
Neurocomputing
Natural Language Processing

Julien Vitay
Professur für Künstliche Intelligenz - Fakultät für Informatik

1 / 28

1 - word2vec

2 / 28

Representing words
The most famous application of RNNs is Natural Language Processing (NLP): text understanding,
translation, etc…

Each word of a sentence has to be represented as a vector in order to be fed to a LSTM.

Which representation should we use?

The naive solution is to use one-hot encoding, one element of the vector corresponding to one word of
the dictionary.

Source:

x t

https://cdn-images-1.medium.com/max/1600/1*ULfyiWPKgWceCqyZeDTl0g.png

3 / 28

https://cdn-images-1.medium.com/max/1600/1*ULfyiWPKgWceCqyZeDTl0g.png

Representing words
One-hot encoding is not a good representation for words:

The vector size will depend on the number of words of the language:

English: 171,476 (Oxford English Dictionary), 470,000 (Merriam-Webster)… 20,000 in practice.

French: 270,000 (TILF).

German: 200,000 (Duden).

Chinese: 370,000 (Hanyu Da Cidian).

Korean: 1,100,373 (Woori Mal Saem)

Semantically related words have completely different representations (“endure” and “tolerate”).

The representation is extremely sparse (a lot of useless zeros).

Source: https://www.tensorflow.org/tutorials/representation/word2vec

4 / 28

https://www.tensorflow.org/tutorials/representation/word2vec

word2vec
word2vec learns word embeddings by trying to predict the current word based on the context (CBOW,
continuous bag-of-words) or the context based on the current word (skip-gram).

It uses a three-layer autoencoder-like NN, where the hidden layer (latent space) will learn to represent the
one-hot encoded words in a dense manner.

Source: https://jaxenter.com/deep-learning-search-word2vec-147782.html

Mikolov et al. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS. https://code.google.com/archive/p/word2vec/ 5 / 28

https://jaxenter.com/deep-learning-search-word2vec-147782.html
https://code.google.com/archive/p/word2vec/

word2vec
word2vec has three parameters:

the vocabulary size: number of words in the dictionary.

the embedding size: number of neurons in the hidden layer.

the context size: number of surrounding words to predict.

It is trained on huge datasets of sentences (e.g. Wikipedia).

Source: https://www.analyticsvidhya.com/blog/2017/06/word-
embeddings-count-word2veec/

Mikolov et al. (2013). Distributed Representations of Words and Phrases and their Compositionality. NIPS. https://code.google.com/archive/p/word2vec/ 6 / 28

https://www.analyticsvidhya.com/blog/2017/06/word-embeddings-count-word2veec/
https://code.google.com/archive/p/word2vec/

word2vec
After learning, the hidden layer represents an embedding vector, which is a dense and compressed
representation of each possible word (dimensionality reduction).

Semantically close words (“endure” and “tolerate”) tend to appear in similar contexts, so their embedded
representations will be close (Euclidian distance).

One can even perform arithmetic operations on these vectors!

Source :

queen = king + woman - man

https://www.tensorflow.org/tutorials/representation/word2vec

7 / 28

https://www.tensorflow.org/tutorials/representation/word2vec

2 - Applications of RNNs

8 / 28

Classification of LSTM architectures

Source:

One to One: classical feedforward network.

Image Label.

One to Many: single input, many outputs.

Image Text.

Many to One: sequence of inputs, single output.

Video / Text Label.

Many to Many: sequence to sequence.

Text Text.

Video Text.

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

→

→

→

→

→

9 / 28

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

One to Many: image caption generation
Show and Tell uses the last FC layer of a CNN to feed a LSTM layer and generate words.

The pretrained CNN (VGG16, ResNet50) is used as a feature extractor.

Each word of the sentence is encoded/decoded using word2vec.

The output of the LSTM at time becomes its new input at time .

Source: Sathe et al. (2022). Overview of Image Caption Generators and Its Applications. ICCSA. https://doi.org/10.1007/978-981-19-0863-7_8

t t + 1

Vinyals et al. (2015). Show and tell: A neural image caption generator. CVPR. 10 / 28

https://doi.org/10.1007/978-981-19-0863-7_8

One to Many: image caption generation

Xu et al. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. NIPS. 11 / 28

One to Many: image caption generation
Show, attend and tell uses attention to focus on specific parts of the
image when generating the sentence.

Source: http://kelvinxu.github.io/projects/capgen.html

Xu et al. (2015). Show, Attend and Tell: Neural Image Caption Generation with Visual Attention. NIPS. 12 / 28

Many to One: next character/word prediction
Characters or words are fed one by one into a
LSTM.

The desired output is the next character or word in
the text.

Example:

Inputs: To, be, or, not, to

Output: be

The text on the left was generated by a LSTM
having read the entire writings of William
Shakespeare.

Each generated word is used as the next input.

