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Labeled vs unlabeled data
Supervised learning algorithms need a lot of labeled data (with ) in order to learn
classification/regression tasks, but labeled data is very expensive to obtain (experts, crowd sourcing).

A “bad” algorithm trained with a lot of data will perform better than a “good” algorithm trained with few
data. “It is not who has the best algorithm who wins, it is who has the most data.”

Supervised learning Self-taught learning

Unlabeled data is only useful for unsupervised learning, but very cheap to obtain (camera, microphone,
search engines). Can we combine efficiently both approaches? Self-taught learning or semi-supervised
learning.

t
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Autoencoders
An autoencoder is a NN trying to learn the identity function  using a different number of
neurons in the hidden layer than in the input layer.

An autoencoder minimizes the reconstruction loss
between the input  and the reconstruction , for
example the mse between the two vectors:

An autoencoder uses unsupervised learning: the
output data used for learning is the same as the
input data.

No need for labels!

By forcing the projection of the input data on a feature space with less dimensions (latent space), the
network has to extract relevant features from the training data.

Dimensionality reduction, compression.

f(x) = x

x x′

L  (θ) =reconstruction E  [∣∣x −x∈D
′ x∣∣ ]2
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Result of training a sparse autoencoder on natural images
If the latent space has more dimensions than the input space, we need to constrain the autoencoder so
that it does not simply learn the identity mapping.

Below is an example of a sparse autoencoder trained on natural images.

Inputs are taken from random natural images and
cut in 10*10 patches.

100 features are extracted in the hidden layer.

The autoencoder is said sparse because it uses L1-
regularization to make sure that only a few neurons
are active in the hidden layer for a particular image.

The learned features look like what the first layer of
a CNN would learn, except that there was no labels
at all!

Can we take advantage of this to pre-train a
supervised network?

Olshausen and Field (1997). Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by V1? Vision Research 37(23). 5 / 61
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Using an autoencoder for supervised learning
In supervised learning, deep neural networks suffer
from many problems:

Local minima

Vanishing gradients

Long training times

All these problems are due to the fact that the weights are randomly initialized at the beginning of
training.

Pretraining the weights using unsupervised learning allows to start already close to a good solution:

the network will need less steps to converge.

the gradients will vanish less.

less data is needed to learn a particular supervised task.
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Stacked autoencoders
Let’s try to learn a stacked autoencoder by learning progressively each feature vector.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
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Stacked autoencoders
Using unlabeled data, train an autoencoder to extract first-order features, freeze the weights and remove
the decoder.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
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Stacked autoencoders
Train another autoencoder on the same unlabeled data, but using the previous latent space as
input/output.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
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Stacked autoencoders
Repeat the operation as often as needed, and finish with a simple classifier using the labeled data.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
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Greedy layer-wise learning
This defines a stacked autoencoder, trained using
Greedy layer-wise learning.

Each layer progressively learns more and more
complex features of the input data (edges - contour
- forms - objects): feature extraction.

This method allows to train a deep network on few
labeled data: the network will not overfit, because
the weights are already in the right region.

It solves gradient vanishing, as the weights are
already close to the optimal solution and will
efficiently transmit the gradient backwards.

One can keep the pre-trained weights fixed for the
classification task or fine-tune all the weights as in
a regular DNN.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
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Application: Finding cats on the internet
Andrew Ng and colleagues (Google, Stanford) used
a similar technique to train a deep belief network
on color images (200x200) taken from 10 million
random unlabeled Youtube videos.

Each layer was trained greedily. They used a
particular form of autoencoder called restricted
Boltzmann machines (RBM) and a couple of other
tricks (receptive fields, contrast normalization).

Training was distributed over 1000 machines
(16.000 cores) and lasted for three days.

There was absolutely no task: the network just had
to watch youtube videos.

After learning, they visualized what the neurons had
learned.

Quoc Le et al. (2013). Building High-level Features Using Large Scale Unsupervised Learning. ICASSP. http://ieeexplore.ieee.org/document/6639343 13 / 61

http://ieeexplore.ieee.org/document/6639343


Application: Finding cats on the internet

After training, some neurons had learned to respond uniquely to faces, or to cats, without ever having
been instructed to.

