REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Neurocomputing

Reservoir computing

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/54

Reservoir computing

e The concept of Reservoir Computing (RC) was developed simultaneously by two researchers at the
beginning of the 2000s.

o Herbert Jaeger (Bremen) introduced echo-state networks (ESN) using rate-coded neurons (Jaeger,
2001).

o Wolfgang Maass (TU Graz) introduced liquid state machines (LSM) using spiking neurons (Maass et al.,
2002).

— T

Input layer Reservoir Readout layer

2 /54

What is wrong with RNNs and LSTMs?

E Aj A | A A A
e The recurrent networks from ML (LSTM, GRU) are very powerful thanks to the backpropagation through
time (BPTT) algorithm.

 However, they suffer from several problems:

= Long training times (multiple BP operations per step -> we have to limit the horizon)

= Vanishing gradients -> not-so-long-term dependencies

= Need for precisely sampled inputs (no sparse data)

= Robustness to noise and outliers.

Source: https://colah.github.io/posts/2015-08-Understanding-LSTMs/

3/54

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

1 - Echo-state networks

Echo-state networks

e An ESN is a set of recurrent units (sparsely e Rate-coded neurons in the reservoir integrate
connected) exhibiting complex spatiotemporal inputs and recurrent connections using an ODE:
dynamics. dx (1)

X
T+ x(t) = W X I(t) + W x r(t)

g e The output of a neuron typically uses the tanh
function (between -1 and 1):

r(t) = tanh x(t)

e Readout neurons (or output neurons) transform linearly the activity in the reservoir:

z(t) = WOUL x r(t)

e In the classical version of the ESN, only the readout weights are learned, not the recurrent ones.

e One can use supervised learning to train the readout neurons to reproduce desired targets.

Tanaka et al. (2019) Recent advances in physical reservoir computing: A review. Neural Networks 115, 100-123.

5/54

Echo-state networks

e |Inputs I(t) bring the recurrent units in a given state or trajectory.

o The recurrent connections inside the reservoir create different dynamics r(t) depending on the strength
of the weight matrix.

o Readout neurons linearly transform the recurrent dynamics into temporal outputs z(t).

o Supervised learning (delta learning rule, OLS) trains the readout weights to reproduce a target t(t).

e Itis similar to a MLP with one hidden layer, but the hidden layer has dynamics.

Reservoir Readout

6 /54

Scaling factor

e Reservoirs only need a few hundreds of units in the reservoir to learn complex functions (e.g. N = 200).

e The recurrent weights are initialized randomly using a normal distribution with mean 0 and deviation N

g

wij ~ N (0, \%)

e g is a scaling factor characterizing the strength of the recurrent connections, what leads to different

dynamics.

e g is linked to the spectral radius of the recurrent weight matrix (highest eigenvalue).

e The recurrent weight matrix is often sparse:

= A subset of the possible connections N X IN has non-zero weights.

= Typically, only 10% of the possible connections are created.

e Depending on the va

e Let's have alook att

ne activity of a few neurons after the presentation of a short input.

ue of g, the dynamics of the reservoir can exhibit different stable or cyclic attractors.

7154

Echo-state networks

« When g < 1, the network has no dynamics: the activity quickly fades to 0 when the input is removed.

g=0.5
1.00

0.75
0.50
0.25
0.00

—0.25

firing rate r

—0.50

—0.75

—1.00

0 1000 2000 3000 4000 5000
time (ms)

8 /54

Echo-state networks

e For g = 1, the reservoir exhibits some transcient dynamics but eventually fades to 0 (echo-state
property).

1.00
0.75
0.50
0.25

0.00

firing rate r

—0.25

—0.50

—0.75

—1.00

0 1000 2000 3000 4000 5000
time (ms)

9/54

Echo-state networks

e Forl < g < 1.5, the reservoir can exhibit many stable attractors due to its rich dynamics.

g=1.5

A'N

0 1000 2000 3000 4000 5000
time (ms)

1.00

0.75

0.50

0.25

0.00

firing rate r

—0.25

—0.50

—0.75

—1.00

10/54

Echo-state networks

e For higher values of g, there are no stable attractors anymore: chaotic behavior.

