
Neurocomputing
Recurrent neural networks

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 33



1 - RNN

2 / 33



Problem with feedforward networks
Feedforward neural networks learn to associate an input vector to an output.

If you present a sequence of inputs  to a feedforward network, the outputs will be
independent from each other:

Many problems depend on time series, such as predicting the future of a time series by knowing its past
values.

Example: weather forecast, financial prediction, predictive maintenance, video analysis…

y = F  (x)θ

x  ,x  , … ,x  0 1 t

y  =0 F  (x  )θ 0

y  =1 F  (x  )θ 1

…

y  =t F  (x  )θ t

x  =t+1 F  (x  ,x  , … ,x  )θ 0 1 t

3 / 33



Input aggregation
A naive solution is to aggregate (concatenate) inputs over a sufficiently long window and use it as a new
input vector for the feedforward network.

Problem 1: How long should the window be?

Problem 2: Having more input dimensions
increases dramatically the complexity of the
classifier (VC dimension), hence the number of
training examples required to avoid overfitting.

X =     [x  t−T x  t−T+1 … x  t]

y  =t F  (X)θ

https://www.researchgate.net/publication/220827486_A_study_on_the_ability_of_Support_Vector_Regression_and_Neural_Networks_to_Forecast_Basic_Time_Ser

4 / 33

https://www.researchgate.net/publication/220827486_A_study_on_the_ability_of_Support_Vector_Regression_and_Neural_Networks_to_Forecast_Basic_Time_Series_Patterns


Recurrent neural network
A recurrent neural network (RNN) uses it previous output as an
additional input (context).

All vectors have a time index  denoting the time at which this
vector was computed.

The input vector at time  is , the output vector is :

 is a transfer function, usually logistic or tanh.

The input  and previous output  are multiplied by learnable
weights:

 is the input weight matrix.

 is the recurrent weight matrix.

Source: http://colah.github.io/posts/2015-
08-Understanding-LSTMs

t

t x  t h  t

h  =t σ(W  ×x x  +t W  ×h h  +t−1 b)

σ

x  t h  t−1

W  x

W  h

5 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Recurrent neural networks

Source: 

One can unroll a recurrent network: the output  depends on the whole history of inputs from  to .

A RNN is considered as part of deep learning, as there are many layers of weights between the first input 
 and the output .

The only difference with a DNN is that the weights  and  are reused at each time step.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

h  t x  0 x  t

  

h  t = σ(W  × x  + W  × h  + b)x t h t−1

= σ(W  × x  + W  × σ(W  × x  + W  × h  + b) + b)x t h x t−1 h t−2

= f  (x  ,x  , … ,x  )W  ,W  ,bx h 0 1 t

x  0 h  t

W  x Wh

6 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


BPTT: Backpropagation through time

Source: 

The function between the history of inputs and the output at time  is differentiable: we can simply apply
gradient descent to find the weights!

This variant of backpropagation is called Backpropagation Through Time (BPTT).

Once the loss between  and its desired value is computed, one applies the chain rule to find out how to
modify the weights  and  using the history .

http://colah.github.io/posts/2015-08-Understanding-LSTMs

h  =t f  (x  ,x  , … ,x )W  ,W  ,bx h 0 1 t

t

h  t

W  x W  h (x  ,x  , … ,x  )0 1 t

7 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


BPTT: Backpropagation through time
Let’s compute the gradient accumulated between  and :

As for feedforward networks, the gradient of the loss function is decomposed into two parts:

The first part only depends on the loss function (mse, cross-entropy):

The second part depends on the RNN itself.

h  t−1 h  t

  

h  t = σ(W  × x  + W  × h  + b)x t h t−1

 =
∂W  x

∂L(W  ,W  )x h
 ×

∂h  t

∂L(W  ,W  )x h
 

∂W  x

∂h  t

 =
∂W  h

∂L(W  ,W  )x h
 ×

∂h  t

∂L(W  ,W  )x h
 

∂W  h

∂h  t

 =
∂h  t

∂L(W  ,W  )x h −(t  −t h  )t

8 / 33



BPTT: Backpropagation through time
Output of the RNN:

The gradients w.r.t the two weight matrices are given by this recursive relationship (product rule):

The derivative of the transfer function is noted :

  

h  t = σ(W  × x  + W  × h  + b)x t h t−1

 

∂W  x

∂h  t

 

∂W  h

∂h  t

= h  × (x  + W  ×  )′
t t h ∂W  x

∂h  t−1

= h  × (h  + W  ×  )′
t t−1 h ∂W  h

∂h  t−1

h  

′
t

h  =′
t  {h  (1 − h  )  for logistict t

(1 − h  )  for tanh.t
2

9 / 33



BPTT: Backpropagation through time
If we unroll the gradient, we obtain:

When updating the weights at time , we need to store in memory:

the complete history of inputs , , … .

the complete history of outputs , , … .

the complete history of derivatives , , … .

before computing the gradients iteratively, starting from time  and accumulating gradients backwards in
time until .

Each step backwards in time adds a bit to the gradient used to update the weights.

 

∂W  x

∂h  t

 

∂W  h

∂h  t

= h  (x  + W  × h  (x  + W  × h  (x  + W  × … (x  ))))′
t t h

′
t−1 t−1 h

′
t−2 t−2 h 0

= h  (h  + W  × h  (h  + W  × h  … (h  )))′
t t−1 h

′
t−1 t−2 h

′
t−2 0

t

x  0 x  1 x  t

h  0 h  1 h  t

h  

′
0 h  

′
1 h  

′
t

t

t = 0

10 / 33



Truncated BPTT

Source: 

In practice, going back to  at each time step requires too many computations, which may not be
needed.

Truncated BPTT only updates the gradients up to  steps before: the gradients are computed backwards
from  to . The partial derivative in  is considered 0.

This limits the horizon of BPTT: dependencies longer than  will not be learned, so it has to be chosen
carefully for the task.

 becomes yet another hyperparameter of your algorithm…

https://r2rt.com/styles-of-truncated-backpropagation.html

t = 0

T

t t− T t− T − 1

T

T

11 / 33

https://r2rt.com/styles-of-truncated-backpropagation.html


Temporal dependencies
BPTT is able to find short-term dependencies between inputs and outputs: perceiving the inputs  and 

 allows to respond correctly at .

Source: 

x  0

x  1 t = 3

http://colah.github.io/posts/2015-08-Understanding-LSTMs

12 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Temporal dependencies
But it fails to detect long-term dependencies because of:

the truncated horizon  (for computational reasons).

the vanishing gradient problem.

Source: 

T

http://colah.github.io/posts/2015-08-Understanding-LSTMs

13 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Vanishing and exploding gradients
Let’s look at the gradient w.r.t to the input weights:

At each iteration backwards in time, the gradients are multiplied by .

If you search how  depends on , you obtain something like:

If ,  increases exponentially with : the gradient explodes.

If ,  decreases exponentially with : the gradient vanishes.

 

∂W  x

∂h  t = h  (x  + W  ×  )′
t t h ∂W  x

∂h  t−1

W  h

 ∂W  x

∂h  t x  0

 

∂W  x

∂h  t ≈  h  ((W  ) x  + … )
k=0

∏
t

′
k h

t
0

∣W  ∣ >h 1 ∣(W  ) ∣h
t t

∣W  ∣ <h 1 ∣(W  ) ∣h
t t

14 / 33



Vanishing and exploding gradients
Exploding gradients are relatively easy to deal with: one just clips the norm of the gradient to a maximal
value.

But there is no solution to the vanishing gradient problem for regular RNNs: the gradient fades over time
(backwards) and no long-term dependency can be learned.

This is the same problem as for feedforward deep networks: a RNN is just a deep network rolled over
itself.

