
Neurocomputing
Generative Adversarial Networks

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1
/
39

1 - Generative adversarial network

2
/
39

Generative models
An autoencoder learns to first encode inputs in a latent space and then use a generative model to model
the data distribution.

Couldn’t we learn a decoder using random noise as input but still learning the distribution of the data?

After all, this is how random numbers are generated: a uniform distribution of pseudo-random numbers is
transformed into samples of another distribution using a mathematical formula.

Source:

L ​(θ,ϕ) =autoencoder E ​[− log p ​(z)]x∈D,z∼q ​(z∣x)ϕ θ

L ​(θ,ϕ) =GAN E ​[− log p ​(z)]z∼N (0,1) θ

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

3
/
39

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

Generative models
The problem is how to estimate the discrepancy between the true distribution and the generated
distribution when we only have samples.

The Maximum Mean Discrepancy (MMD) approach allows to do that, but does not work very well in
highly-dimensional spaces.

Source: https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

4
/
39

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

Generative adversarial network
The Generative Adversarial Network (GAN, Goodfellow at al., 2014) is a smart way of providing a loss
function to the generative model. It is composed of two parts:

The Generator (or decoder) produces an image based on latent variables sampled from some
random distribution (e.g. uniform or normal).

The Discriminator has to recognize real images from generated ones.

Source: https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f

Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y. 2014. Generative Adversarial Networks. arXiv:14062661 5
/
39

https://medium.com/@devnag/generative-adversarial-networks-gans-in-50-lines-of-code-pytorch-e81b79659e3f

Generative adversarial network
The generator only sees noisy latent representations and outputs a reconstruction.

The discriminator gets alternatively real or generated inputs and predicts whether it is real or fake.

Source: https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

6
/
39

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

The discriminator should be able to recognize false bills from true
ones

Source: https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

7
/
39

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

The generator should be able to generate realistic bills

Source: https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

8
/
39

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

The generator is initially very bad…

Source: https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

9
/
39

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

… but the discriminator too!

Source: https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

10
/
39

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

After a while, the discriminator gets better…

Source: https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

11
/
39

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

So the generator also has to improve

Source: https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

12
/
39

https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

Generative adversarial network
The generator and the discriminator are in competition with each other.

The discriminator uses pure supervised learning: we know if the input is real or generated (binary
classification) and train the discriminator accordingly.

The generator tries to fool the discriminator, without ever seeing the data!

Source: https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

13
/
39

https://towardsdatascience.com/understanding-generative-adversarial-networks-gans-cd6e4651a29

Loss of the discriminator
Let’s define as a real image from the dataset
and as an image generated by the generator, where

 is a random input.

The output of the discriminator is a single sigmoid neuron:

 for real images.

 for generated images

We want both and to be close from 1.

The goal of the discriminator is to minimize the negative log-likelihood (binary cross-entropy) of
classifying correctly the data:

It is similar to logistic regression: belongs to the positive class, to the negative class.

x ∼ P ​(x)data

G(z)
z ∼ P ​(z)z

D(x) = 1

D(G(z)) = 0

D(x) 1 − D(G(z))

L(D) = E ​[− logD(x)] +x∼P ​(x)data E ​[− log(1 −z∼P ​(z)z
D(G(z)))]

x G(z)

L(w, b) = − ​[t ​ log y ​ +
i=1

∑
N

i i (1 − t ​) log(1 −i y ​)]i

14
/
39

Loss of the generator
The goal of the generator is to maximize the negative log-likelihood of the discriminator being correct on
the generated images, i.e. fool it:

The generator tries to maximize what the discriminator tries to minimize.

J (G) = E ​[− log(1 −z∼P ​(z)z
D(G(z)))]

Source: https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-
4bbf-83f1-e988fbe3b226.xhtml

15
/
39

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

GAN loss
Putting both objectives together, we obtain the following minimax problem:

 and compete on the same objective function: one tries to maximize it, the other to minimize it.

Note that the generator never sees the data : all it gets is a backpropagated gradient through the
discriminator:

It informs the generator which pixels are the most responsible for an eventual bad decision of the
discriminator.