PANDARUS:
Alas, I think he shall be come approached and
the day
When little srain would be attain'd into being
never fed,
And who is but a chain and subjects of his
death,
I should not sleep.

Second Senator:
They are away this miseries, produced upon my
soul,
Breaking and strongly should be buried, when I
perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

S d L d

Source: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ 13 / 28

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Many to one: Sunspring SciFi movie

More info: http://www.thereforefilms.com/sunspring.html

Sunspring | A Sci-Fi Short Film Starring Thomas MiddleditchSunspring | A Sci-Fi Short Film Starring Thomas Middleditch
ShareShare

14 / 28

http://www.thereforefilms.com/sunspring.html
https://www.youtube.com/watch?v=LY7x2Ihqjmc

Many to One: sentiment analysis
To obtain a vector from a
sentence, one-hot encoding
is used (alternative:
word2vec).

A 1D convolutional layers
“slides” over the text.

The bidirectional LSTM
computes a state vector for
the complete text.

A classifier (fully connected
layer) learns to predict the
sentiment of the text
(positive/negative).

Source: https://offbit.github.io/how-to-read/

15 / 28

https://offbit.github.io/how-to-read/

Many to Many: Question answering / Scene understanding

A LSTM can learn to associate an image (static) plus a question (sequence) with the answer (sequence).

The image is abstracted by a CNN trained for object recognition.

16 / 28

Many to Many: seq2seq
The state vector obtained at the end of a sequence can be reused as an initial state for another LSTM.

The goal of the encoder is to find a compressed representation of a sequence of inputs.

The goal of the decoder is to generate a sequence from that representation.

Sequence-to-sequence (seq2seq) models are recurrent autoencoders.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to Sequence Learning with Neural Networks. arXiv:1409.3215 17 / 28

seq2seq for language translation

The encoder learns for example to encode each word of a sentence in French.

The decoder learns to associate the final state vector to the corresponding English sentence.

seq2seq allows automatic text translation between many languages given enough data.

Modern translation tools are based on seq2seq, but with attention.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 18 / 28

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

3 - Attentional recurrent networks

19 / 28

Attentional recurrent networks
The problem with seq2seq is that it compresses the complete input sentence into a single state vector.

For long sequences, the beginning of the sentence may not be present in the final state vector:

Truncated BPTT, vanishing gradients.

When predicting the last word, the beginning of the paragraph might not be necessary.

Consequence: there is not enough information in the state vector to start translating.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 20 / 28

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Attentional recurrent networks
A solution would be to concatenate the state vectors of all steps of the encoder and pass them to the
decoder.

Problem 1: it would make a lot of elements in the state vector of the decoder (which should be constant).

Problem 2: the state vector of the decoder would depend on the length of the input sequence.

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/ 21 / 28

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Attentional recurrent networks
Attentional mechanisms let the decoder decide (by learning) which state vectors it needs to generate
each word at each step.

The attentional context vector of the decoder
 at time is a weighted average of all state

vectors of the encoder.

The coefficients are called the attention scores : how much attention is the decoder paying to each of
the encoder’s state vectors?

A t
decoder t

C i
encoder

A =t
decoder

 a C

i=0

∑
T

i i
encoder

a i

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 22 / 28

Attentional recurrent networks
The attention scores are computed as a softmax over the scores (in order to sum to 1):

The score is computed using:

the previous output of the decoder
.

the corresponding state vector
 of the encoder at step .

attentional weights .

Everything is differentiable, these attentional weights can be learned with BPTT.

a i e i

a =i ⇒
 exp e ∑j j

exp e i
A =t

decoder
 C

i=0

∑
T

 exp e∑j j

exp e i
i
encoder

e i

ht−1
decoder

C i
encoder i

W a

e =i tanh(W [h ;C])a t−1
decoder

i
encoder

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 23 / 28

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263

Attentional recurrent networks
The attentional context vector is concatenated with the previous output and used as
the next input of the decoder:

A t
decoder h t−1

decoder

x t
decoder

x =t
decoder [h ;A]t−1

decoder
t
decoder

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 24 / 28

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 25 / 28

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263

Attentional recurrent networks
The attention scores or alignment scores are useful to interpret what happened.

They show which words in the original sentence are the most important to generate the next word.

a i

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 26 / 28

Attentional recurrent networks
Attentional mechanisms are now central to NLP.

The whole history of encoder states is passed to the decoder, which learns to decide which part is the
most important using attention.

This solves the bottleneck of seq2seq architectures, at the cost of much more operations.

They require to use fixed-length sequences (generally 50 words).

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263 27 / 28

https://towardsdatascience.com/day-1-2-attention-seq2seq-models-65df3f49e263

Google Neural Machine Translation (GNMT)
Google Neural Machine Translation (GNMT) uses an attentional recurrent NN, with bidirectional GRUs, 8
recurrent layers on 8 GPUs for both the encoder and decoder.

Wu et al. (2016). Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv:1609.08144v2 28 / 28

