
Neurocomputing
Hopfield networks

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 51

1 - Associative memory

2 / 51

Procedural vs. episodic memory
In deep learning, our biggest enemy was overfitting, i.e. learning by heart the training examples.

But what if it was actually useful in cognitive tasks?

Deep networks implement a procedural memory: they know how to do things.

A fundamental aspect of cognition is episodic memory: remembering when specific events happened.

Source: https://brain-basedlearning.weebly.com/memory.html

3 / 51

https://brain-basedlearning.weebly.com/memory.html

When can episodic memory be useful?
Episodic memory is particularly useful when retrieving memories from degraded or partial inputs.

When the reconstruction is similar to the remembered input, we talk about auto-associative memory.

An item can be retrieved by just knowing part of its content: content-adressable memory.

Source: https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/slides/lec14.hopfield.pdf

4 / 51

https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/slides/lec14.hopfield.pdf

Auto-associative memory
Hmunas rmebmeer iamprtnot envtes in tiher leivs. You mihgt be albe to rlecal eervy deiatl of yuor frist eaxm
at cllgeoe; or of yuor fsirt pbuilc sepceh; or of yuor frsit day in katigrneedrn; or the fisrt tmie you wnet to a
new scohol atefr yuor fimlay mveod to a new ctiy. Hmaun moemry wkors wtih asncisoatois. If you haer the
vicoe of an old fernid on the pnohe, you may slntesnoauopy rlaecl seortis taht you had not tghuoht of for
yares. If you are hrgnuy and see a pcturie of a bnaana, you mihgt vdivliy rclael the ttsae and semll of a
bnanaa and teerbhy rieazle taht you are ideend hngury. In tihs lcterue, we peesrnt modles of nrueal
ntkweros taht dbriecse the rcaell of puielovsry seortd imtes form mmorey.

Text scrambler by http://www.stevesachs.com/jumbler.cgi 5 / 51

http://www.stevesachs.com/jumbler.cgi

Auto-associative memory
The classical approach is the nearest neighbour
algorithm.

One compares a new input to each of the training
examples using a given metric (distance) and
assigns the input to the closest example.

Another approach is to have a recurrent neural
network memorize the training examples and
retrieve them given the input.

Source: http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf 6 / 51

http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf

Hetero-associative memory
When the reconstruction is different from the input, it is an hetero-associative memory.

Hetero-associative memories often work in both directions (bidirectional associative memory):

name face.↔

Source: https://slideplayer.com/slide/7303074/ 7 / 51

https://slideplayer.com/slide/7303074/

2 - Hopfield networks

8 / 51

Feedforward and recurrent neural networks
Feedforward networks only depend on the current input:

Recurrent networks also depend on their previous output:

Both are strongly dependent on their inputs and do not have their own dynamics.

y =t f(W × x +t b)

y =t f(W × [x ; y] +t t−1 b)

9 / 51

Hopfield networks
Hopfield networks (;

) only depend on a single input (one constant
value per neuron) and their previous output using
recurrent weights:

For a single constant input , one lets the network
converge for enough time steps and observe
what the final output is.

Hopfield network have their own dynamics: the
output evolves over time, but the input is constant.

One can even omit the input and merge it with
the bias : the dynamics will only depend on the
initial state .

Hopfield, 1982 Hopfield et al.,
1983

y =t f(x + W × y +t−1 b)

x
T

y T

x
b

y 0

y =t f(W × y +t−1 b)

Source: , Author: ZawershWikipedia CC BY-SA 3.0

10 / 51

https://en.wikipedia.org/wiki/Hopfield_network

Hopfield networks
Binary Hopfield networks use binary units.

The neuron has a net activation (potential)
depending on the other neurons through weights

:

The output is the sign of the potential:

There are no self-connections: .

The weights are symmetrical: .

In matrix-vector form:

i x i

j

w ji

x =i w y +
j=i

∑ ji j b

y i

y =i sign(x)i

sign(x) = {+1 ifx > 0
−1 otherwise.

w =ii 0

w =ij w ji

Source: http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-
engineering/computational-neuroscience/2-hopfield-hand.pdf

y = sign(W × y + b)

11 / 51

http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf

Hopfield networks
At each time step, a neuron will flip its state if the sign of the potential does not
match its current output .

This will in turn modify the potential of all other neurons, who may also flip. The potential of that neuron
may change its sign, so the neuron will flip again.

After a finite number of iterations, the network reaches a stable state (proof later).