The network can then be fine-tuned for classification tasks, improving the pre-AlexNet state-of-the-art on
ImageNet by 70%.

Quoc Le et al. (2013). Building High-level Features Using Large Scale Unsupervised Learning. ICASSP. 14 / 61
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Deep autoencoders
Autoencoders are not restricted to a
single hidden layer.

The encoder goes from the input space 
 to the latent space .

The decoder goes from the latent space 
 to the output space .

The latent space is a bottleneck layer of lower dimensionality, learning a compressed representation of
the input which has to contain enough information in order to reconstruct the input.

Both the encoder with weights  and the decoder with weights  try to minimize the reconstruction loss:

Learning is unsupervised: we only need input data.

x z

z = g  (x)ϕ

z x′

x =′ f  (z)θ

Source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

ϕ θ

L  (θ,ϕ) =reconstruction E  [∣∣f  (g  (x)) −x∈D θ ϕ x∣∣ ]2
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Deep autoencoders
The encoder and decoder can be anything: fully-connected, convolutional, recurrent, etc.

When using convolutional layers, the decoder has to upsample the latent space: max-unpooling or
transposed convolutions can be used as in segmentation networks.

Guo X, Liu X, Zhu E, Yin J. (2017). Deep Clustering with Convolutional Autoencoders. Neural Information Processing. doi:10.1007/978-3-319-70096-0_39 17 / 61



Semi-supervised learning
In semi-supervised or self-taught learning, we can first train an autoencoder on huge amounts of
unlabeled data, and then use the latent representations as an input to a shallow classifier on a small
supervised dataset.

A linear classifier might even be enough if the latent space is well trained.

The weights of the encoder can be fine-tuned with backpropagation, or remain fixed.

Source: https://doi.org/10.1117/12.2303912
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Denoising autoencoder
A denoising autoencoder (DAE) is trained with noisy inputs (some pixels are dropped) but perfect desired
outputs. It learns to suppress that noise.

Source : https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

Vincent et al. (2010). “Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion”. JMLR. 19 / 61
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Deep clustering
Clustering algorithms (k-means, Gaussian Mixture Models, spectral clustering, etc) can be applied in the
latent space to group data points into clusters.

If you are lucky, the clusters may even correspond to classes.

Source: doi:10.1007/978-3-030-32520-6_55

20 / 61

doi:10.1007/978-3-030-32520-6_55


4 - Variational autoencoders (VAE)

21 / 61



Motivation
Autoencoders are deterministic: after learning, the same input  will generate the same latent code  and
the same reconstruction .

Sampling the latent space generally generates non-sense reconstructions, because an autoencoder only
learns data samples, it does not learn the underlying probability distribution.

Source: 

x z
x~

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Data augmentation with autoencoders
The main problem of supervised learning is to get enough annotated data.

Being able to generate new images similar to the training examples would be extremely useful (data
augmentation).

Source: https://hackernoon.com/latent-space-visualization-deep-
learning-bits-2-bd09a46920df
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Regularized latent space
In order for this to work, we need to regularize the latent space:

Close points in the latent space should correspond to close images.

“Classical” L1 or L2 regularization does not ensure the regularity of the latent space.

Source: https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Variational autoencoder
The variational autoencoder (VAE) (Kingma and Ba, 2013) solves this problem by having the encoder
represent the probability distribution  instead of a point  in the latent space.

This probability distribution is then sampled to obtain a vector  that will be passed to the decoder .

The strong hypothesis is that the latent space follows a normal distribution with mean  and variance 
.

The two vectors  and  are the outputs of the encoder.

Source: 

q  (z∣x)ϕ z

z p  (z)θ

μ  x

σ  x
2

z ∼ N (μ  ,σ  )x x
2

μ  x σ  x
2

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Kingma, D. P., and Welling, M. (2013). Auto-Encoding Variational Bayes. arXiv:1312.6114 25 / 61

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Sampling from a normal distribution
The normal distribution  is fully defined
by its two parameters:

 is the mean of the distribution.

 is its variance.

The probability density function (pdf) of the normal distribution is defined by the Gaussian function:

A sample  will likely be close to , with a deviation defined by .