Source:

​ ​ V(D,G) =
G

min
D

max E ​[logD(x)] +x∼P ​(x)data
E ​[log(1 −z∼P ​(z)z

D(G(z)))]

D G

G x

∇ ​ V(D,G) =G(z) ∇ ​ V(D,G) ×D(G(z)) ∇ ​ D(G(z))G(z)

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

16
/
39

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

GAN loss
This objective function can be optimized when the generator uses gradient descent and the discriminator
gradient ascent: just apply a minus sign on the weight updates!

Both can therefore use the usual backpropagation algorithm to adapt their parameters.

The discriminator and the generator should reach a Nash equilibrium: they try to beat each other, but both
become better over time.

Source:

​ ​V (D,G) =
G

min
D

max E ​[logD(x)] +x∼P ​(x)data
E ​[log(1 −z∼P ​(z)z

D(G(z)))]

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

17
/
39

https://www.oreilly.com/library/view/java-deep-learning/9781788997454/60579068-af4b-4bbf-83f1-e988fbe3b226.xhtml

Generative adversarial network
The loss functions reach an equilibrium, it is quite hard to tell when the network has converged.

Research project - Vivek Bakul Maru - TU Chemnitz

18
/
39

DCGAN : Deep convolutional GAN
DCGAN is the convolutional version of GAN, using transposed convolutions in the generator and
concolutions with stride in the discriminator.

Radford, Metz and Chintala (2015). Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arxiv:1511.06434 19
/
39

Generative adversarial networks

GAN are quite sensible to train: the discriminator should not become too good too early, otherwise there
is no usable gradient for the generator.

In practice, one updates the generator more often than the discriminator.

There has been many improvements on GANs to stabilizes training:

Wasserstein GAN (relying on the Wasserstein distance instead of the log-likelihood).

f-GAN (relying on any f-divergence).

But the generator often collapses, i.e. outputs always the same image regarless the input noise.

Hyperparameter tuning is very difficult.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen (2016). Improved techniques for training GANs. In
Advances in Neural Information Processing Systems.

Source: Brundage M, Avin S, Clark J, et al. (2018). The Malicious Use of Artificial Intelligence: Forecasting, Prevention, and Mitigation. arXiv:180207228

References

20
/
39

StyleGAN2
StyleGAN2 from NVIDIA is one of the most realistic GAN variant. Check its generated faces at:

https://thispersondoesnotexist.com/

Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T. (2020). Analyzing and Improving the Image Quality of StyleGAN. arXiv:191204958 21
/
39

https://thispersondoesnotexist.com/

2 - Conditional GANs

22
/
39

Conditional GAN (cGAN)
The generator can also get additional deterministic
information to the latent space, not only the
random vector .

One can for example provide the label (class) in the
context of supervised learning, allowing to generate
many new examples of each class: data
augmentation.

One could also provide the output of a pre-trained
CNN (ResNet) to condition on images.

z

Mirza and Osindero (2014). Conditional Generative Adversarial Nets. arXiv:1411.1784 23
/
39

cGAN: text-to-image synthesis

Source: Reed et al. (2016). Generative Adversarial Text to Image Synthesis. arXiv:1605.05396 24
/
39

pix2pix: image-to-image translation
cGAN can be extended to have an autoencoder-like architecture, allowing to generate images from
images.

pix2pix is trained on pairs of similar images in different domains. The conversion from one domain to
another is easy in one direction, but we want to learn the opposite.

Isola P, Zhu J-Y, Zhou T, Efros AA. 2018. Image-to-Image Translation with Conditional Adversarial Networks. arXiv:161107004. https://phillipi.github.io/pix2pix/ 25
/
39

https://phillipi.github.io/pix2pix/

pix2pix: image-to-image translation
The goal of the generator is to convert for example a black-and-white image into a
colorized one.

It is a deep convolutional autoencoder, with convolutions with strides and
transposed convolutions (SegNet-like).

Source: https://affinelayer.com/pix2pix/

26
/
39

https://affinelayer.com/pix2pix/

pix2pix: image-to-image translation
In practice, it has a U-Net architecture with skip connections to generate fine
details.

Source: https://affinelayer.com/pix2pix/

27
/
39

https://affinelayer.com/pix2pix/

pix2pix: image-to-image translation
The discriminator takes a pair of images as input: input/target
or input/generated.