Neurons are evaluated one after the other: asynchronous evaluation.

x =i w y +∑j=i ji j b

y i

Source: https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/slides/lec14.hopfield.pdf

12 / 51

https://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2015/slides/lec14.hopfield.pdf

Hopfield networks
Let’s consider a Hopfield network with 5 neurons, sparse connectivity and no bias.

In the initial state, 2 neurons are on (+1), 3 are off (-1).

13 / 51

Hopfield networks
Let’s evaluate the top-right neuron.

Its potential is -4 * 1 + 3 * (-1) + 3 * (-1) = -10 0. Its output stays at -1.<

14 / 51

Hopfield networks
Now the bottom-left neuron.

The same: 3 * 1 + (-1) * (-1) = 4 0, the output stays at +1.>

15 / 51

Hopfield networks
But the bottom-middle neuron has to flip its sign: -1 * 1 + 4 * 1 + 3 * (-1) - 1 * (-1) = 1 0.

Its new output is +1.

>

16 / 51

Hopfield networks
We can continue evaluating the neurons, but nobody will flip its sign.

This configuration is a stable pattern of the network.

17 / 51

Hopfield networks
There is another stable pattern, where the two other neurons are active: symmetric or ghost pattern.

All other patterns are unstable and will eventually lead to one of the two stored patterns.

18 / 51

Hopfield networks

The weight matrix allows to encode a given number of stable patterns, which are fixed points of the
network’s dynamics.

Any initial configuration will converge to one of the stable patterns.

W

19 / 51

Hopfield networks
Initialize a symmetrical weight matrix without self-
connections.

Set an input to the network through the bias .

while not stable:

Pick a neuron randomly.

Compute its potential:

Flip its output if needed:

b

i

x =i w y +
j=i

∑ ji j b

y =i sign(x)i

Source: http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-
engineering/computational-neuroscience/2-hopfield-hand.pdf

20 / 51

http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf

Asynchronous evaluation
Why do we need to update neurons one by one, instead of all together as in ANNs (vector-based)?

Consider the two neurons below:

If you update them at the same time, they will both flip:

But at the next update, they will both flip again: the network will oscillate for ever.

21 / 51

Asynchronous evaluation
By updating neurons one at a time (randomly), you make sure that the network converges to a stable
pattern:

22 / 51

Energy of the Hopfield network
Let’s have a look at the quantity before and after an update:

If the neuron does not flip, the quantity does not change.

If the neuron flips (goes from +1 to -1, or from -1 to +1), this means that:

 and had different signs before the update, so was
negative.

After the flip, and have the same sign, so becomes
positive.

The change in the quantity is always positive or equal to zero:

No update can decrease this quantity.

y (w y +i ∑j=i ji j b)

y i

y i w y +∑j=i ji j b y (w y +i ∑j=i ji j b)

y i w y +∑j=i ji j b y (w y +i ∑j=i ji j b)

y (w y +i ∑j=i ji j b)

Δ[y (w y +i

j=i

∑ ji j b)] ≥ 0

23 / 51

Energy of the Hopfield network
Let’s now sum this quantity over the complete network and reverse its sign:

We can expand it and simplify it knowing that and :

The term comes from the fact that the weights are symmetric and count twice in the double sum.

In a matrix-vector form, it becomes:

 is called the energy of the network or its Lyapunov function for a pattern .

We know that updates can only decrease the energy of the network, it will never go up.

Moreover, the energy has a lower bound: it cannot get below a certain value as everything is finite.

E(y) = − y (w y +
i

∑ i

j>i

∑ ji j b)

w =ii 0 w =ij w ji

E(y) = − w y y −
2
1

i,j

∑ ij i j y b

j

∑ j j

 2
1

E(y) = − y ×
2
1 T W × y − b ×T y

E(y) (y)

24 / 51

Energy of the Hopfield network
The energy of the network can only decrease but has a lower bound.

Stable patterns are local minima of the energy function: no update can increase the energy.

E(y) = − y ×
2
1 T W × y − b ×T y

Source: http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf

25 / 51

http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf

Energy of the Hopfield network
Stable patterns are point attractors.

Other patterns have higher energies and are attracted by the closest stable pattern (attraction basin).

Source: https://en.wikipedia.org/wiki/Hopfield_network

26 / 51

https://en.wikipedia.org/wiki/Hopfield_network

Capacity of a Hopfield network

It can be shown that for a network with units, one can store up to different patterns:

If you have 1000 neurons, you can store 140 patterns.

