REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Neurocomputing

Recurrent neural networks

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/50

1 - RNN

Problem with feedforward networks

e Feedforward neural networks learn to associate an input vector to an output.

y = Fy(x)
e |f you present a sequence of inputs xXg, X1, ..., X; to a feedforward network, the outputs will be
independent from each other:
yo = Fyp(xo)
y1 = Fp(x1)
y: = Fp(x¢)

e Many problems depend on time series, such as predicting the future of a time series by knowing its past
values.

Li+1 = FH(CEOafBla X wmt)

e Example: weather forecast, financial prediction, predictive maintenance, video analysis...

3/50

Input aggregation

e A naive solution is to aggregate (concatenate) inputs over a sufficiently long window and use it as a new
input vector for the feedforward network.

X = [Xt—T Xt—T+1 -« Xt]

y: = Fp(X)

e Problem 1: How long should the window be?

200

150

e Problem 2: Having more input dimensions
increases dramatically the complexity of the
classifier (VC dimension), hence the number of
training examples required to avoid overfitting.

100

50

https://www.researchgate.net/publication/220827486_A_study_on_the_ability_of_Support_Vector_Regression_and_Neural_Networks_to_Forecast_Basic_Time_Ser

4/50

https://www.researchgate.net/publication/220827486_A_study_on_the_ability_of_Support_Vector_Regression_and_Neural_Networks_to_Forecast_Basic_Time_Series_Patterns

Recurrent neural network

o Arecurrent neural network (RNN) uses it previous output as an
additional input (context).

o All vectors have a time index t denoting the time at which this

T vector was computed.
[; A? e The input vector at time ¢ is x¢, the output vector is h;:

ht :O'(Ww XXt—|—Wh Xht_1—|—b)

e o is atransfer function, usually logistic or tanh.

e The input x; and previous output h;_; are multiplied by learnable

Source: http://colah.github.io/posts/2015- weights:
08-Understanding-LSTMs

= W, is the input weight matrix.

= W} is the recurrent weight matrix.

5/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Recurrent neural networks

(h) (hy
.

!
i

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

&

A
e One can unroll a recurrent network: the output h; depends on the whole history of inputs from xg to x:.

ht — O'(Wa; X X Wh X ht—l b)
=o(W, xx¢ + Wy x o(W, X x4_1 + Wp, x hy_5 + b) + b)

— Wx,Wh,b(Xoa X1y 7Xt)

e A RNN is considered as part of deep learning, as there are many layers of weights between the first input
X and the output hy;.

e The only difference with a DNN is that the weights W, and W}, are reused at each time step.

6 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

BPTT: Backpropagation through time

D, b O ®
57 - oo
b5 6 & ¢

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

ht — me,Wh,b(XOaxla .« .. 7Xt)

e The function between the history of inputs and the output at time ? is differentiable: we can simply apply
gradient descent to find the weights!

e This variant of backpropagation is called Backpropagation Through Time (BPTT).

e Once the loss between h; and its desired value is computed, one applies the chain rule to find out how to
modify the weights W, and W}, using the history (xg, X1, ...,X¢).

7150

http://colah.github.io/posts/2015-08-Understanding-LSTMs

BPTT: Backpropagation through time

e Let’s compute the gradient accumulated between h;_; and h;:
ht — O'(Wm X Xy —I—Wh X ht—l —|—b)

o As for feedforward networks, the gradient of the loss function is decomposed into two parts:

OLWy, W) _ OL(Wa, W) Ohy

oW, Oh; oW,
OLWy,Wi) _ OLWo, Wa) Ohy
8Wh N 8ht 8Wh

e The first part only depends on the loss function (mse, cross-entropy):

OL(W,, W)

oh, = —(t — hy)

e The second part depends on the RNN itself.

8 /50

BPTT: Backpropagation through time

e Output of the RNN:

h; = O'(W;,; X X¢ + Wy x hiq —|—b)

e The gradients w.r.t the two weight matrices are given by this recursive relationship (product rule):

oh, Oh;_ 4
— h' %%
ow, e (Xt Wi)
oh, Oh;_{
— h' h,
oW, tX(t1+WhX6Wh)

e The derivative of the transfer function is noted h’,:

W, — h; (1 —h;) forlogistic
o (1 —h?) for tanh.

