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1 - Spiking neurons
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Biological neurons communicate through spikes
The two important dimensions of the information
exchanged by neurons are:

The instantaneous frequency or firing rate:
number of spikes per second (Hz).

The precise timing of the spikes.

The shape of the spike (amplitude, duration) does
not matter much.

Spikes are binary signals (0 or 1) at precise
moments of time.

Rate-coded neurons only represent the firing rate
of a neuron and ignore spike timing.

Spiking neurons represent explicitly spike timing,
but omit the details of action potentials.
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The leaky integrate-and-fire neuron (Lapicque, 1907)
The leaky integrate-and-fire (LIF) neuron has a
membrane potential  that integrates its input
current :

 is the membrane capacitance,  the leak
conductance and  the resting potential.

In the absence of input current ( ), the
membrane potential is equal to the resting
potential.

When the membrane potential exceeds a threshold , the neuron emits a spike and the membrane
potential is reset to the reset potential  for a fixed refractory period .
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Different spiking neuron models are possible
Izhikevich quadratic Integrate-and-fire.
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Different spiking neuron models are possible
Adaptive exponential IF (AdEx).
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Realistic neuron models can reproduce a variety of dynamics
Biological neurons do not all
respond the same to an input
current.

Some fire regularly.

Some slow down with time.

Some emit bursts of spikes.

Modern spiking neuron models
allow to recreate these dynamics
by changing a few parameters.
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Synaptic transmission
Spiking neurons communicate by increasing the conductance  of the postsynaptic neuron:

Incoming spikes increase the conductance from a
constant  which represents the synaptic
efficiency (or weight):

If there is no spike, the conductance decays back
to zero:

An incoming spike temporarily increases (or
decreases if the weight  is negative) the
membrane potential of the post-synaptic neuron.
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Synaptic transmission
When enough spikes arrive at the post-
synaptic neuron close in time:

either one pre-synaptic fires very
rapidly,

or many different pre-synaptic
neurons fire in close proximity,

this can be enough to bring the post-
synaptic membrane over the threshold, so
that it it turns emits a spike.

This is the basic principle of synaptic
transmission in biological neurons.

Neurons emit spikes, which modify
the membrane potential of other
neurons, which in turn emit spikes,
and so on.
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Populations of spiking neurons
Recurrent networks of spiking neurons exhibit various dynamics. 

They can fire randomly, or tend to fire
synchronously, depending on their inputs and the
strength of the connections.

Liquid State Machines are the spiking equivalent of
echo-state networks.

Source: https://www.pnas.org/content/110/47/19113
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Hebbian learning
Hebbian learning postulates that synapses strengthen based on the correlation between the activity of
the pre- and post-synaptic neurons:

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes place in one or both cells such that A’s efficiency, as one
of the cells firing B, is increased. Donald Hebb, 1949

Source: https://slideplayer.com/slide/11511675/
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STDP: Spike-timing dependent plasticity
Synaptic efficiencies actually evolve depending on the the causation between the neuron’s firing patterns:

If the pre-synaptic neuron fires before the post-synaptic one, the weight is increased (long-term
potentiation). Pre causes Post to fire.

If it fires after, the weight is decreased (long-term depression). Pre does not cause Post to fire.

Bi and Poo ( ) Synaptic modification of correlated activity: Hebb’s postulate revisited. Ann. Rev. Neurosci., 24:139-166.2001 13 / 32



STDP: Spike-timing dependent plasticity
The STDP (spike-timing dependent plasticity)
plasticity rule describes how the weight of a
synapse evolves when the pre-synaptic neuron fires
at  and the post-synaptic one fires at .

STDP can be implemented online using traces.

More complex variants of STDP (triplet STDP) exist,
but this is the main model of synaptic plasticity in
spiking networks.
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2 - Deep convolutional spiking networks
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Deep convolutional spiking networks

A lot of work has lately focused on deep spiking networks, either using a modified version of
backpropagation or using STDP.

The Masquelier lab has proposed a deep spiking convolutional network learning to extract features using
STDP (unsupervised learning).

A simple classifier (SVM) then learns to predict classes.

Kheradpisheh et al. ( ) STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67.2018 16 / 32



Deep convolutional spiking networks
The image is first transformed into a spiking population using difference-of-Gaussian (DoG) filters.

On-center neurons fire when a bright area at the corresponding location is surrounded by a darker area.

Off-center cells do the opposite.

Kheradpisheh et al. ( ) STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67.2018 17 / 32



Deep convolutional spiking networks

The convolutional and pooling layers work just as in regular CNNs (shared weights), except the neuron
are integrate-and-fire (IF).

There is additionally a temporal coding scheme, where the first neuron to emit a spike at a particular
location (i.e. over all feature maps) inhibits all the others.

This ensures selectivity of the features through sparse coding: only one feature can be detected at a
given location.

STDP allows to learn causation between the features and to extract increasingly complex features.

Kheradpisheh et al. ( ) STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67.2018 18 / 32



Deep convolutional spiking networks
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Deep convolutional spiking networks

Watch on

STDP-based spiking deep convolutional neural networks for object recognitionSTDP-based spiking deep convolutional neural networks for object recognition
ShareShare
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Deep convolutional spiking networks
The network is trained unsupervisedly on various datasets and obtains accuracies close to the state of
the art:

Caltech face/motorbike dataset.

ETH-80

MNIST

Kheradpisheh et al. ( ) STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67.2018 21 / 32



Deep convolutional spiking networks
The performance on MNIST is in line with classical 3-layered CNNs, but without backpropagation!

Kheradpisheh et al. ( ) STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67.2018 22 / 32
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Event-based cameras

Event-Based Camera vs Standard CameraEvent-Based Camera vs Standard Camera
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Event-based cameras

Events-to-Video: Bringing Modern Computer Vision to Event Cameras (CVPR'19)Events-to-Video: Bringing Modern Computer Vision to Event Cameras (CVPR'19)
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Event-based cameras

High Speed and High Dynamic Range Video with an Event CameraHigh Speed and High Dynamic Range Video with an Event Camera
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Neuromorphic computing

Event-based cameras are inspired from the retina (neuromorphic) and emit spikes corresponding to
luminosity changes.

Classical computers cannot cope with the high fps of event-based cameras.

Spiking neural networks can be used to process the events (classification, control, etc). But do we have
the hardware for that?

Source: https://www.researchgate.net/publication/280600732_A_Computational_Model_of_Innate_Directional_Selectivity_Refined_by_Visual_Experience
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Intel Loihi
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Intel Loihi
Loihi implements 128 neuromorphic cores, each containing 1,024 primitive spiking neural units grouped
into tree-like structures in order to simplify the implementation.

https://en.wikichip.org/wiki/intel/loihi 29 / 32
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Intel Loihi
Each neuromorphic core transits spikes to the other cores.

Fortunately, the firing rates are usually low (10 Hz), what limits
the communication costs inside the chip.

Synapses are learnable with STDP mechanisms (memristors),
although offline.

https://en.wikichip.org/wiki/intel/loihi 30 / 32
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Neuromorphic computing
Intel Loihi consumes 1/1000th of the energy
needed by a modern GPU.

Alternatives to Intel Loihi are:

IBM TrueNorth

Spinnaker (University of Manchester).

Brainchip

The number of simulated neurons and
synapses is still very far away from the
human brain, but getting closer!

https://fuse.wikichip.org/news/2519/intel-labs-builds-a-neuromorphic-system-with-64-to-768-loihi-chips-8-million-to-100-million-neurons/ 31 / 32
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