Its depth (number of layers) corresponds to the maximal number of steps back in time.

In order to limit vanishing gradients and learn long-term dependencies, one has to use a more complex
structure for the layer.

This is the idea behind long short-term memory (LSTM) networks.

∣∣  ∣∣ ←
∂W  x

∂L(W  ,W  )x h min(∣∣  ∣∣,T )
∂W  x

∂L(W  ,W  )x h

S. Hochreiter. Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f. Informatik, Technische Univ. Munich, 1991. 15 / 33



2 - LSTM

16 / 33



Regular RNN

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

17 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

18 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM cell
A LSTM layer is a RNN layer with the ability to
control what it memorizes.

In addition to the input  and output , it also has
a state  which is maintained over time.

The state is the memory of the layer (sometimes
called context).

It also contains three multiplicative gates:

The input gate controls which inputs should
enter the memory.

The forget gate controls which memory should
be forgotten.

The output gate controls which part of the
memory should be used to produce the output.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

x  t h  t

C  t

19 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM cell
The state  can be seen as an accumulator
integrating inputs (and previous outputs) over time.

The input gate allows inputs to be stored.

are they worth remembering?

The forget gate “empties” the accumulator

do I still need them?

The output gate allows to use the accumulator
for the output.

should I respond now? Do I have enough
information?

The gates learn to open and close through
learnable weights.

Source: http://eric-yuan.me/rnn2-lstm/

C  t

20 / 33

http://eric-yuan.me/rnn2-lstm/


The cell state is propagated over time
By default, the cell state  stays the same over
time (conveyor belt).

It can have the same number of dimensions as the
output , but does not have to.

Its content can be erased by multiplying it with a
vector of 0s, or preserved by multiplying it by a
vector of 1s.

We can use a sigmoid to achieve this:

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

C  t

h  t

21 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


The forget gate
Forget weights  and a sigmoid function are
used to decide if the state should be preserved or
not.

 is simply the concatenation of the two
vectors  and .

 is a vector of values between 0 and 1, one per
dimension of the cell state .

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

W  f

f  =t σ(W  ×f [h  ;x  ] +t−1 t b  )f

[h  ;x  ]t−1 t

h  t−1 xt

f  t

C  t

22 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


The input gate
Similarly, the input gate uses a sigmoid function to
decide if the state should be updated or not.

As for RNNs, the input  and previous output 
are combined to produce a candidate state 
using the tanh transfer function.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

i  =t σ(W ×i [h  ;x ] +t−1 t b )i

x  t h  t−1

 C~ t

 =C~ t tanh(W  ×C [h  ;x  ] +t−1 t b  )c

23 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Updating the state
The new state  is computed as a part of the
previous state  (element-wise multiplication
with the forget gate ) plus a part of the candidate
state  (element-wise multiplication with the
input gate ).

Depending on the gates, the new state can be equal
to the previous state (gates closed), the candidate
state (gates opened) or a mixture of both.Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Ct

C  t−1

f  t

 C~ t

i  t

C  =t f  ⊙t C  +t−1 i  ⊙t  C~ t

24 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


The output gate
The output gate decides which part of the new
state will be used for the output.

The output not only influences the decision, but
also how the gates will updated at the next step.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

o  =t σ(W  ×o [h  ;x  ] +t−1 t b  )o

h  =t o  ⊙t tanh(C  )t

25 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM
The function between  and  is quite
complicated, with many different weights, but
everything is differentiable: BPTT can be applied.

Forget gate

Input gate

Output gate

Candidate state

New state

Output

x  t h  t

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

f  =t σ(W  ×f [h  ;x  ] +t−1 t b  )f

i  =t σ(W ×i [h  ;x ] +t−1 t b )i

o  =t σ(W  ×o [h  ;x  ] +t−1 t b  )o

 =C~ t tanh(W  ×C [h  ;x  ] +t−1 t b  )c

C  =t f  ⊙t C  +t−1 i  ⊙t  C~ t

h  =t o  ⊙t tanh(C  )t

26 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


How do LSTM solve the vanishing gradient problem?