9/50

BPTT: Backpropagation through time

e |f we unroll the gradient, we obtain:

oh
an —h', (x¢ + Wy x by 1 (%21 + Wi x h'e_o (x40 + W), X ... (%0))))

oh
6‘th —h', (hy_1 + Wi x h';_1 (hy_s + W, x h's_s ... (hy)))

 When updating the weights at time ¢, we need to store in memory:

= the complete history of inputs X, X1, ... X;.

= the complete history of outputs hy, hy, ... h;.

» the complete history of derivatives h/g, h/4, .. h/,.

before computing the gradients iteratively, starting from time ¢ and accumulating gradients backwards in
time until ¢ = 0.

e Each step backwards in time adds a bit to the gradient used to update the weights.

10/50

Truncated BPTT

L ‘ ‘)
Initial RMM RMM HNH HNH HNM RMM Final
State Cell Cell Cell Cell Cell Cell State

'r 'r

[FENNM Inputs]

Source: https://r2rt.com/styles-of-truncated-backpropagation.html

e In practice, going back to ¢ = 0 at each time step requires too many computations, which may not be
needed.

e Truncated BPTT only updates the gradients up to I" steps before: the gradients are computed backwards
fromttot — 1. The partial derivativeint — 1" — 1 is considered 0.

e This limits the horizon of BPTT: dependencies longer than I’ will not be learned, so it has to be chosen
carefully for the task.

o I’ becomes yet another hyperparameter of your algorithm...

11/50

https://r2rt.com/styles-of-truncated-backpropagation.html

Temporal dependencies

e BPTT is able to find short-term dependencies between inputs and outputs: perceiving the inputs Xy and
X1 allows to respond correctly at ¢t = 3.

by G O

SEESEYVEY S S
5 ¢

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

12/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Temporal dependencies

e But it fails to detect long-term dependencies because of:

= the truncated horizon I’ (for computational reasons).

= the vanishing gradient problem.

l

A0S
b

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

6y @
g
d &

13/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Vanishing and exploding gradients

e Let's look at the gradient w.r.t to the input weights:

oh;
oW,

oh;_,

=h'; (x; + W} x W)

e At each iteration backwards in time, the gradients are multiplied by W,

e |f you search how g;l} depends on X, you obtain something like:

Oh; t / t
pr ~ [0k (Wh)ixo+...)
T k=0

o If Wy > 1, (Wh)t increases exponentially with ¢: the gradient explodes.

o If |W}| < 1,|(W3)"| decreases exponentially with ¢: the gradient vanishes.

14 /50

Vanishing and exploding gradients

o Exploding gradients are relatively easy to deal with: one just clips the norm of the gradient to a maximal
value.

OL(W,, Wh)

| OL(W,, Wh)
oW,

oW,

| < min(]| |,T)

e But there is no solution to the vanishing gradient problem for regular RNNs: the gradient fades over time
(backwards) and no long-term dependency can be learned.

e This is the same problem as for feedforward deep networks: a RNN is just a deep network rolled over
itself.

o Its depth (number of layers) corresponds to the maximal number of steps back in time.

e In order to limit vanishing gradients and learn long-term dependencies, one has to use a more complex
structure for the layer.

e This is the idea behind long short-term memory (LSTM) networks.

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f. Informatik, Technische Univ. Munich, 1991. 15/ 50

2-LSTM

Regular RNN

®
L.

tanh

%))

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

17 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

18 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM cell

e ALSTM layer is a RNN layer with the ability to
control what it memorizes.

e In addition to the input x; and output hy, it also has
a state C, which is maintained over time.

e The state is the memory of the layer (sometimes
called context).

e |t also contains three multiplicative gates:

= The input gate controls which inputs should
enter the memory.

= The forget gate controls which memory should
be forgotten.