It can be obtained using a sample of the standard normal distribution :

samples

N (μ,σ )2

μ

σ2

f(x;μ,σ) =  e
 2π σ2

1 −  

2σ2

(x − μ)2

x μ σ2

N (0, 1)

x = μ + σ ξ with ξ ∼ N (0, 1)
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Variational autoencoder
Architecture of the VAE:

1. The encoder  outputs the parameters  and  of a normal distribution .

2. We sample one vector  from this distribution: .

3. The decoder  reconstructs the input.

Open questions:

1. Which loss should we use and how do we regularize?

2. Does backpropagation still work?

q  (z∣x)ϕ μ  x σ  x
2 N (μ  ,σ  )x x

2

z z ∼ N (μ  ,σ  )x x
2

p  (z)θ
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Loss function of a VAE
The loss function used in a VAE is of the form:

The first term is the usual reconstruction loss of an autoencoder which depends on both the encoder and
the decoder.

One could simply compute the mse (summed over all pixels) between the input and the reconstruction:

In the expectation,  is sampled from the dataset  while  is sampled from the encoder .

In (Kingma et al., 2013), pixels values are normalized between 0 and 1, the decoder uses the logistic
activation function for its output layer and the binary cross-entropy loss function is used:

The justification comes from variational inference and evidence lower-bound optimization (ELBO) but is
out of the scope of this lecture.

L(θ,ϕ) = L  (θ,ϕ) +reconstruction L  (ϕ)regularization

L  (θ,ϕ) =reconstruction E  [∣∣p  (z) −x∈D,z∼q  (z∣x)ϕ θ x∣∣ ]2

x D z q  (z∣x)ϕ

L  (θ,ϕ) =reconstruction E  [− log p  (z)]x∈D,z∼q  (z∣x)ϕ θ
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Regularization term
The second term is the regularization term for the latent space, which only depends on the encoder with
weights :

It is defined as the Kullback-Leibler divergence between the output of the encoder and the standard
normal distribution .

Think of it as a statistical “distance” between the distribution  and the distribution .

The principle is not very different from L2-regularization, where we want the weights to be as close as
possible from 0.

Here we want the encoder to be as close as possible from .

ϕ

L  (ϕ) =regularization KL(q  (z∣x)∣∣N (0,1)) =ϕ KL(N (μ  ,σ  )∣∣N (0,1))x x
2

N (0,1)

q  (z∣x)ϕ N (0,1)

N (0,1)
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Regularization term
Why do we want the latent distributions to be close from  for all inputs ?

By forcing the distributions to be close, we avoid “holes” in the latent space: we can move smoothly from
one distribution to another without generating non-sense reconstructions.

Source: 

N (0,1) x

L(θ,ϕ) = L  (θ,ϕ) +reconstruction KL(q  (z∣x)∣∣N (0,1))ϕ

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Why not regularize the mean and variance?
To make  close from , one could minimize the Euclidian distance in the parameter
space:

However, this does not consider the overlap between the distributions.

The two pairs of distributions below have the same distance between their means (0 and 1) and the same
variance (1 and 10 respectively).

The distributions on the left are very different from each other, but the distance in the parameter space is
the same.

q  (z∣x)ϕ N (0,1)

L(θ,ϕ) = L  (θ,ϕ) +reconstruction (∣∣μ  ∣∣ +x
2 ∣∣σ  −x 1∣∣ )2
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Kullback-Leibler divergence
The KL divergence between two random distributions  and  measures the statistical distance
between them.

It describes, on average, how likely a sample from  could come from :

samples from X

When the two distributions are equal almost anywhere, the KL divergence is 0. Otherwise it is positive.

Minimizing the KL divergence between two distributions makes them close in the statistical sense.

X Y

X Y

KL(X∣∣Y ) = E  [− log  ]x∼X
P (X = x)
P (Y = x)
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Kullback-Leibler divergence
The advantage of minimizing the KL of  with  is that the KL takes a closed form when
the distributions are normal, i.e. there is no need to compute the expectation over all possible latent
representations :

If  and  have  elements (dimension of the latent space), the KL can be expressed as:

The KL is very easy to differentiate w.r.t  and , i.e. w.r.t !