1.00
0.75
0.50
0.25

0.00

firing rate r

—0.25

—0.50

—0.75

—1.00

0 1000 2000 3000 4000 5000
time (ms)

Representational power at the edge of chaos

e For g = 1.5, different inputs (initial states) lead to different attractors.

Input A Input B
1.00 1.00
0.75 0.75 ‘
0.50 0.50 r
. 0.25 . 0.25 .' .
QL QL
© ™ ‘
= 0.00 =~ 0.00 ‘
o o |
£ £ |
= = -
= —0.25 = —0.25 '
~0.50 ~0.50
~0.75 ~0.75
~1.00 ~1.00
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

time (ms) time (ms)

12/54

Apparition of stable attractors

e The weight matrix must have a scaling factor above 1 to exhibit non-zero attractors.

Norm of the population vector after 5 seconds

16

14

1(5000)]|>
Q0

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
g

13 /54

Stable attractors at the edge of chaos

e For a single input, the attractor is always the same, even in the presence of noise or perturbations.

First trial - g=1.5 Second trial - g=1.5

1.00 1.00

0.75 0.75

0.50 0.50

. 0.25 . 0.25
v V
© ©

~ 0.00 ~ 0.00
=) o
= =
= =

= -0.25 = -0.25

—0.50 —0.50

—0.75 —0.75

—1.00 —1.00

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

time (ms) time (ms)

14 /54

Chaotic behavior for high values of g

e In the chaotic regime, the slightest uncertainty on the initial conditions (or the presence of noise)
produces very different trajectories on the long-term.

First trial - g=1.7

Edge of chaos

e The chaotic regime appears for g > 1.5.

e g — 1.9 isthe edge of chaos: the dynamics are very rich, but the network is not chaotic yet.

Difference of the population vectors after 5 seconds between two runs
1.4

Final divergence

" 0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
g

16 /54

Lorenz attractor

e The Lorenz attractor is a famous example of a chaotic attractor.

e The position x, y, z of a particle is describe by a set of 3 deterministic ordinary differential equations:

.Lorenz Attractor simulation dx _ ()

py —0o\Yy—x

dy
= — 2 —

Cit; <Z/)) Z/
dz
— Zl: —— ;Z
o y—pP

e The resulting trajectories over time have complex dynamics and are chaotic: the slightest change in the
initial conditions generates different trajectories.

https://www.youtube.com/watch?v=dP3qAq9RNLg

17 /54

https://www.youtube.com/watch?v=dP3qAq9RNLg
https://www.youtube.com/watch?v=dP3qAq9RNLg

Training the readout neurons

%)
un

n
o

-~
un

neuron
H
[}
(]

=
fd
L

150

175

0 500 1000 1500 2000 2500
Time (ms)

= target
1.0 prediction pmwa—_wn

0.8

Output

0.4

0.2

0_0 . AT T A e T A e W A L TAVWAT TTa™ _WaAWHE - - . ™A Y

0 500 1000 1500 2000 2500 3000
Time (ms)

e Using the reservoir as input, the linear readout
neurons can be trained to reproduce any non-linear
target signal over time:

z(t) = WO x r(t)

e The batch ordinary least squares (OLS) regression

algorithm using the matrix R of recorded
activations is often used:

WOUT —(RT xR) ' xR xT

reg = sklearn.linear_model.LinearRegression()
reg.fit(r, t)

e Reservoirs are universal approximators:

Given enough neurons in the reservoir and dynamics at the edge of the chaos, a RC network can
approximate any non-linear function between an input signal I(¢) and a target signal t(¢).

18 /54

Pattern separation

e The reservoir projects a low-dimensional input into a high-dimensional spatio-temporal feature space
where trajectories becomes linearly separable.

e The reservoir increases the distance between the input patterns.

e Input patterns are separated in both space (neurons) and time: the readout neurons need much less
weights than the equivalent MLP: better generalization and faster learning.

e The only drawback is that it does not deal very well with high-dimensional inputs (images).

Seoane (2019) Evolutionary aspects of reservoir computing. Philosophical Transactions of the Royal Society B.