= The output gate controls which part of the
memory should be used to produce the output.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

19/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM cell

4
4

Source: http://eric-yuan.me/rnn2-Istm/

e The state C, can be seen as an accumulator
integrating inputs (and previous outputs) over time.

= The input gate allows inputs to be stored.

o are they worth remembering?

= The forget gate “empties” the accumulator

o do | still need them?

= The output gate allows to use the accumulator
for the output.

o should | respond now? Do | have enough
information?

e The gates learn to open and close through
learnable weights.

20 /50

http://eric-yuan.me/rnn2-lstm/

The cell state is propagated over time

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

By default, the c

ell state C; stays the same over

time (conveyor belt).

It can have the same number of dimensions as the

output hy, but ¢

oes not have to.

Its content can be erased by multiplying it with a

vector of 0s, or
vector of 1s.

oreserved by multiplying it by a

We can use a sigmoid to achieve this:

®

21/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

The forget gate

e Forget weights W, and a sigmoid function are

used to decide if the state should be preserved or
not.

f, ft — O'(Wf X [ht—l;xt] -+ bf)

O e |h; 1;x;|is simply the concatenation of the two
vectors h;_7 and x;.

o f; is a vector of values between 0 and 1, one per

dimension of the cell state C;.
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

22 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

The input gate

e Similarly, the input gate uses a sigmoid function to
decide if the state should be updated or not.

it — O'(WZ X [ht—l;xt] —+ bz)

CJ » As for RNNs, the input x; and previous output h;_;

he O | [tanh are combined to produce a candidate state C;
t— . .
using the tanh transfer function.

C; = tanh(W¢ x [hy_1;x] + b,)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

23 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Updating the state

e The new state C; is computed as a part of the
previous state C;_; (element-wise multiplication
C,_; & with the forget gate f;) plus a part of the candidate
state C; (element-wise multiplication with the

ftT ; ~$ input gate 1;).
‘ Ci

Ct:ft@ct—1+it®ét

e Depending on the gates, the new state can be equal
to the previous state (gates closed), the candidate

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs state (gates opened) or a mixture of both.

24 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

The output gate

h, e The output gate decides which part of the new
state will be used for the output.

O — O'(WO X [ht—l;xt] -+ bo)

e The output not only influences the decision, but

h; = o; ® tanh(C;)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

also how the gates will updated at the next step.

25/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM

e The function between x; and h; is quite Forget gate
complicated, with many different weights, but
everything is differentiable: BPTT can be applied. f; = U(Wf X [ht—l; Xt] bf)

Input gate

i; = o(W; x [hy_1;x:] + b;)
Output gate

o; = o(W, x [hy_1;x¢| + b,)
Candidate state

C; = tanh(W¢ x [hy_1;%x;] + b,)

New state
C; :ft@ct—1‘|‘it®ét

Output

h; = o; ® tanh(C;)

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

26 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

How do LSTM solve the vanishing gradient problem?

b & 0 (b
T
6 & - ¢

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

!

i
l
S

e If only Xy and x; are needed to produce h;_ 1, they will be the only ones stored in the state, the other
inputs are ignored.

e Not all inputs are remembered by the LSTM: the input gate controls what comes in.

27 /150

http://colah.github.io/posts/2015-08-Understanding-LSTMs

How do LSTM solve the vanishing gradient problem?

O (b
| E T ﬁf

T
b 6 6 o o &

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

o If the state stays constant between ¢ = 1 and ¢, the gradient of the error will not vanish when
backpropagating from ¢ to t = 1, because nothing happens!

0C
Ct:Ct—l >8Ct1:1
t_

e The gradient is multiplied by exactly one when the gates are closed.

28 /50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

LSTM networks

e LSTM are particularly good at learning long-term dependencies, because the gates protect the cell from
vanishing gradients.

e Its problem is how to find out which inputs (e.g. Xy and x1) should enter or leave the state memory.

e Truncated BPTT is used to train all weights: the weights for the candidate state (as for RNN), and the
weights of the three gates.

o LSTM are also subject to overfitting. Regularization (including dropout) can be used.

e The weights (also for the gates) can be convolutional.

e The gates also have a bias, which can be fixed (but hard to find).

e LSTM layers can be stacked to detect dependencies at different scales (deep LSTM network).