As you need 1 million weights for it, it is not very efficient…

N 0.14N

C ≈ 0.14N

McEliece et al. () The capacity of the Hopfield associative memory. IEEE Transactions on Information Theory 33:461–482. doi:10.1109/TIT.1987.10573281987 27 / 51

Storing patterns
The weights define the stored patterns through their contribution to the energy:

How do you choose the weights so that the desired patterns are local minima of
the energy function?

Let’s omit the bias for a while, as it does not depend on . One can replace the bias with a weight to a
neuron whose activity is always +1.

The pattern is stable if no neuron flips after the update:

Which weights respect this stability constraint?

E = − y ×
2
1 T W × y − b ×T y

W (y ,y , … ,y)1 2 P

W

y =1 [y , y , … , y]1
1

2
1

N
1 T

y =i
1 sign(w y) ∀i

j=i

∑ ij j
1

28 / 51

Hebb’s rule: Cells that fire together wire together

When an axon of cell A is near enough to excite a cell B
and repeatedly or persistently takes part in firing it, some
growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells
firing B, is increased.

Donald Hebb, 1949

Source:
https://thebrain.mcgill.ca/flash/i/i_07/i_07_cl/i_07_cl_tra/i_07_cl_tra.

29 / 51

https://thebrain.mcgill.ca/flash/i/i_07/i_07_cl/i_07_cl_tra/i_07_cl_tra.html

Hebbian learning
Hebbian learning between two neurons states that the synaptic efficiency (weight) of their connection
should be increased if the activity of the two neurons is correlated.

The correlation between the activities is simply the product:

If both activities are high, the weight will increase.

If one of the activities is low, the weight won’t change.

It is a very rudimentary model of synaptic plasticity, but verified experimentally.

Δw =i,j y y i j

30 / 51

Storing patterns
The fixed point respects:

If we use as the result of Hebbian learning (weights initialized at 0), we obtain

as (binary units).

This means that setting makes a fixed point of the system!

Remembering that , we find that is the correlation matrix of minus the identity:

(the diagonal of is always 1, as).

y =i
1 sign(w y) ∀i

j=i

∑ ij j
1

w =i,j y y i
1

j
1

y =i
1 sign(y y y) =

j=i

∑ i
1

j
1

j
1 sign(y) =

j=i

∑ i
1 sign((N − 1) y) =i

1 sign(y) =i
1 y ∀ii

1

y y =j
1

j
1 1

w =i,j y y i
1

j
1 y1

w =ii 0 W y1

W = y ×1 (y) −1 T I

y ×1 (y)1 T y y =j
1

j
1 1

31 / 51

Storing patterns
If we have patterns to store, the corresponding weight matrix is:

 is the correlation matrix of the patterns.

This does not sound much like learning as before, as we are forming the matrix directly from the data, but
it is a biologically realistic implementation of Hebbian learning.

We only need to iterate once over the training patterns, not multiple epochs.

Learning can be online: the weight matrix is modified when a new pattern has to be remembered:

There is no catastrophic forgetting until we reach the capacity of the network.

P (y ,y , … ,y)1 2 P

W = y ×
P

1

k=1

∑
P

k (y) −k T I

 y ×
P
1 ∑k=1

P k (y)k T

yk

W = W + y ×k (y) −k T I

C = 0.14N

32 / 51

Hopfield networks
Given patterns to store, build the weight matrix:

The energy of the Hopfield network for a new pattern is (implicitly):

i.e. a quadratic function of the dot product between the current pattern and the stored patterns .

The stored patterns are local minima of this energy function, which can be retrieved from any pattern
by iteratively applying the asynchronous update:

P (y ,y , … ,y)1 2 P

W = y ×
P

1

k=1

∑
P

k (y) −k T I

y

E(y) = − y × (y × (y) − I) × y − b × y
2
1 T

P

1

k=1

∑
P

k k T T

= − ((y) × y) − (y + b) × y
2P
1

k=1

∑
P

k T 2

2
1 T T

y yk

y

y = sign(W × y + b)

33 / 51

Spurious patterns
The problem when the capacity of the network is full is that
the stored patterns will start to overlap.

The retrieved patterns will be a linear combination of the
stored patterns, what is called a spurious pattern or
metastable state.

A spurious pattern has never seen by the network, but is
remembered like other memories (hallucinations).

Unlearning methods (Hopfield, Feinstein and Palmer, 1983) use a sleep / wake cycle:

When the network is awake, it remembers patterns.