19/54

Applications of Reservoir Computing

See Zhang and Vargas (2023).

20 /54

Applications of Reservoir Computing

e Forecasting: ESN are able to predict the future of chaotic systems (stock market, weather) much better
than static NN.

Price ($)

700 4

600 -

500 -

400 -

300 -

Data

Ground Truth and Echo State Network Output

—— Free Running ESN

1000

1100 1200 1300 1400

Time (Days)

https://towardsdatascience.com/predicting-stock-prices-with-echo-state-networks-f910809d23d4

1500

1600

21/54

https://towardsdatascience.com/predicting-stock-prices-with-echo-state-networks-f910809d23d4

Applications of Reservoir Computing

e Physics: RC networks can be used to predict the evolution of chaotic systems (Lorenz, Mackey-Glass,
Kuramoto-Sivashinsky) at very long time scales (8 times the Lyapunov time).

Pathak et al. (2018) Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters 120, 024102-024102.

22/ 54

Applications of Reservoir Computing

e NLP: RC networks can grasp the dynamics of language, i.e. its grammar.

e RC networks can be trained to produce predicates (“hit(Mary, John)”) from sentences (“Mary hit John” or
“John was hit by Mary")

A John
hit
Mary
Semantic words
Memory stack
| Sentence: :
: Johnwas hit by Mary |
| SW1 SW2 SW3 | the
to \.
Grammatical words by > :_I_ﬂ;;l;lr:gl_ —————— :
| . |
hit (M Joh
was 'L_’_E_a_rjf_(i_n’_—_)_J
_________ A |
- -1
""""""" Je[!
Fixed connections "'---*u_' Mary | e Meaning: P (A, O, R)
—> Connection Reservoir ™. ™[J I % =
BA 47 '
Learnable connections SW () A R I/ A: Agent
--------> Low or no activity Read t_ - O: Object
----> High activity (Sﬁ?atﬁg"n) R: Recipient

Hinaut and Dominey (2013) Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal System. PLOS ONE 8, €52946.

23 /54

Application of Reservoir Computing

X iCub understands complex sentence structure with Reservoir Computing

Guitar

T

https://youtu.be/AUbJAupkU4M

qurtar.”

https://www.youtube.com/watch?v=AUbJAupkU4M
https://youtu.be/AUbJAupkU4M

Physical Reservoir Computing

The cool thing with reservoirs is that they do not
have to be simulated by classical von Neumann
architectures (CPU, GPU).

Anything able to exhibit dynamics at the edge of
chaos can be used:

= VLSI (memristors), magnetronics, photonics
(lasers), spintronics (nanoscale electronics)...

This can limit drastically the energy consumption
of ML algorithms (200W for a GPU).

Even biological or physical systems can be used...

Tanaka et al. (2019) Recent Advances in Physical Reservoir Computing: A Review. arXiv:1808.04962

(a)

Memristor-based reservoir

Input voltage signal

WVAVAVAVAVAVLS

(b)

-

Qutput current signals

= -_ .‘ ‘I ; N -_I.) o L . a A 1 el 5
| 1 — A LRl g ot
=t - r—‘-.l-.;f'.-"..

25/54

Pattern recognition in a bucket

e A bucket of water can be used as a reservoir.

e Different motors provide inputs to the reservoir by creating
weights.

e The surface of the bucket is recorded and used as an input to
a linear algorithm.

e It can learn non-linear operations (XOR) or even speech
recognition.

s
i}
38
|
|
|
|
]
L]
JuN
|

Fernando and Sojakka (2003) Pattern Recognition in a Bucket. in Advances in Artificial Life Lecture Notes in Computer Science.

26 / 54

RC with a in-silico culture of biological neurons

e Real biological neurons can be kept alive in a culture and stimulated /recorded to implement a reservoir.

Top layer
stimulation

)
1%

Bottom layer

stimulation
Assembly of micro-beads Construction of Multilayered assembly Recording/stimulation
and neurons on porous multilayerd structure on MEA configuration

membrane

Frega et al. (2014) Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Scientific Reports 4, 1-14.