Hochreiter and Schmidhuber (1997). Long short-term memory. Neural computation, 9(8). 29 / 50

Peephole connections

e A popular variant of LSTM adds peephole
connections, where the three gates have

additionally access to the state C;_;.

f; = o(Ws x |Cio13he_1; %) + by)

i; = o(W; x |Ci_1;hs_1;%¢| + b;)
—

0 — U(Wo X [Ct; ht—l;Xt] - bo)

e |t usually works better, but it adds more weights.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Gers and Schmidhuber (2000). Recurrent nets that time and count. IJCNN.

30/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

GRU: Gated Recurrent Unit

o Another variant is called the Gated Recurrent Unit (GRU).

e It uses directly the output h; as a state, and the I
forget and input gates are merged into a single

gate r;.

Z

Iy —

flt — tanh(Wh X [I't ® ht—l; Xt])

ht:(l_zt)@ht—1‘|‘zt®f1t

o(W, x [hy_1;x¢])

O'(Wr X [ht—l; Xt])

Lt

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

e It does not even need biases (mostly useless in LSTMs anyway).

e Much simpler to train as the LSTM, and almost as powerful.

Chung, Gulcehre, Cho, Bengio (2014). “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling”. arXiv:1412.3555

31/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs

Bidirectional LSTM

e A bidirectional LSTM learns to predict the output in

softmax
| FT two directions:
-‘\'Wﬂe = The feedforward line learns using the past
concat | [concet | | conca ‘I’F{T context (classical LSTM).
r T‘ r = The backforward line learns using the future
. B i B) w context (inputs are reversed).
| b F ook [eeadl | e The two state vectors are then concatenated at
By 2BY 2By 2By 2 each time step to produce the output.
T T r T e Only possible offline, as the future inputs must be
| “ known.
embedding
X X o % e Works better than LSTM on many problems, but
slower.

Source:
http://www.paddlepaddle.org/doc/demo/sentiment_analysis/sentiment_analysis.html

32 /50

http://www.paddlepaddle.org/doc/demo/sentiment_analysis/sentiment_analysis.html

3 - word2vec

33/50

Representing words

e The most famous application of RNNs is Natural Language Processing (NLP): text understanding,
translation, etc...

e Each word of a sentence has to be represented as a vector X; in order to be fed to a LSTM.

e Which representation should we use?

e The naive solution is to use one-hot encoding, one element of the vector corresponding to one word of
the dictionary.

“a” “abbreviations” “zoology”
1 0 0
0 1 0
0 0 0
0 0 0
0 0 1
0 0 0

Source: https://cdn-images-1.medium.com/max/1600/1*ULfyiWPKgWceCqyZeDTI0g.png

34 /50

https://cdn-images-1.medium.com/max/1600/1*ULfyiWPKgWceCqyZeDTl0g.png

Representing words

e One-hot encoding is not a good representation for words:

= The vector size will depend on the number of words of the language:

o English: 171,476 (Oxford English Dictionary), 470,000 (Merriam-Webster)... 20,000 in practice.
o French: 270,000 (TILF).
o German: 200,000 (Duden).
o Chinese: 370,000 (Hanyu Da Cidian).
o Korean: 1,100,373 (Woori Mal Saem)
= Semantically related words have completely different representations (“endure” and “tolerate”).

= The representation is extremely sparse (a lot of useless zeros).