In practice, the encoder predicts the vectors  and , so the loss becomes:

q  (z∣x)ϕ N (0, 1)

z

L  (ϕ) =regularization KL(q  (z∣x)∣∣N (0,1)) =ϕ E  [− log  ]x∈D,z∼q  (z∣x)ϕ q  (z∣x)ϕ

f  (z∣x)0,1

μ  x σ  x K

L  (ϕ) =regularization E  [   (σ  +x∈D 2
1

k=1

∑
K

x
2 μ  −x

2 1 − log σ  )]x
2

μ  x σ  x ϕ

μ  x Σ  =x log σ  x
2

L  (ϕ) =regularization   (exp Σ  +
2
1

k=1

∑
K

x μ  −x
2 1 − Σ  )x

See https://wiseodd.github.io/techblog/2016/12/10/variational-autoencoder/ 33 / 61
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Regularization
Regularization tends to create a “gradient” over the information encoded in the latent space.

A point of the latent space sampled between the means of two encoded distributions should be decoded
in an image in between the two training images.
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Reparameterization trick
The second problem is that backpropagation does
not work through the sampling operation.

It is easy to backpropagate the gradient of the loss
function through the decoder until the sample .

But how do you backpropagate to the outputs of
the encoder:  and ?

Modifying slightly  or  may not change at all
the sample , so you cannot
estimate any gradient.

z

μ  x σ  x

μ  x σ  x

z ∼ N (μ  ,σ  )x x
2

 =
∂μ  x

∂z
?

samples
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Reparameterization trick
Backpropagation does not work through a sampling operation, because it is not differentiable.

The reparameterization trick consists in taking a sample  out of  and reconstruct  with:

Source: 

z ∼ N (μ  ,σ  )x x
2

ξ N (0, 1) z

z = μ  +x σ  ξ with ξ ∼x N (0, 1)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
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Reparameterization trick
The sampled value  becomes just another input to the neural network.

Source: 

It allows to transform  and  into a sample  of :

We do not need to backpropagate through , as there is no parameter to learn!

The neural network becomes differentiable end-to-end, backpropagation will work.

ξ ∼ N (0, 1)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

μ  x σ  x z N (μ  ,σ  )x x
2

z = μ  +x σ  ξx

ξ
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Variational autoencoder
A variational autoencoder is an autoencoder where
the latent space represents a probability
distribution  using the mean  and
standard deviation  of a normal distribution.

The latent space can be sampled to generate new
images using the decoder .

KL regularization and the reparameterization trick
are essential to VAE.

q (z∣x)ϕ μ  x

σ  x

p  (z)θ

Source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

L(θ,ϕ) = L  (θ,ϕ) + L  (ϕ)reconstruction regularization

= E  [− log p  (μ  + σ  ξ) +   (σ  + μ  − 1 − log σ  )]x∈D,ξ∼N (0,1) θ x x 2
1

k=1

∑
K

x
2

x
2

x
2
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Variational autoencoder
The two main applications of VAEs in unsupervised learning are: 

1. Dimensionality reduction: projecting high dimensional data (images) onto a smaller space, for example a
2D space for visualization.

2. Generative modeling: generating samples from the same distribution as the training data (data
augmentation, deep fakes) by sampling on the manifold.

Source: https://blog.keras.io/building-autoencoders-in-
keras.html
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DeepFake

https://github.com/iperov/DeepFaceLab

Jim Carrey DeepFake [VFX Comparison]Jim Carrey DeepFake [VFX Comparison]
ShareShare
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DeepFake
During training, one encoder and two decoders learns to reproduce the face of each person.

When generating the deepfake, the decoder of person B is used on the latent representation of person A.

https://www.alanzucconi.com/2018/03/14/understanding-the-technology-behind-deepfakes/ 41 / 61
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-VAE

VAE does not use a regularization parameter to balance the reconstruction and regularization losses.
What happens if you do?

Using  puts emphasis on learning statistically independent latent factors.

The -VAE allows to disentangle the latent variables, i.e. manipulate them individually to vary only one
aspect of the image (pose, color, gender, etc.).