When the network sleeps (dreams), it unlearns spurious patterns.

y = ± sign(α y +1
1 α y +2

2 ⋯ + α y)P
P

Hopfield et al. () Unlearning has a stabilizing effect in collective memories. Nature 304:158–159.1983 34 / 51

Applications of Hopfield networks
Optimization:

Traveling salesman problem

Timetable scheduling

Routing in communication networks

Physics:

Spin glasses (magnetism)

Computer Vision:

Image reconstruction and restoration

Neuroscience:

Models of the hippocampus, episodic memory

http://fuzzy.cs.ovgu.de/ci/nn/v07_hopfield_en.pdf

35 / 51

http://fuzzy.cs.ovgu.de/ci/nn/v07_hopfield_en.pdf

Pattern completion

Hop�eld NetworksHop�eld Networks
ShareShare

https://www.youtube.com/watch?v=HOxSKBxUVpg 36 / 51

https://www.youtube.com/watch?v=HOxSKBxUVpg
https://www.youtube.com/watch?v=HOxSKBxUVpg

Pattern completion

Image recognition with Hop�eld netImage recognition with Hop�eld net
ShareShare

https://www.youtube.com/watch?v=fCvQcNzUZf0 37 / 51

https://www.youtube.com/watch?v=fCvQcNzUZf0
https://www.youtube.com/watch?v=fCvQcNzUZf0

3 - Modern Hopfield networks / Dense Associative Memories

38 / 51

Problem with old-school Hopfield networks
The problems with Hopfield networks are:

Their limited capacity .

Ghost patterns (reversed images).

Spurious patterns (bad separation of patterns).

Retrieval is not error-free.

In this example, the masked Homer is closer to the Bart pattern in the energy function, so it converges to
its ghost pattern.

0.14N

Source: https://ml-jku.github.io/hopfield-layers/ 39 / 51

https://ml-jku.github.io/hopfield-layers/

Problem with old-school Hopfield networks
The problem comes mainly from the fact the energy function is a quadratic function of the dot product
between a state and the patterns :

 has minimum when .

Quadratic functions are very wide, so it is hard to avoid overlap between the patterns.

If we had a sharper energy functions, could not we store more patterns and avoid interference?

y yk

E(y) ≈ − ((y) ×
2P
1

k=1

∑
P

k T y)2

−((y) ×k T y)2 y = yk

40 / 51

Modern Hopfield networks
Yes. We could define the energy function as a polynomial function of order (Krotov and Hopfield,
2016):

and get a polynomial capacity .

Or even an exponential function (Demircigil et al., 2017):

and get an exponential capacity ! One could store exponentially more patterns than neurons.

The question is then: which update rule would minimize these energies?

a > 2

E(y) = − ((y) ×
P

1

k=1

∑
P

k T y)a

C ≈ α Na
a−1

a = ∞

E(y) = − exp((y) ×
P

1

k=1

∑
P

k T y)

C ≈ 2 2
N

Krotov and Hopfield () and Demircigil et al. ()2016 2017 41 / 51

Modern Hopfield networks
Krotov and Hopfield () and Demircigil et al. () show that the binary units can still be updated
asynchronously by comparing the energy of the model with the unit on or off:

If the energy is lower with the unit on than with the unit off, turn it on! Otherwise turn it off.

Note that computing the energy necessitates to iterate over all patterns, so in practice you should keep
the number of patterns small:

However, you are not bounded by anymore, just by the available computational power and RAM.

2016 2017 y i

y =i sign(−E(y =i +1) + E(y =i −1))

E(y) = − exp((y) ×
P

1

k=1

∑
P

k T y)

0.14N

42 / 51

Modern Hopfield networks
The increased capacity of the modern Hopfield network makes sure that you store many patterns without
interference (separability of patterns).

Convergence occurs in only one step (one update per neuron).

Source: https://ml-jku.github.io/hopfield-layers/

43 / 51

https://ml-jku.github.io/hopfield-layers/

4 - Hopfield networks is all you need

Ramsauer et al. () Hopfield Networks is All You Need. arXiv:2008022172020 44 / 51

Hopfield networks is all you need
Ramsauer et al. () extend the principle to continuous patterns, i.e. vectors.

Let’s put our patterns in a matrix:

We can define the following energy function for a vector :

where:

is the log-sum-exp function and is the maximum norm of the patterns.

The first term is similar to the energy of a modern Hopfield network.