27 /54

RC in cultures of E.Coli bacteria

NaOH

HCI

B

COLD

00

10

HOT

01

14

\

Sample E.Coli from Flask

£

NN

Output Classification

Microarray

NN NN AN AN

time ~ 1.5h

i

Class 1 ~

s

Class 2

e Escherichia Coli bacteria change their mRNA in response to
various external factors (temperature, chemical products, etc)
and interact with each other.

e Their mRNA encode a dynamical trajectory reflecting the
Inputs.

e By placing them on a microarray, one can linearly learn to
perform non-linear operations on the inputs.

Jones et al. (2007) Is there a Liquid State Machine in the Bacterium Escherichia Coli? in 2007 IEEE Symposium on Artificial Life, 187-191.

2 - FORCE learning

Cell Neuron

PRESS

Generating Coherent Patterns of Activity
from Chaotic Neural Networks

David Sussillo'* and L.F. Abbott':*

Department of Neuroscience, Department of Physiology and Cellular Biophysics, Columbia University College of Physicians and Surgeons,
New York, NY 10032-2695, USA

*Correspondence: sussillo@neurotheory.columbia.edu (D.S.), Ifa2103@columbia.edu (L.F.A.)

DOI 10.1016/j.neuron.2009.07.018

Sussillo and Abbott (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544-557.

29 /54

Feedback connections

e The output of the readout neurons can be fed back into the reservoir to
stabilize the trajectories:

e This makes the reservoir much more robust to perturbations, especially
at the edge of chaos.

e The trajectories are more stable (but still highly dynamical), making the
job of the readout neurons easier.

o Using feedback, there is even no need for an input I (). The target value

t(t) just needs to be used by the readout layer which should learn to
minimize the difference.

e Areservoir with feedback can perform autoregression, for example time
series prediction.

Sussillo and Abbott (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544-557.

30 /54

Online learning is not possible with simple regression rules

e However, using the feedback makes batch learning impossible, as the evolution of the reservoir’s activity
depends on the readout:

- d};it) x(t) = W x I(t) + WHEC xx(t) + WP < 2(t)

r(t) = tanh x(t)

z(t) = WOUT x r(t)

o The batch ordinary least squares (OLS) regression algorithm makes the assumption that the samples
over time t are i.i.d, which they clearly aren't.

5

<
o
-

Z
|

t(t) = WOUT < r(t)]]°]

— 43t[

WOl = (RT xR) ' xR xT
e Using the online delta-learning rule (batch size of 1) leads to catastrophic forgetting.

AWOUT = n (t(t) — 2(t)) x r' (t)

31/54

Recursive least squares (RLS)

If we wanted to take the temporal dependencies into account, we would need to apply BPTT to the
recurrent weights: bad.

There exists a version of OLS which is online and allows to perform linear regression incrementally.

The math is complex, so here are some online resources if you are interested: here and there.

Let's say we have already learned from the t — 1 first samples, and get a new sample (z(t), t(t)).

How do we update the weights

The readout weights will be updated online using the error, the input and P:

AWOUT — n(t;: —z;) X P X ry

where P is a running estimate of the inverse information matrix of the input :

P=(R"xR)™

e This implements a form of adaptive learning rate: synapses where the uncertainty on the parameter

estimates is high will learn faster than those which are certain.

Haykin (2002) Adaptive filter theory. Prentice Hall.

32 /54

https://ocw.mit.edu/courses/2-161-signal-processing-continuous-and-discrete-fall-2008/resources/rls/
https://aleksandarhaber.com/introduction-to-kalman-filter-derivation-of-the-recursive-least-squares-method-with-python-codes/

Recursive least squares (RLS)

e In practice, the inverse of the information matrix is updated at each time step ¢ using the formula:

(P xry) x (Pxry)?
1+r] x P xry

AP =

and the weight updates are also normalized:

AWOUT — 1 (tt — Zt)

e Updating P requires n X m operations per step, compared with the n operations needed by the delta
learning rule, but at least it works...

e This is the formula of a single readout neuron (t+ and z; are actually scalars). If you have several output
neurons, you need to update several P matrices...