β

  

L(θ,ϕ) = L  (θ,ϕ) + β L  (ϕ)reconstruction regularization

= E  [− log p  (μ  + σ  ξ) +   (σ  + μ  − 1 − log σ  )]x∈D,ξ∼N (0,1) θ x x 2
β

k=1

∑
K

x
2

x
2

x
2

β > 1

β

Higgins et al. (2016). beta-VAE: Learning Basic Visual Concepts with a Constrained Variational Framework. https://openreview.net/forum?id=Sy2fzU9gl 42 / 61
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VQ-VAE
Deepmind researchers proposed VQ-VAE-2, a hierarchical VAE using vector-quantized priors able to
generate high-resolution images.

Razavi A, Oord A van den, Vinyals O. 2019. Generating Diverse High-Fidelity Images with VQ-VAE-2. arXiv:190600446 43 / 61



Conditional variational autoencoder (CVAE)
What if we provide the labels to the encoder and the decoder during training?

Source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Sohn, K., Lee, H., and Yan, X. (2015). “Learning Structured Output Representation using Deep Conditional Generative Models,” NIPS 28. 44 / 61
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Conditional variational autoencoder (CVAE)
When trained with labels, the conditional variational autoencoder (CVAE) becomes able to sample many
images of the same class.

Source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html

Sohn, K., Lee, H., and Yan, X. (2015). “Learning Structured Output Representation using Deep Conditional Generative Models,” NIPS 28. 45 / 61
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CVAE on MNIST
CVAE allows to sample as many samples of a given class as we want: data augmentation.

Source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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CVAE on shapes
The condition does not need to be a label, it can be a shape or another image (passed through another
encoder).

Source: https://hci.iwr.uni-heidelberg.de/content/variational-u-net-conditional-appearance-and-shape-generation
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48 / 61



Learning probability distributions from samples
The input data  comes from an unknown distribution 
. The training set  is formed by samples of that distribution.

Learning the distribution of the data means learning a
parameterized distribution  that is as close as possible
from the true distribution .

The parameterized distribution could be a family of known
distributions (e.g. normal) or a neural network with a softmax
output layer.

This means that we want to minimize the KL between the two distributions:

The problem is that we do not know  as it is what we want to learn, so we cannot estimate the KL
directly.

X P (X)
D

p  (X)θ

P (X)

Source: https://machinelearningmastery.com/probability-
density-estimation/

 KL(P (X)∣∣p  (X)) =
θ

min θ E  [− log  ]x∼P (X)
P (X = x)
p  (X = x)θ

P (X)
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Supervised learning
In supervised learning, we are learning the conditional probability 

 of the targets given the inputs, i.e. what is the probability
of having the label  given the input .

A NN with a softmax output layer represents the parameterized
distribution .

The KL between the two distributions is:

With the properties of the log, we know that the KL is the cross-entropy minus the entropy of the data:

P (T ∣X)
T = t X = x

p  (T ∣X)θ

KL(P (T ∣X)∣∣p  (T ∣X)) =θ E  [− log  ]x,t∼D
P (T = t∣X = x)
p  (T = t∣X = x)θ

Input
layer

Hidden
layer

Output
layer

Desired 
output

KL(P (T ∣X)∣∣p  (T ∣X))θ = E  [− log p  (T = t∣X = x)] − E  [− logP (T = t∣X = x)]x,t∼D θ x,t∼D

= H(P (T ∣X), p  (T ∣X)) − H(P (T ∣X))θ
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Supervised learning
Kullback-Leibler divergence between the model and the data:

When we minimize the KL by applying gradient descent on the parameters , only the cross-entropy will
change, as the data does not depends on the model:

Minimizing the cross-entropy (negative log likelihood) of the model on the data is the same as minimizing
the KL between the two distributions in supervised learning!

We were actually minimizing the KL all along.

  

KL(P (T ∣X)∣∣p  (T ∣X))θ = H(P (T ∣X), p  (T ∣X)) − H(P (T ∣X))θ

θ

  

∇  KL(P (T ∣X)∣∣p  (T ∣X))θ θ = ∇  H(P (T ∣X), p  (T ∣X)) − ∇  H(P (T ∣X))θ θ θ

= ∇  H(P (T ∣X), p  (T ∣X))θ θ

= ∇  E  [− log p  (T = t∣X = x)]θ x,t∼D θ
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Maximum likelihood estimation
When trying to learn the distribution  of the data directly, we could use the same trick:

i.e. maximize the log-likelihood of the model on the data .

