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Restricted Boltzmann Machines
Auto-encoders are not the only feature extractors that can be stacked. 

Restricted Boltzmann Machines (RBM) are
generative stochastic artificial neural networks that
can learn a probability distribution of their inputs.

Their neurons form a bipartite graph with two
groups of reciprocally connected units:

the visible units  (the inputs)

the hidden units  (the features or latent
space).

Connections are bidirectional between  and , but
the neurons inside the two groups are independent
from each other (restricted).

The goal of learning is to find the weights allowing
the network to explain best the input data.

v

h

v h

Hinton and Salakhutdinov (2006). Reducing the Dimensionality of Data with Neural Networks. Science 28, 504-507. 2 / 12



Restricted Boltzmann Machines

RBMs are a form of autoencoder where the input  feature weight matrix is the same as the feature 
output matrix.

There are two steps:

The forward pass  propagates the visible units activation to the hidden units.

The backward pass  reconstructs the visible units from the the hidden units.

If the weight matrix is correctly chosen, the reconstructed input should “match” the original input: the data
is explained.

Source : https://www.edureka.co/blog/restricted-boltzmann-machine-tutorial/
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Restricted Boltzmann Machines
The visible and units are generally binary units (0 or
1), with a probability defined by the weights and
biases and the logistic function:

The weight matrix  and the biases  are the
parameters  of a probability distribution over the
activation of the visible and hidden units.

The goal is to find the parameters which explain best the data (visible units), i.e. the ones maximizing the
log-likelihood of the model for the data .

We use maximum likelihood estimation (MLE) to maximize the log-likelihood of the model:
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Restricted Boltzmann Machines
In practice, MLE is not tractable in a RBM, as we cannot estimate the joint probability  of  and 
(too many combinations are possible).

The main trick in energy-based models is to rewrite the probabilities using an energy function :

where:

is the partition function (a normalizing term).

The probabilities come from a Gibbs distribution (or Boltzmann distribution) parameterized by the energy
of the system. This is equivalent to a simple softmax over the energy…
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Restricted Boltzmann Machines
Having reformulated the probabilities in terms of energy:

we can introduce the free energy of the model for a sample  (how surprising is the input  for the model):

The log-likelihood of the model for a sample  of the training data  becomes:

Note that the second term sums over all possible inputs .

Maximizing the log-likelihood of the model on the training data can be done using gradient ascent by
following this gradient:
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Restricted Boltzmann Machines
The free energy for a RBM with binary neurons is fortunately known analytically:

so finding the gradient w.r.t  of the first term on the r.h.s (the free energy of the sample) is
easy:

In particular, the gradient w.r.t the matrix  is the outer product between  and :

The problem is the second term: we would need to integrate over all possible values of the inputs , what
is not tractable.

We will therefore make an approximation using Gibbs sampling (a variant of Monte-Carlo Markov Chain
sampling - MCMC) to estimate that second term.
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Gibbs sampling

Gibbs sampling consists of repeatedly applying the encoder  and the decoder  on the
input.

We start by setting  using a training sample.

We obtain  by computing  and sampling it.

We obtain  by computing  and sampling it.

…

We obtain  by computing  and sampling it.

After enough iterations , we should have a good estimate of .

The  iterations have generated enough reconstructions of  to cover the distribution of .

Source : https://towardsdatascience.com/deep-learning-meets-physics-restricted-boltzmann-machines-part-i-6df5c4918c15
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Contrastive divergence
We set  on a training sample and let Gibbs sampling iterate for  iterations until we obtain 

.

Contrastive divergence (CD- ) shows that the gradient of the log-likelihood can be approximated by:

The gradient of the log-likelihood is the difference between the initial explanation of  by the model, and
its explanation after  iterations (relaxation).

If the model is good, the reconstruction  is the same as the input , so the gradient is zero.

An input  is likely under the RBM model if it is able to reconstruct it, i.e. when it is not surprising (the free
energy is low).

In practice,  gives surprisingly good results, but RBMs are very painful to train (hyperparameters)…
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Deep Belief Networks = stacked RBMs
A Deep Belief Network (DBM) is a simple stack of RBMS, trained using greedy layer-wise learning.

The “bottom” parts of the DBM become unidirectional when learning the top part.
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Application: Finding cats on the internet
Andrew Ng and colleagues (Google, Stanford) used
a similar technique to train a deep belief network
on color images (200x200) taken from 10 million
random unlabeled Youtube videos.

Each layer was trained greedily. They used a
particular form of autoencoder called restricted
Boltzmann machines (RBM) and a couple of other
tricks (receptive fields, contrast normalization).

Training was distributed over 1000 machines
(16.000 cores) and lasted for three days.

There was absolutely no task: the network just had
to watch youtube videos.

After learning, they visualized what the neurons had
learned.
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Application: Finding cats on the internet

After training, some neurons had learned to respond uniquely to faces, or to cats, without ever having
been instructed to.

The network can then be fine-tuned for classification tasks, improving the pre-AlexNet state-of-the-art on
ImageNet by 70%.
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