AUDIO IMAGES TEXT

Word, context, or
document vectors

DENSE DENSE SPARSE

Audio Spectrogram Image pixels

Source: https://www.tensorflow.org/tutorials/representation/word2vec

35/50

https://www.tensorflow.org/tutorials/representation/word2vec

word2vec

o word2vec learns word embeddings by trying to predict the current word based on the context (CBOW,
continuous bag-of-words) or the context based on the current word (skip-gram).

e It uses a three-layer autoencoder-like NN, where the hidden layer (latent space) will learn to represent the
one-hot encoded words in a dense manner.

| like music spiked with pain and music is my aeroplane ...

window = 4
V

| like music spiked 1

like music spiked with

music spiked with pain

spiked with pain and W

with pain and music W

pain and music is |

Bnd leSlC |5 my’ | laver | (Inpu

music is my aarnplanaE\::'> \

Source: https://jaxenter.com/deep-learning-search-word2vec-147782.html

Mikolov et al. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS. https://code.google.com/archive/p/word2vec/

36 /50

https://jaxenter.com/deep-learning-search-word2vec-147782.html
https://code.google.com/archive/p/word2vec/

word2vec

e word2vec has three parameters:

= the vocabulary size: number of words in the dictionary:.
= the embedding size: number of neurons in the hidden layer.
= the context size: number of surrounding words to predict.

e Itistrained on huge datasets of sentences (e.g. Wikipedia).

'z _ .
g Cutput laver SOUI'CE TEXt Tralnlng
‘ Samples
I .1 4
- -quick brown |fox jumps over the lazy dog. == (the, quick)
W . B (the, brown)
[nput layer '
—__Hidden layer B _
H] The brown [fox|jumps over the lazy dog. == (quick, the)
. H (quick, brown)
vo il W, h E < Wi H Y (quick, fox)
; v :: The quick-fox jumps|over the lazy dog. == (brown, the)
- . ' (brown, quick)
Fedim T (brown, fox)
Wy B (brown, jumps)
R The|quick brown-jumps over|the lazy dog. = (fox, quick)
- (fox, brown)
= (fox, jumps)
(= edim (fox, over)

Source: https://www.analyticsvidhya.com/blog/2017/06/word-
embeddings-count-word2veec/

Mikolov et al. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS. https://code.google.com/archive/p/word2vec/

37 /50

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
https://code.google.com/archive/p/word2vec/

word2vec

o After learning, the hidden layer represents an embedding vector, which is a dense and compressed
representation of each possible word (dimensionality reduction).

o Semantically close words (“endure” and “tolerate”) tend to appear in similar contexts, so their embedded

representations will be close (Euclidian distance).

e One can even perform arithmetic operations on these vectors!

queen = king + woman - man

F 3
man walked
o @)
~‘~~ woman
.«.._ "i. swam
king “a. O
A walking
® queen
- O o
swimming
Male-Female Verb tense

Source : https://www.tensorflow.org/tutorials/representation/word2vec

Ankara

Russia

Moscow
Canada Ottawa

Japan

- Tokyo

Vietnam

Hanoi
China Beijing

Country-Capital

38 /50

https://www.tensorflow.org/tutorials/representation/word2vec

4 - Applications of RNNs

Classification of LSTM architectures

one to one one to many many to one

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

e One to One; classical feedforward network.

Image — Label.

e One to Many: single input, many outputs.

Image — Text.

many to many many to many

 Many to One: sequence of inputs, single output.

Video / Text — Label.

 Many to Many: sequence to sequence.
Text — Text.

Video — Text.

40 /50

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

One to Many: image caption generation

e Show and Tell uses the last FC layer of a CNN to feed a LSTM layer and generate words.
e The pretrained CNN (VGG16, ResNet50) is used as a feature extractor.

Pre-trained neural
networks such as
AlexNet, VGG16. efc.

|

Image Input

—» CNN

Source: Sathe et al. (2022). Overview of Image Caption Generators and Its Applications. ICCSA. https://doi.org/10.1007/978-981-19-0863-7_8

> Linear

<slart>

softmax

Text

I

Feature vector at
fully connected layers

softmax

|

» LSTM —» LSTM

.Y
‘"amb

<start>

e Each word of the sentence is encoded/decoded using word2vec.

vvvvvvvvv

e The output of the LSTM at time ¢ becomes its new input at time ¢ + 1.