2020

P (y ,y , … ,y)1 2 P N × P

X = [y ,y , … ,y1 2 P]

y

E(y) = −lse(β,X y) +T
 y y +

2
1 T β logP +−1

 M
2
1

lse(β, z) = β log(expβz)−1

i=1

∑
P

i

M

Ramsauer et al. () Hopfield Networks is All You Need. arXiv:2008022172020 45 / 51

Hopfield networks is all you need
The update rule that minimizes the energy

is:

Why? Just read the 100 pages of mathematical proof.

Take home message: these are just matrix-vector multiplications and a softmax. We can do that!

E(y) = −lse(β,X y) +T
 y y +

2
1 T β logP +−1

 M
2
1

y = softmax(β yX)XT T

= softmax ()

= softmax ()

Source: https://ml-jku.github.io/hopfield-layers/

46 / 51

https://ml-jku.github.io/hopfield-layers/

Hopfield networks is all you need
Continuous Hopfield networks can retrieve precisely continous vectors with an exponential capacity.

Source: https://ml-jku.github.io/hopfield-layers/

47 / 51

https://ml-jku.github.io/hopfield-layers/

Hopfield networks is all you need
The sharpness of the attractors is controlled by the temperature
parameter .

You decide whether you want single patterns or meta-stable states,
i.e. combinations of similar patterns.

Why would we want that? Because it is the principle of self-attention.

Which other words in the sentence are related to the current word?

β

Source: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Source: https://ml-jku.github.io/hopfield-
layers/

48 / 51

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html
https://ml-jku.github.io/hopfield-layers/

Hopfield networks is all you need
Using the representation of a word , as well as the rest of the
sentence , we can retrieve a new representation that
is a mixture of all words in the sentence.

This makes the representation of a word more context-related.

The representations and can be learned using weight
matrices, so backpropagation can be used.

This was the key insight of the transformer network that has
replaced attentional RNNs in NLP.

Hopfield layers can replace the transformer self-attention with
a better performance.

The transformer network was introduced with the title
“Attention is all you need”, hence the title of this paper…

The authors claim that a Hopfield layer can also replace fully-
connected layers, LSTM layers, attentional layers, but also
SVM, KNN or LVQ…

y
X ynew

y =new softmax(β yX)XT T

y X

Source: https://ml-jku.github.io/hopfield-layers/

49 / 51

https://ml-jku.github.io/hopfield-layers/

Additional readings
Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational
properties. Proc. Nat. Acad. Sci. (USA) 79, 2554-2558.

A video from Geoffrey Hinton himself:

John J. Hopfield (2007), Scholarpedia, 2(5):1977.

Chris Eliasmith (2007), Scholarpedia, 2(10):1380.

Slides from Davide Bacciu (Pisa)

https://www.youtube.com/watch?v=Rs1XMS8NqB4

http://www.scholarpedia.org/article/Hopfield_network

http://www.scholarpedia.org/article/Attractor_network

http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-
engineering/computational-neuroscience/2-hopfield-hand.pdf

50 / 51

https://www.youtube.com/watch?v=Rs1XMS8NqB4
http://www.scholarpedia.org/article/Hopfield_network
http://www.scholarpedia.org/article/Attractor_network
http://didawiki.di.unipi.it/lib/exe/fetch.php/bionics-engineering/computational-neuroscience/2-hopfield-hand.pdf

References
Demircigil, M., Heusel, J., Löwe, M., Upgang, S., and Vermet, F. (2017). On a model of associative memory with huge

storage capacity. J Stat Phys 168, 288–299. doi: .

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. PNAS
79, 2554–2558. doi: .

Hopfield, J. J., Feinstein, D. I., and Palmer, R. G. (1983). “Unlearning” has a stabilizing effect in collective memories.
Nature 304, 158–159. doi: .

Krotov, D., and Hopfield, J. J. (2016). Dense Associative Memory for Pattern Recognition.
.

McEliece, R., Posner, E., Rodemich, E., and Venkatesh, S. (1987). The capacity of the Hopfield associative memory.
IEEE Transactions on Information Theory 33, 461–482. doi: .

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T., et al. (2020). Hopfield Networks is All You Need.
.

10.1007/s10955-017-1806-y

10.1073/pnas.79.8.2554

10.1038/304158a0

http://arxiv.org/abs/1606.01164

10.1109/TIT.1987.1057328

http://arxiv.org/abs/2008.02217

51 / 51

https://doi.org/10.1007/s10955-017-1806-y
https://doi.org/10.1073/pnas.79.8.2554
https://doi.org/10.1038/304158a0
http://arxiv.org/abs/1606.01164
https://doi.org/10.1109/TIT.1987.1057328
http://arxiv.org/abs/2008.02217