If we use  data samples to estimate the expectation, we notice that:

is indeed the log-likelihood of the model on the data that we maximized in maximum likelihood estimation.

P (X)

∇  KL(P (X)∣∣p  (X)) =θ θ ∇  H(P (X), p (X)) =θ θ ∇  E  [− log p  (X =θ x∼X θ x)]

X

N

E  [log p  (X =x∼X θ x)] ≈   log p  (X =
N

1

i=1

∑
N

θ x  ) =i  log  p  (X =
N

1

i=1

∏
N

θ x  ) =i  logL(θ)
N

1
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Curse of dimensionality
The problem is that images are highly-dimensional (one dimension per pixel), so we would need
astronomical numbers of samples to estimate the gradient (once): curse of dimensionality.

Source: 

MLE does not work well in high-dimensional spaces.

We need to work in a much lower-dimensional space.

https://dibyaghosh.com/blog/probability/highdimensionalgeometry.html
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Manifolds
Images are not random samples of the pixel space: natural
images are embedded in a much lower-dimensional space
called a manifold.

A manifold is a locally Euclidian topological space of lower
dimension.

The surface of the earth is locally flat and 2D, but globally
spherical and 3D.

If we have a generative model telling us how a point on the
manifold  maps to the image space ( ), we would
only need to learn the distribution of the data in the lower-
dimensional latent space.

z P (X∣z)

Source: https://en.wikipedia.org/wiki/Manifold
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Generative model
The low-dimensional latent variables  are the actual cause for the
observations .

Given a sample  on the manifold, we can train a generative model 
 to recreate the input .

 is the decoder: given a latent representation , what is the
corresponding observation ?

If we learn the distribution  of the manifold (latent space), we can infer the distribution of the data 
 using that model:

Problem: we do not know , as the only data we see is :  is called a latent variable because it
explains the data but is hidden.

z

X

z

p  (X∣z)θ X

p  (X∣z)θ z

X

Source:
https://blog.evjang.com/2016/08/variational-
bayes.html

p  (z)θ

p  (X)θ

p  (X) =θ E  [p  (X∣z)] =z∼p  (z)θ θ  p  (X∣z) p (z) dz∫
z

θ θ

p  (z)θ X z
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Variational inference
To estimate , we could again marginalize over :

 is the encoder: given an input , what is its latent representation ?

The Bayes rule tells us:

The posterior probability (encoder)  depends on the model (decoder) , the prior
(assumption)  and the evidence (data) .

We get:

p  (z)θ X

p  (z) =θ E  [p  (z∣x)] =x∼p  (X)θ θ  p  (z∣x) p  (x) dx∫
x

θ θ

p  (z∣x)θ x ∼ p  (X)θ z

p  (z∣x) =θ p  (x∣z)  θ
p  (x)θ

p  (z)θ

p  (z∣X)θ p  (X∣z)θ

p  (z)θ p  (X)θ

p  (z) =θ E  [p  (x∣z)  ]x∼p  (X)θ θ
p  (x)θ

p  (z)θ

56 / 61



Variational inference
The posterior is untractable as it would require to integrate over all possible inputs :

Variational inference proposes to approximate the true encoder  by another parameterized
distribution .

Source: 

The decoder  generates observations  from a latent representation  with parameters .

The encoder  estimates the latent representation  of a generated observation . It should
approximate  with parameters .

x ∼ p  (X)θ

p  (z) =θ E  [p  (x∣z)  ] =x∼p  (X)θ θ
p  (x)θ

p  (z)θ
 p  (x∣z) p  (z) dx∫

x
θ θ

p  (z∣x)θ

q (z∣x)ϕ

https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-to-beta-vae.html

p  (x∣z)θ x x θ

q  (z∣x)ϕ z x

p  (z∣x)θ ϕ
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Variational inference
To make  close from , we minimize their KL divergence:

Note that we sample the latent representations from the learned encoder  (imagination).