33 /54

FORCE Learning

o FORCE learning (first-order reduced and controlled error) consists of feeding back the readout into the

reservoir and using RLS.

e FORCE learning allows to stabilize trajectories in the chaotic reservoir and generate complex patterns in

an autoregressive manner.

A B Cc
Spontaneous Activity — = Learning - Post-Learning
l.." ANTANS
A N NI
AR A AKX
I N T NI
600msec ‘W|
Periodic Complicated periodic Extremely noisy target
G Discontinuous target H LOFEHZ attractor

ﬂﬂM

S{JDms

Sussillo and Abbott (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544-557.

34 /54

3 - Taming chaos by learning the recurrent weights

ARTICLES

naure
ncuroscicnce

Robust timing and motor patterns by taming chaos in
recurrent neural networks

Rodrigo Laje!> & Dean V Buonomano!~

The brain’s ability to tell time and produce complex spatiotemporal motor patterns is critical for anticipating the next ring of a
telephone or playing a musical instrument. One class of models proposes that these abilities emerge from dynamically changing
patterns of neural activity generated in recurrent neural networks. However, the relevant dynamic regimes of recurrent networks
are highly sensitive to noise; that is, chaotic. We developed a firing rate model that tells time on the order of seconds and
generates complex spatiotemporal patterns in the presence of high levels of noise. This is achieved through the tuning of the
recurrent connections. The network operates in a dynamic regime that exhibits coexisting chaotic and locally stable trajectories.
These stable patterns function as ‘dynamic attractors’ and provide a feature that is characteristic of biological systems: the
ability to ‘return’ to the pattern being generated in the face of perturbations.

Laje and Buonomano (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nature Neuroscience, 16(7), 925-933. 35/ 54

Taming chaos by learning the recurrent weights

e In classical RC networks, the recurrent weights are
fixed and only the readout weights are trained.

e The reservoir dynamics are fixed by the recurrent
weights, we cannot change them.

e Dynamics can be broken by external perturbations
or high-amplitude noise.

e The edge of chaos is sometimes too close.

e If we could learn the recurrent weights, we could
force the reservoir to have fixed and robust

trajectories, while keeping interesting dynamics.

e However, learning in a chaotic system, even with
BPTT, is very hard.

Sussillo and Abbott (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544-557. doi:10.1016/j.neuron.2009.07.018 36 /54

Taming chaos by learning the recurrent weights

0.2

0.1

0.0

-0.1

0.2

0.1

0.0

-0.1

0.2

0.1

0.0

-0.1

Target
-0.4 -0.2 0.0 0.2 0.4
X
Trained output
—-0.4 -0.2 0.0 0.2 0.4

With perturbation att = 700 ms

X

0.2

=

0.3

0.2

0.1

0.0

-0.1

-0.4 -0.2 0.0
X

0.3

0.2

0.1

0.0

-0.1

0.2

0.4

-0.6 -04 -0.2 0.0
X

0.3

0.2

0.1

0.0

-0.1

0.2

—-0.50 -0.25 0.00
X

0.25

0.50

e A classical network is trained to reproduce

handwriting.

e The two readout neurons produce a sequence of
(z, y) positions for the pen.

e It works quite well when the input is not perturbed.

e |f some perturbation enters the reservoir, the

trajectory is lost.

37 /54

Training the recurrent connections

e We have an output error signal t; — z; at each time step.

« Why can't we just apply backpropagation (through time) on the recurrent weights?

LW, WOUT) = Eq[(t¢ — 2¢)”]

e BPTT is too unstable: the slightest weight change impacts the whole dynamics.

38 /54

FORCE Learning

o With FORCE learning, we have an error term for the
readout weights.

e For the recurrent weights, we would also need an
error term.

e |t can computed by recording the dynamics during
an initialization trial r;y and forcing the recurrent
weights to reproduce these dynamics in the
learning trials:

AW = —n(r; —r;) X P X 1y

e This is equivalent to having a fixed, external
reservoir providing the targets.

e See https://github.com/ReScience-Archives/Vitay-
2016 for a reimplementation.

Sussillo and Abbott (2009) Generating coherent patterns of activity from chaotic neural networks. Neuron, 63(4), 544-557.

