to-end.

e They used a pretrained ResNet50 as a feature extractor for a simple logistic regression classifier.
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Transfer learning in keras

o Keras provides pre-trained CNNs that can be used as feature extractors:

from tf.keras.applications.vgglo import VGG16

2 2324 x3 224 % 224 = 64

# Download VGG without the FC layers
model = VGG16(include_top=False,
input_shape=(300, 300, 3))

112 128

| 2 TxTx512
14x14x512 |

._:r:lfﬁ% 1> 1x4096 11 x 1000

# Freeze learning 1in VGG16
for layer in model. layers:
layer.trainable = False

5] convolution+ReLLUT
I"' A max pooaling

# Add a fresh MLP on top
flatl = Flatten() (model.layers[-1].output)

fully connected4+HRHel.L

| softmax

classl = Dense(1024, activation='relu')(flatl)
output = Dense(10, activation='softmax')(classl,
# New model

model = Model(
inputs=model. inputs, outputs=output)

e See https://keras.io/api/applications/ for the full list of pretrained networks.
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5 - Ensemble learning

49 /55



Object detection (DET)!ex!

Task 1a: Object detection with provided training data

Ordered by number of categories won

ImageNet recognition challenge: object recognition

e Since 2016, only ensembles of existing networks win the competitions.

. Number of object

Team name Entry description categories won mean AP
CUlmage Ensemble of 6 models using provided data 109 0.662751
Hikvision E;gemble A of 3 RPN and 6 FRCN models, mAP is 67 on 30 0 652704

. Ensemble B of 3 RPN and 5 FRCN models, mean AP is
Hikvision 66.9. median AP is 69.3 on val2 18 0.652003
NUIST submission 1 15 0.608752
NUIST submission 2 9 0.607124
Trimps-Soushen |[Ensemble 2 8 0.61816
360+MCG-ICT- . L : .
CAS DET 9 models ensemble with validation and 2 iterations 4 0.615561
360+MCG-ICT- . :
CAS DET Baseline: Faster R-CNN with Res200 4 0.590596
Hikvision Best single model, mAP is 65.1 on val2 2 0.634003
CIL Ensemble of 2 Models 1 0.553542
360+MCG-ICT-
CAS DET 9 models ensemble 0 0.613045
360+MCG-ICT-
CAS DET 3 models 0 0.605708
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Ensemble of networks

VGG-16 DSnSeNe: Weighted Average

121

Prediction Vector

VGG-19 Xception

(0,0.2,0,0,0.8,0,0 0)

Inception || Inception
V1 V3

Source https://flyyufelix.github.io/2017/04/16/kaggle-nature-conservancy.html

 Ensemble learning is the process of combining multiple independent classifiers together, in order to
obtain a better performance.

e As long the individual classifiers do not make mistakes for the same examples, a simple majority vote
might be enough to get better approximations.
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Ensemble learning

e Let's consider we have three independent binary classifiers, each with an accuracy of 70% (P = 0.7 of
being correct). When using a majority vote, we get the following cases:

1. all three models are correct:

P=0.7*0.7*0.7=0.3492

2. two models are correct
P=(0.7*%0.7*0.3)+(0.7*0.3*0.7) + (0.3*0.7 *0.7) = 0.4409

3. two models are wrong
P=(03*0.3*0.7)+(0.3*0.7*%0.3)+(0.7*0.3*0.3) =0.189

4. all three models are wrong
P=0.3*0.3*0.3=0.027

e The majority vote is correct with a probability of P =0.3492 + 0.4409 = 0.78 !

e The individual learners only have to be slightly better than chance, but they must be as independent as
possible.
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Ensemble learning: bagging

e Bagging methods (bootstrap aggregation) trains multiple classifiers on randomly sampled subsets of the
data.

Combine Network Outputs

£
2

Network 2

d |

Bootstrap Data | Bootstrap Data 2 Bootstrap Data 25

f_f_l—f

Onginal Tramning Data

Source: http://www.sciencedirect.com/science/article/pii/S0957417409008781

e Arandom forest is a bagging method for decision trees, where the data and features are sampled..

e One can use majority vote, unweighted average, weighted average or even a meta-learner to form the final
decision.
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Ensemble learning: boosting

e Bagging algorithms aim to reduce the complexity of models that overfit the training data.

e Boosting is an approach to increase the complexity of models that suffer from high bias, that is, models
that underfit the training data.

= Algorithms: Adaboost, XGBoost (gradient boosting)...
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Source: https://www.analyticsvidhya.com/blog/2015/11/quick-introduction-boosting-algorithms-machine-learning/

e Not very useful with deep networks (overfitting), but there are some approaches like SelfieBoost
(https://arxiv.org/pdf/1411.3436.pdf).
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Ensemble learning: stacking

e Stacking is an ensemble learning technique that combines multiple models via a meta-classifier. The
meta-model is trained on the outputs of the basic models as features.

C

N IU Classifier

Input

—117L> N ; Classifier - kxc
. N ' Classifier%L’

N | Classifier

Output

Source: doi:10.1371/journal.pone.0024386.g005

e Winning approach of ImageNet 2016 and 2017.
e See https://blog.statsbot.co/ensemble-learning-d1dcd548e936
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