Vinyals et al. (2015). Show and tell: A neural image caption generator. CVPR.

softmax

QOutput Caption

l'Nerr:r

<end=

41/50

https://doi.org/10.1007/978-981-19-0863-7_8

One to Many: image caption generation

T a living room with a T a man riding a
couch and a television bike on a beach

a man is walking down the street with a suitcase /

Xu et al. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. NIPS. 42 /50

One to Many: image caption generation

e Show, attend and tell uses attention to focus on specific parts of the
image when generating the sentence.

r

.

1. Input
Image

A
bird

flying
over

14x14 Feature Map

a
body
of
water
2. Convolutional 3, RNN with attention 4. Word by

Feature Extraction over the image word
generation

J

Source: http://kelvinxu.github.io/projects/capgen.html

Xu et al. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. NIPS.

43 /50

Many to One: next character/word prediction

PANDARUS:

Alas, I think he shall be come approached and
the day

When little srain would be attain'd into being
never fed,

And who 1s but a chain and subjects of his
death,

I should not sleep.

Second Senator:

They are away this miseries, produced upon my
soul,

Breaking and strongly should be buried, when I
perish

The earth and thoughts of many states.

DUKE VINCENTIO:

Well, your wit is in the care of side and that.

e Characters or words are fed one by one into a
LSTM.

e The desired output is the next character or word in
the text.

e Example:
= |Inputs: To, be, or, not, to
= Qutput: be

e The text on the left was generated by a LSTM
having read the entire writings of William
Shakespeare.

e Each generated word is used as the next input.

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

44 /50

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Many to one: Sunspring SciFi movie

dfS Sunspring | A Sci-Fi Short Film Starring Thomas Middlediteh

More info: http://www.thereforefilms.com/sunspring.html

45/50

http://www.thereforefilms.com/sunspring.html
https://www.youtube.com/watch?v=LY7x2Ihqjmc

Many to One: sentiment analysis

e To obtain a vector from a

Document
s sy SENBSIGES / pEHitenGe Enesect \ sentence, one-hot encoding
R RRTUEE - [Clhlalr_|llelvielll_Islelnitlelniclel.L.L . N
i is used (alternative:
ide | i i
= = | . Onehot embedding of chars | word2vec).
/ e A 1D convolutional layers
R e i Stacked - ”
1d convolutions & max pooling slides” over the text.
layers
__encove | e The bidirectional LSTM
computes a state vector for
the complete text.
Bidirectional : -
ST e A classifier (fully connected
\ [envara][baciwara / layer) learns to predict the
- sentiment of the text
L (positive/negative).

13!

) : positive
Bidirectional ~ ——N <
I:-STM % *’ e HEQEIWE

=

Source: https://offbit.github.io/how-to-read/

46 /50

https://offbit.github.io/how-to-read/

Many to Many: Question answering / Scene understanding

e« ALSTM can learn to associate an image (static) plus a question (sequence) with the answer (sequence).

e The image is abstracted by a CNN trained for object recognition.

47 /50

Many to Many: seq2seq

e The state vector obtained at the end of a sequence can be reused as an initial state for another LSTM.
e The goal of the encoder is to find a compressed representation of a sequence of inputs.

e The goal of the decoder is to generate a sequence from that representation.

o Sequence-to-sequence (seq2seq) models are recurrent autoencoders.

Y1 Y2
Encoder
)
hl hz h3 g
RNN :I RNN I RNN —_/

—>

Decoder
X1 X2 X3

Sutskever, I, Vinyals, O, and Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. arXiv:1409.3215 48 / 50

seq2seq for language translation

e The encoder learns for example to encode each word of a sentence in French.

 The decoder learns to associate the final state vector to the corresponding English sentence.
e seqg2seq allows automatic text translation between many languages given enough data.

e Modern translation tools are based on seq2seq, but with attention.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

49 /50

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

References

e A great blog post by Christopher Olah to understand recurrent neural networks, especially LSTM:

http://colah.github.io/posts/2015-08-Understanding-LSTMs

e Shi Yan built on that post to explain it another way:

https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714#.m7fxgvjwf

50/50

http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714#.m7fxgvjwf