39 /54

https://github.com/ReScience-Archives/Vitay-2016

Taming Chaos in RC networks

e This allows to stabilize trajectories in the chaotic reservoir (taming chaos) and generate complex
patterns.

a = |Nput === Qutput === Target
Input

A | i
1

Rec.

@ units

Y 20 | -

i

I

Output
(pre-training)

Output
(post-training)

——
]

Output
(unsuccessful) 0

Time (s)

Laje and Buonomano (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nature Neuroscience, 16(7), 925-933. 40 / 54

Taming Chaos in RC networks

-04 -03 -02 -0.1 0 01 02 03

0.05

-04 -03 -02 -01 0 01 02 03

Laje and Buonomano (2013) Robust timing and motor patterns by taming chaos in recurrent neural networks. Nature Neuroscience, 16(7), 925-933.

41 /54

4 - Biologically plausible reward modulated learning in RC

eLIFE RESEARCH ARTICLE 8 | @

elifesciences.org

Biologically plausible learning in recurrent

neural networks reproduces neural
dynamics observed during cognitive tasks

Thomas Miconi*

The Neurosciences Institute, California, United States

Miconi (2017) Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. eLife 6:620899.

42 /54

Biologically plausible reward modulated learning in RC

Stimulus Delay Stimulus Delay Response
AorB © (200ms) © AorB © (200ms)) (AB/BA: 1
(200ms) (200ms) AA/BB: -1)
(200ms)

Response

Stimulus A 4< W
Stimulus B 4<
e Miconi proposed a realistic model of reward-based learning in a classical reservoir:

dx(t) /N
r— A x(t) = W™ xI(t) + W x r(t)

r(t) = tanh x(t)

e However, there are NO readout neurons: a random neuron of the reservoir is picked as output neuron.

e [ts activity at the end of a trial is used to provide a reward or not.

Miconi (2017) Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. eLife 6:€20899.

43 / 54

Biologically plausible reward modulated learning in RC

» t e Delayed non-match-to-sample (DNMS) task:
Before training: After training:

s t = +1 when the cue is different from the
sample (AB or BA)

» { = —1 otherwise (AA, BB).

e [|tis atask involving working memory: the first item
must be actively remembered in order to produce
the response later.

Stims. A& B

e The response is calculated as the mean activity y
of the output neuron over the last 200 ms.

e The “reward” used is simply the difference between

the desired value (t = +1 or —1) and the
response:

Stims. A & A

o |

Time (ms) Time (ms) r — —‘t — y‘

e The goal is to maximize the sparse reward function, but we know its value only at the end of a trial:
temporal credit assignment.

Miconi (2017) Biologically plausible learning in recurrent neural networks reproduces neural dynamics observed during cognitive tasks. eLife 6:€20899. 44 | 54

Reward-modulated Hebbian learning

o)

W = Fpre,

[
Synaptic change

Biological substance

Neuromodulator
Dopamine
Noradrenaline
Acetylcholine
Serotonin

Neurotransmitter
GABA

Glial factor
D-serine

Retrograde axonal signal
BDMNF

post, g . W)
Third factor Synaptic strength

Information
Reward
Reward prediction error
Novelty
surprise
Prediction error
Backpropagation error

Current Opinion in Neurobiology

 Reward-modulated Hebbian learning changes

weights according to the Hebbian product and the
change in reward intake:

Aw;; =nr;r; (R — R)
R can be a running average of the rewards/returns:

R+ aR+(1-a)R

If more reward than usual is received, the weights
between correlated neurons should be increased.

If less reward than usual is received, the weights
between correlated neurons should be decreased.

This does not work well with sparse rewards (at the
end of a complex sequence).

Kusmierz et al. (2017) Learning with three factors: modulating Hebbian plasticity with errors. Current Opinion in Neurobiology 46, 170-177.

45 /54

Weight perturbation

e A simple alternative to backpropagation would

Perturb and reinforce weights with scalar error:

AW = —n(E' — E)¢ consist of adding a perturbation to some weights:
Wij J' n'_,f.l l
O—D 1O O wi; — Wij +§
Input —» O O @ O — Output

and observing the change of reward intake at the
O 0 Qui} © end of the episode:

AR=R—-R

e If the change is positive (the new network gets higher rewards than before), the weight change is
conserved. Otherwise it is thrown away or reversed.