Source: 

Not all inputs are remembered by the LSTM: the input gate controls what comes in.

If only  and  are needed to produce , they will be the only ones stored in the state, the other
inputs are ignored.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

x  0 x  1 h  t+1

27 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


How do LSTM solve the vanishing gradient problem?

Source: 

If the state stays constant between  and , the gradient of the error will not vanish when
backpropagating from  to , because nothing happens!

The gradient is multiplied by exactly one when the gates are closed.

http://colah.github.io/posts/2015-08-Understanding-LSTMs

t = 1 t

t t = 1

C  =t C  →t−1  =
∂C  t−1

∂C  t 1

28 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


LSTM networks
LSTM are particularly good at learning long-term dependencies, because the gates protect the cell from
vanishing gradients.

Its problem is how to find out which inputs (e.g.   and ) should enter or leave the state memory.

Truncated BPTT is used to train all weights: the weights for the candidate state (as for RNN), and the
weights of the three gates.

LSTM are also subject to overfitting. Regularization (including dropout) can be used.

The weights (also for the gates) can be convolutional.

The gates also have a bias, which can be fixed (but hard to find).

LSTM layers can be stacked to detect dependencies at different scales (deep LSTM network).

x  0 x  1

Hochreiter and Schmidhuber (1997). Long short-term memory. Neural computation, 9(8). 29 / 33



Peephole connections
A popular variant of LSTM adds peephole
connections, where the three gates have
additionally access to the state .

It usually works better, but it adds more weights.
Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

C  t−1

f  =t σ(W  ×f [C  ;h  ;x  ] +t−1 t−1 t b  )f

i  =t σ(W  ×i [C  ;h ;x  ] +t−1 t−1 t b )i

o  =t σ(W  ×o [C  ;h  ;x  ] +t t−1 t b  )o

Gers and Schmidhuber (2000). Recurrent nets that time and count. IJCNN. 30 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


GRU: Gated Recurrent Unit
Another variant is called the Gated Recurrent Unit (GRU).

It uses directly the output  as a state, and the
forget and input gates are merged into a single
gate .

It does not even need biases (mostly useless in LSTMs anyway).

Much simpler to train as the LSTM, and almost as powerful.

h  t

r  t

z  =t σ(W  ×z [h  ;x  ])t−1 t

r =t σ(W  ×r [h  ;x  ])t−1 t

 =h~ t tanh(W  ×h [r  ⊙t h  ;x  ])t−1 t

h  =t (1 − z  ) ⊙t h  +t−1 z  ⊙t  h
~
t

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs

Chung, Gulcehre, Cho, Bengio (2014). “Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling”. arXiv:1412.3555 31 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs


Bidirectional LSTM
A bidirectional LSTM learns to predict the output in
two directions:

The feedforward line learns using the past
context (classical LSTM).

The backforward line learns using the future
context (inputs are reversed).

The two state vectors are then concatenated at
each time step to produce the output.

Only possible offline, as the future inputs must be
known.

Works better than LSTM on many problems, but
slower.

Source:
http://www.paddlepaddle.org/doc/demo/sentiment_analysis/sentiment_analysis.html

32 / 33

http://www.paddlepaddle.org/doc/demo/sentiment_analysis/sentiment_analysis.html


References
A great blog post by Christopher Olah to understand recurrent neural networks, especially LSTM:

Shi Yan built on that post to explain it another way:

http://colah.github.io/posts/2015-08-Understanding-LSTMs

https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714#.m7fxgvjwf

33 / 33

http://colah.github.io/posts/2015-08-Understanding-LSTMs
https://medium.com/@shiyan/understanding-lstm-and-its-diagrams-37e2f46f1714#.m7fxgvjwf