It does not output a single value real/fake, but a 30x30
“image” telling how real or fake is the corresponding patch of
the unknown image.

Patches correspond to overlapping 70x70 regions of the
256x256 input image.

This type of discriminator is called a PatchGAN.

Source: https://affinelayer.com/pix2pix/

28
/
39

https://affinelayer.com/pix2pix/

pix2pix: image-to-image translation
The discriminator is trained like in a regular GAN by alternating input/target or input/generated pairs.

Source: https://affinelayer.com/pix2pix/

29
/
39

https://affinelayer.com/pix2pix/

pix2pix: image-to-image translation
The generator is trained by maximizing the GAN loss (using gradients backpropagated through the
discriminator) but also by minimizing the L1 distance between the generated image and the target
(supervised learning).

Source:

​ ​V (D,G) =
G

min
D

max V ​(D,G) +GAN λE ​[∣T −D G∣]

https://affinelayer.com/pix2pix/

30
/
39

https://affinelayer.com/pix2pix/

CycleGAN : Neural Style Transfer
The drawback of pix2pix is that you need
paired examples of each domain, which is
sometimes difficult to obtain.

In style transfer, we are interested in
converting images using unpaired datasets,
for example realistic photographies and
paintings.

CycleGAN is a GAN architecture for neural
style transfer.

Source: https://hardikbansal.github.io/CycleGANBlog/

Zhu J-Y, Park T, Isola P, Efros AA. 2020. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv:170310593 31
/
39

https://hardikbansal.github.io/CycleGANBlog/

CycleGAN : Neural Style Transfer
Let’s suppose that we want to transform domain A
(horses) into domain B (zebras) or the other way
around.

The problem is that the two datasets are not paired,
so we cannot provide targets to pix2pix (supervised
learning).

If we just select any zebra target for a horse input,
pix2pix would learn to generate zebras that do not
correspond to the input horse (the shape may be
lost).

How about we train a second GAN to generate the
target?

Zhu J-Y, Park T, Isola P, Efros AA. 2020. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv:170310593 32
/
39

CycleGAN : Neural Style Transfer

Source: https://towardsdatascience.com/gender-swap-and-cyclegan-in-tensorflow-2-0-359fe74ab7ff

33
/
39

https://towardsdatascience.com/gender-swap-and-cyclegan-in-tensorflow-2-0-359fe74ab7ff

CycleGAN : Neural Style Transfer

Source: https://towardsdatascience.com/gender-swap-and-cyclegan-in-tensorflow-2-0-359fe74ab7ff

34
/
39

https://towardsdatascience.com/gender-swap-and-cyclegan-in-tensorflow-2-0-359fe74ab7ff

CycleGAN : Neural Style Transfer
Cycle A2B2A

The A2B generator generates a sample of B from an
image of A.

The B discriminator allows to train A2B using real
images of B.

The B2A generator generates a sample of A from the
output of A2B, which can be used to minimize the L1-
reconstruction loss (shape-preserving).

Cycle B2A2B

In the B2A2B cycle, the domains are reversed, what
allows to train the A discriminator.

This cycle is repeated throughout training, allowing to
train both GANS concurrently.

Source: https://towardsdatascience.com/gender-swap-and-
cyclegan-in-tensorflow-2-0-359fe74ab7ff

35
/
39

https://towardsdatascience.com/gender-swap-and-cyclegan-in-tensorflow-2-0-359fe74ab7ff

CycleGAN : Neural Style Transfer

Source: https://github.com/junyanz/CycleGAN

36
/
39

https://github.com/junyanz/CycleGAN

CycleGAN : Neural Style Transfer

Source: https://github.com/junyanz/CycleGAN

37
/
39

https://github.com/junyanz/CycleGAN

CycleGAN : Neural Style Transfer

Source: https://github.com/junyanz/CycleGAN

38
/
39

https://github.com/junyanz/CycleGAN

Neural Doodle

Neural Doodles: Workflow Mockups for the Next Generation of ArtistsNeural Doodles: Workflow Mockups for the Next Generation of Artists
ShareShare

https://github.com/alexjc/neural-doodle 39
/
39

https://www.youtube.com/watch?v=fu2fzx4w3mI
https://github.com/alexjc/neural-doodle