Aw; :ﬁ(R_R)f

e Weight perturbation is somehow a way to estimate the gradient of the loss function locally:

OR®) AR R-R

6’w7;j Awij wij - § — ’wij

e Core principle of genetic algorithms for NN (e.g. NEAT), but not really biologically realistic...

46 / 54

Node-perturbation

The post-synaptic potential ; depends linearly on the weights w;;:

213]':...—|—’wz',j’l°,,;—|—...

So instead of perturbing the weight, one could perturb the post-synaptic activity x; by adding randomly
some noise to it £; and observing the change in reward:

L %LE]“|‘€]‘

If a higher postsynaptic activity leads to more reward, then weights from correlated pre-synaptic neurons
should be increased:

Awi; =n()_ri&) (R - R)

A trace of the perturbations must be maintained, as learning occurs only at the end of the trial.

Still not biologically plausible: a synapse cannot access and store directly the perturbations, which may
come from other neurons.

Fiete and Seung (2006) Gradient learning in spiking neural networks by dynamic perturbation of conductances. Physical Review Letters 97:048104.

47 | 54

Exploratory Hebbian (E-H) learning

e Miconi's idea was to couple node-perturbation
(Fiete et al. 2006) with Exploratory-Hebbian
learning (Legenstein et al., 2010).

Aw;; =nr; (z; — ;) (R — R)

where x; is a running average of the postsynaptic
activity (a trace of its activity).

e The difference x; — IT; contains information about

the perturbation, but is local to the synapse
(biologically realistic).

e However, the perturbation is canceled by the
relaxation. Need for a non-linearity:

Awij = nr; (z; — %;)° (R~ R)

1.0
0.8
0.6
0.4
0.2
0.0
—0.2

—_— oy

Y

Relaxation effect

Legenstein et al. (2010) A reward-modulated hebbian learning rule can explain experimentally observed network reorganization in a brain control task. Journal of Neuroscience.

200

48 / 54

Miconi's learning rule

Stimulus Delay Stimulus Delay Response
AorB © (200ms) ©» AorB © (200ms) & (AB/BA: 1
(200ms) (200ms) AA/BB: -1)
(200ms)

Response

Stimulus A 4< W
Stimulus B 4<
1. Apply randomly at f=3Hz a perturbation of all the nodes in the reservoir.
Tj —7 Tj -+ gj
2. Maintain a non-linear eligibility trace of the perturbation during the trial.
_ ~\3
€ij = €ij + 1 (T; — Z5)

3. At the end of the trial, train all weights using the eligibility trace and the change in performance:

sz-j — 1) €45 (R — R)

49 / 54

Results : DNMS task

Population QOutput AA -1 Output BA +1
1.00 1.00
175 0.75 1 0.75 A
150 0.50 0.50 4
125 0.25 0.25 4
100 0.00 - 0.00 4
13 —0.25 1 —0.25 A
50 —0.50 A —0.50 A
25 —0.75 - -0.75 1 —— pefore
— after
D _]--DD ! ! I I I ! _I.DG I I I ! I I
0 200 400 600 800 1000 0 200 400 600 800 1000
Output AB +1 Output BB -1
1.00 1.00
0.75 1 0.75 4
0.50 0.50 A
0.25 0.25 A
0.00 0.00
—0.25 A —0.25 A
—0.50 ~ —0.50 A
—0.75 1 —0.75 1
_I.DD ! ! I I I ! _I.DG I I I ! I I
0 200 400 600 800 1000 0 200 400 600 800 1000

50 /54

Results : DNMS task

2 —r e Learning is quite slow (ca 1000 trials), but only
from sparse rewards at the end of the trial.

e The power of the network does not lie in the
readout neurons, but in the dynamics of the
reservoir: trajectories are discovered and stabilized
using RL.

