

Neurocomputing Semantic segmentation

Julien Vitay Professur für Künstliche Intelligenz - Fakultät für Informatik

 \equiv

Semantic segmentation

 \equiv

• Semantic segmentation is a class of segmentation methods where you use knowledge about the identity of objects to partition the image pixel-per-pixel.

Source : https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef

- Classical segmentation methods only rely on the similarity between neighboring pixels, they do not use class information.
- The output of a semantic segmentation is another image, where each pixel represents the class.

Semantic segmentation

- The classes can be binary, for example foreground/background, person/not, etc.
- Semantic segmentation networks are used for example in Youtube stories to add virtual backgrounds (background matting).

Source: https://ai.googleblog.com/2018/03/mobile-realtime-video-segmentation.html

 \equiv

• Clothes can be segmented to allow for virtual try-ons.

Datasets for semantic segmentation

- There are many datasets freely available, but annotating such data is very painful, expensive and errorprone.
 - PASCAL VOC 2012 Segmentation Competition
 - COCO 2018 Stuff Segmentation Task
 - BDD100K: A Large-scale Diverse Driving Video Database
 - Cambridge-driving Labeled Video Database (CamVid)
 - Cityscapes Dataset

Ξ

- Mapillary Vistas Dataset
- ApolloScape Scene Parsing
- KITTI pixel-level semantic segmentation

Output encoding

 \equiv

• Each pixel of the input image is associated to a label (as in classification).

Input

Source : https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef

3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5
3	3	3	3	3	3	3	3	3	3	3	3	5	5	5	5	5	5
3	3	3	3	3	3	1	1	3	3	3	3	5	5	5	5	5	5
3	3	3	3	3	1	1	1	1	3	3	3	5	5	5	5	5	5
3	3	3	3	3	3	1	1	3	3	3	5	5	5	5	5	5	5
5	5	3	3	3	3	1	1	3	3	5	5	5	5	5	5	5	5
4	4	3	4	1	1	1	1	1	1	4	4	4	5	5	5	5	5
4	4	3	4	1	1	1	1	1	1	4	4	4	4	4	5	5	5
4	4	4	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4
3	3	3	1	1	1	1	1	1	1	1	4	4	4	4	4	4	4
3	3	3	1	2	2	1	1	1	1	1	4	4	4	4	4	4	4
3	3	3	1	2	2	1	1	1	1	1	4	4	4	4	4	4	4

Semantic Labels

Output encoding

 \equiv

• A **one-hot encoding** of the segmented image is therefore a tensor:

Source : https://medium.com/nanonets/how-to-do-image-segmentation-using-deep-learning-c673cc5862ef

Fully convolutional network

- A **fully convolutional network** only has convolutional layers and learns to predict the output tensor.
- The last layer has a pixel-wise softmax activation. We minimize the **pixel-wise cross-entropy loss**

Source : http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

 \equiv

• Downside: the image size is preserved throughout the network: computationally expensive. It is therefore difficult to increase the number of features in each convolutional layer.

SegNet: segmentation network

Ξ

- SegNet has an encoder-decoder architecture, with max-pooling to decrease the spatial resolution while increasing the number of features.
- But what is the inverse of max-pooling? Upsampling operation.

Upsampling: some methods

- Nearest neighbor and Bed of nails would just make random decisions for the upsampling.
- In SegNet, max-unpooling uses the information of the corresponding max-pooling layer in the encoder to place pixels adequately.

Source : http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture11.pdf

Ξ

Upsampling: transposed convolution

• Another popular option in the followers of SegNet is the transposed convolution.

Ξ

- in the encoder.

Input: 2 x 2

• The original feature map is upsampled by putting zeros between the values.

• A learned filter performs a regular convolution to produce an upsampled feature map.

• Works well when convolutions with stride are used

• Quite expensive computationally.

- The problem of SegNet is that small details (small scales) are lost because of the max-pooling. the segmentation is not precise.
- The solution proposed by U-Net is to add skip connections (as in ResNet) between different levels of the encoderdecoder.
- The final segmentation depends both on:
 - large-scale information computed in the middle of the encoder-decoder.
 - small-scale information processed in the early layers of the encoder.

Mask R-CNN

 \equiv

- For many applications, segmenting the background is useless. A two-stage approach can save computations.
- Mask R-CNN uses faster R-CNN to extract bounding boxes around interesting objects, followed by the prediction of a **mask** to segment the object.

Mask R-CNN

 \equiv

Figure 2. Mask R-CNN results on the COCO test set. These results are based on ResNet-101 [19], achieving a mask AP of 35.7 and running at 5 fps. Masks are shown in color, and bounding box, category, and confidences are also shown.

Mask R-CNN