As , we get:

 does not depend on , so its expectation w.r.t  is constant:

q  (z∣X)ϕ p  (z∣X)θ

KL(q  (z∣X)∣∣p  (z∣X))ϕ θ = E  [− log  ]z∼q  (z∣X)ϕ q  (z∣X)ϕ

p  (z∣X)θ

q  (z∣X)ϕ

p  (z∣X) =θ p  (X∣z)  θ
p  (X)θ

p  (z)θ

KL(q  (z∣X)∣∣p  (z∣X))ϕ θ = E  [− log  ]z∼q  (z∣X)ϕ q  (z∣X) p  (X)ϕ θ

p  (X∣z) p  (z)θ θ

= E  [− log  ] − E  [− log p  (X)]z∼q  (z∣X)ϕ q  (z∣X)ϕ

p  (z)θ
z∼q  (z∣X)ϕ θ

+ E  [− log p  (X∣z)]z∼q  (z∣X)ϕ θ

p  (X)θ z z

KL(q  (z∣X)∣∣p  (z∣X))ϕ θ = KL(q  (z∣X)∣∣p  (z)) + log p  (X) + E  [− log p  (X∣z)]ϕ θ θ z∼q  (z∣X)ϕ θ
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Evidence lower bound
We rearrange the terms:

Training the encoder means that we minimize .

Training the decoder means that we maximize  (log-likelihood of the model).

Training the encoder and decoder together means that we maximize:

The KL divergence is always positive or equal to 0, so we have:

This term is called the evidence lower bound (ELBO): by maximizing it, we also maximize the untractable
evidence , which is what we want to do.

  

log p  (X) − KL(q  (z∣X)∣∣p  (z∣X))θ ϕ θ = −E  [− log p  (X∣z)] − KL(q  (z∣X)∣∣p  (z))z∼q  (z∣X)ϕ θ ϕ θ

KL(q  (z∣X)∣∣p  (z∣X))ϕ θ

log p (X)θ

ELBO(θ,ϕ) = log p  (X) −θ KL(q  (z∣X)∣∣p  (z∣X))ϕ θ

ELBO(θ,ϕ) ≤ log p  (X)θ

log p  (X)θ
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Variational inference
The trick is that the right-hand term of the equation gives us a tractable definition of the ELBO term:

What happens when we minimize the negative ELBO?

 is the reconstruction loss of the decoder :

Given a sample  of the encoder , minimize the negative log-likelihood of the reconstruction 
.

 is the regularization loss for the encoder:

The latent distribution  should be too far from the prior .

  

ELBO(θ,ϕ) = log p  (X) − KL(q  (z∣X)∣∣p  (z∣X))θ ϕ θ

= −E  [− log p  (X∣z)] − KL(q  (z∣X)∣∣p  (z))z∼q  (z∣X)ϕ θ ϕ θ

L(θ,ϕ) = −ELBO(θ,ϕ) = E  [− log p  (X∣z)] +z∼q  (z∣X)ϕ θ KL(q  (z∣X)∣∣p (z))ϕ θ

E  [− log p  (X∣z)]z∼q  (z∣X)ϕ θ p  (X∣z)θ

z q  (z∣X)ϕ

p  (X∣z)θ

KL(q  (z∣X)∣∣p  (z))ϕ θ

q  (z∣X)ϕ p  (z)θ
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Variational autoencoders
Variational autoencoders use  as a prior for the latent space, but any other prior could be used.

The reparameterization trick and the fact that the KL between normal distributions has a closed form
allow us to use backpropagation end-to-end.

The encoder  and decoder  are neural networks in a VAE, but other parametrized
distributions can be used (e.g. in physics).

N (0, 1)

  

L(θ,ϕ) = L  (θ,ϕ) + L  (ϕ)reconstruction regularization

= E  [− log p  (z)] + KL(q  (z∣x)∣∣N (0,1))x∈D,z∼q  (z∣x)ϕ θ ϕ

q  (z∣X)ϕ p  (X∣z)θ

Source: https://lilianweng.github.io/lil-log/2018/08/12/from-autoencoder-
to-beta-vae.html

Source: https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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