* e The only “imperfection” is that learning is actually
error-driven, not success-driven:

Error

r=—|t -y

10000

Trial #

51/54

Results : controlling a robotic arm

e 16 motor neurons to control the muscles of an arm.
e 2 inputs: left / right.

e Erroris the remaining distance at the end of the trial.

ror

1.4

1.2

2000 4000 6000 8000 10000
Trials

52 /54

Summary of reservoir computing

The vanilla formulation of RC with fixed recurrent weights is very powerful compared to classical RNNs
(according to LLama3):

. Improved long-term dependencies: RC can learn longer-range dependencies than traditional RNNs, which

are limited by their recurrent connections.

. Faster training times: RC typically requires less computation and memory during training compared to

RNNs, making it more efficient for large datasets.

. Better handling of sparse data: RC is better suited for dealing with sparse or irregularly sampled time

series data, as it doesn’t require fixed-size input sequences like traditional RNNSs.

. Improved robustness to noise and outliers: RC has been shown to be more robust to noisy or outlier-filled

data due to its ability to learn from a smaller window of past information.

. Reduced overfitting: RC’s architecture can help prevent overfitting by focusing on local patterns in the

data, rather than trying to capture long-term dependencies that may not be relevant.

. Improved interpretability: The reservoir’s fixed weights and simple recurrent connections make it easier

to understand how the model is processing information, compared to traditional RNNs with complex
weight updates.

. Scalability: RC can be applied to larger datasets and more complex tasks than traditional RNNs, thanks to

its ability to handle sparse data and improved computational efficiency.

Learning the recurrent weights to stabilize the dynamics is much more difficult, and requires
advanced/expensive optimization methods (RLS) or gradient-free approaches such as RL and evolution.

53 /54

References

Fernando, C., and Sojakka, S. (2003). Pattern Recognition in a Bucket. in Advances in Artificial Life Lecture Notes in
Computer Science., eds. W. Banzhaf, J. Ziegler, T. Christaller, P. Dittrich, and J. T. Kim (Berlin, Heidelberg:
Springer), 588-597. doi:10.1007/978-3-540-39432-7_63.

Fiete, I. R., and Seung, H. S. (2006). Gradient Learning in Spiking Neural Networks by Dynamic Perturbation of
Conductances. Phys. Rev. Lett. 97, 048104. doi:10.1103/PhysRevLett.97.048104.

Frega, M., Tedesco, M., Massobrio, P, Pesce, M., and Martinoia, S. (2014). Network dynamics of 3D engineered
neuronal cultures: A new experimental model for in-vitro electrophysiology. Scientific Reports 4, 1-14.
doi:10.1038/srep054809.

Haykin, S. S. (2002). Adaptive filter theory. Prentice Hall.

Hinaut, X., and Dominey, P. F. (2013). Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal
System: A Recurrent Network Simulation Study Using Reservoir Computing. PLOS ONE 8, €52946.
doi:10.1371/journal.pone.0052946.

Jaeger, H. (2001). The "echo state" approach to analysing and training recurrent neural networks. Jacobs Universitat
Bremen http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf.

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a Liquid State Machine in the Bacterium Escherichia
Coli? in 2007 IEEE Symposium on Artificial Life, 187-191. doi:10.1109/ALIFE.2007.367795.

Kusmierz, t., Isomura, T., and Toyoizumi, T. (2017). Learning with three factors: Modulating Hebbian plasticity with
errors. Current Opinion in Neurobiology 46,170—-177. doi:10.1016/j.conb.2017.08.020.

Laje, R., and Buonomano, D. V. (2013). Robust timing and motor patterns by taming chaos in recurrent neural
networks. Nature neuroscience 16,925-33. doi:10.1038/nn.3405.

Legenstein, R., Chase, S. M., Schwartz, A. B., and Maass, W. (2010). A Reward-Modulated Hebbian Learning Rule Can

54 /54

https://doi.org/10.1007/978-3-540-39432-7_63
https://doi.org/10.1103/PhysRevLett.97.048104
https://doi.org/10.1038/srep05489
https://doi.org/10.1371/journal.pone.0052946
http://www.faculty.jacobs-university.de/hjaeger/pubs/EchoStatesTechRep.pdf
https://doi.org/10.1109/ALIFE.2007.367795
https://doi.org/10.1016/j.conb.2017.08.020
https://doi.org/10.1038/nn.3405

