REEHS

UNIVERSITY OF TECHNOLOGY
IN THE EUROPEAN CAPITAL OF CULTURE

CHEMNITZ

Neurocomputing

Transformers

Julien Vitay

Professur fir Kiinstliche Intelligenz - Fakultat fir Informatik

1/49

1 - Transformers

Attention Is All You Need

Ashish Vaswani™
Google Brain

avaswanli@google.com

Llion Jones®
Google Research
1llion@google.com

Noam Shazeer” Niki Parmar” Jakob UszKoreit™
Google Brain Google Research Google Research
noam@google.com nikip@google.com usz@google.com

Fukasz Kaiser”
Google Brain

lukaszkaiser@google.com

Aidan N. Gomez™ '
University of Toronto

aidan@cs.toronto.edu

Illia Polosukhin* *
illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention Is All You Need. arXiv:1706.03762.

2/49

Transformer networks

e Attentional mechanisms are so powerful that recurrent networks are not even needed anymore.

e Transformer networks use self-attention in a purely feedforward architecture and outperform recurrent
architectures.

e Used in Google BERT and OpenAl GPT-3 for text understanding (e.g. search engine queries) and
generation.

(Softmax)

A
(Linear)
& 4
= e
S i’ 4
E ,-’P(Add & Normalize)
3 3
(Feed Forward) (Feed Forward)
--------- -y
4‘"‘(Add & Normalize)
| 4 4 ., |0 4 [
- : (Feed Forward) (Feed Forward) :*(Encoder-Decoder Attention)
é ‘eememmmam ’ + T * ----------------- *
= '.-p(Add & Normalize) ,-l-(Add & Normalize)
' Self-Attention . Self-Attention
Ny e 3 ~/ REEEEEEEE (I) """"""""""" é
R @ ®
x1 x2 [
Thinking Machines

Source: http://jalammar.github.io/illustrated-transformer/

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention Is All You Need. arXiv:1706.03762.

3/49

http://jalammar.github.io/illustrated-transformer/

Transformer networks

e Transformer networks use an encoder-decoder architecture, each with 6 stacked layers.

OUTPUT | | am a student

ENCODER - DECODER

l ENCODER l l DECODER l
l ENCODER l l DECODER l

ENCODER DECODER

ENCODER DECODER

ENCODER DECODER

INPUT | Je suis étudiant

Source: http://jalammar.github.io/illustrated-transformer/

4/49

http://jalammar.github.io/illustrated-transformer/

Encoder layer

e Each layer of the encoder processes the n words of the input sentence in parallel.

e Word embeddings (as in word2vec) of dimension 512 are used as inputs (but learned end-to-end).

ENCODER

Feed Forward

Self-Attention

X4 X2 A3

Je suis etudiant

Source: http://jalammar.github.io/illustrated-transformer/

5749

http://jalammar.github.io/illustrated-transformer/

Encoder layer

e Two operations are performed on each word embedding X;:

= self-attention vector z; depending on the other words.

= aregular feedforward layer to obtain a new representation r; (shared among all words).

- J
t t

T .

Feed Forward Feed Forward
Neural Network Neural Network

t t
L1] L1]
1 1
4)
Self-Attention
\ _/
1 1
x: [x2 [
Thinking Machines

Source: http://jalammar.github.io/illustrated-transformer/

6/49

http://jalammar.github.io/illustrated-transformer/

Self-attention

e The first step of self-attention is to compute for each word three vectors of length d;, = 64 from the

embeddings X; or previous representations r; (d = 512).

= The query q; using W¢.
= The key k; using W .

= The value v; using W" .

Input

Embedding

Queries q+

Keys

Values

Source: http://jalammar.github.io/illustrated-transformer/

Q2

e This operation can be done in

parallel over all words:

wa

7149

http://jalammar.github.io/illustrated-transformer/

Self-attention

 Why query / key / value? This a concept inspired from recommendation systems / databases.

e A Python dictionary is a set of key / value entries:

tel = {
'jJack': 4098,
'sape’: 4139
s

e The query would ask the dictionary to iterate over all entries and return the value associated to the key
equal or close to the query.

tel['jacky'] # 4098

e This would be some sort of fuzzy dictionary.

8/49

Self-attention

accord sur Zone eéconomigque européenne a éte signe en aolt 1992 . <end>
| f | | 1 | l f | | l 1 |
B+~ B+ — | B — | B — — | B B+——|BH— | BrH— | Br—|B B — | E
\ |
1 | | | | | | | |
the agreement on the European Economic Area Was signed in August 1992 . <end=
e In attentional RNNSs, the attention scores were used by each word Layer: 5 & Attention: Input - Input $
generated by the decoder to decide which input word is relevant. The_ The.
animal_ animal_
o If we apply the same idea to the same sentence (self-attention), the - e
attention score tells how much words of the same sentence are related - -
to each other (context). the._ the_
street_ street_
. . , . . because_ because_
The animal didn't cross the street because it was too tired. t t.
e The goal is to learn a representation for the word it that contains — -
information about the animal, not the street. o a-

Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio (2014). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473 9/ 49

Self-attention

e Each word Xx; of the sentence generates its query q;, key k; and value v;.

e For all other words x;, we compute the match nput
between the query q; and the keys k; with a
dot product: Embedding
Queries q+ q:
T
eij = q; k;j
Keys
e We normalize the scores by dividing by Values
v/ di, = 8 and apply a softmax: ccore a » ki = o « ko =
T Divide by 8 (/d).)
a; ; = softmax(% X)
1,] — \/ﬁ Softmax
Softmax
e The new representation z; of the word x; is a X
weighted sum of the values of all other words,
weighted by the attention score: curm

Zi = Z ai’j Vj Source: http://jalammar.github.io/illustrated-transformer/
J

10/49

http://jalammar.github.io/illustrated-transformer/

Self-attention

e If we concatenate the word embeddings into a n X d matrix

wa
X, self-attention only implies matrix multiplications and a
" _ row-based softmax:
Q=X xWe
K=XxW*t
)] V=XxW"
x KT
7 = softmax(Q) XV
Vv dp
Q T
softmax(])
Vi

Source: http://jalammar.github.io/illustrated-transformer/

e Note 1: everything is differentiable, backpropagation will work.

e Note 2: the weight matrices do not depend on the length n of the sentence.

11/49

http://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

e Inthe sentence The animal didn’t cross the street because it was too tired., the new representation for the
word 1T will hopefully contain features of the word anima L after training.

e But what if the sentence was The animal didn’t cross the street because it was too wide.? The
representation of 1t should be linked to street in that context.

e This is not possible with a single set of matrices W WE and WV, as they would average every
possible context and end up being useless.

Q QO
—_— [] —_ []
. Q - = = W Q
Qo £ @ A e = ¢ E £ W o O 2 X
o = 2 2 9 = g T 5 I o - 2 2 T < 5 @ 9 =
- @™ T O = M ol =z Y2 = - @™ T O = W ol = 2 =
- i
x#xx ;
pd f
~ !
~ /
r f
;x’ jﬁ
33 i
."-.. ll.
#,-"'JJ /
_xf# i
L i e
= = E i
= wn T m =W\
s s o 3 B w0 g o E = @ EE - @
- T 9 @ S o5 o o @ - £ =T O m o 2
= = & £ = L = 0O = E = & £ o = 0 =
W T O = W o = = 2 .= @ T o =\ o0 = = 2 =

Source: https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

12/49

https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Multi-headed self-attention

e The solution is to use multiple attention heads (h = 8) with their own matrices we, WkK and W,y

X

Thinking
Machines
ATTENTION HEAD #0
Qo
Wo@
Vo
W,V

Source: http://jalammar.github.io/illustrated-transformer/

.Q1

ATTENTION HEAD #1

W,V

13749

http://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

e Each attention head will output a vector z; of size d;, = 64 for each word.

e How do we combine them?

X
Thinking
Machines
Calculating attention separately in
eight different attention heads
ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

Source: http://jalammar.github.io/illustrated-transformer/

14 /49

http://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

e The proposed solution is based on ensemble learning (stacking):
= let another matrix W© decide which attention head to trust...

s 8 X 64 rows, 512 columns.

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the © matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Source: http://jalammar.github.io/illustrated-transformer/

15749

http://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting ©~ matrices,
iInput sentence* each word* We multiply X or using the resulting then multiply with weight matrix W" to
R with weight matrices Q/K/V matrices produce the output of the layer
X Wl
Thinking A Wo . Qo
Machines = Wo == Ko
- Vo Wo
W, Q

* In all encoders other than #0, J—r'—rl W1 K 01
we don't need embedding. B W4V e, K4
We start directly with the output B i Vi
of the encoder right below this one I

LA
R LA LA

—1 -t
LW Q;

Source: http://jalammar.github.io/illustrated-transformer/

16 /49

http://jalammar.github.io/illustrated-transformer/

Multi-headed self-attention

e Each attention head learns a different context: | over- (53 - _
yer.| 5 5| Attention:| Input - Input =

= 1t referstoanimal. N
The_ The_
= 1t refersto street. animal_ animal_
didn_ didn_
= etc. 3 3
e The original transformer paper in 2017 used 8 - -
. Cross_ Cross_
attention heads. the the_
e OpenAl’'s GPT-3 uses 96 attention heads... R street_
because because
t_ D it
was_ f,f”’ was_
too_ — too_
tire //'/ tire
d d

Source: http://jalammar.github.io/illustrated-transformer/

17 /49

http://jalammar.github.io/illustrated-transformer/

Encoder layer

o Multi-headed self-attention produces a vector z; for each word of the sentence.
e Aregular feedforward MLP transforms it into a new representation r;.

= one input layer with 512 neurons.
= one hidden layer with 2048 neurons and a ReLU activation function.

= one output layer with 512 neurons.

e The same NN is applied on all words, it does not depend on the length n of the sentence.

t t
L[] .
Feed Forward Feed Forward
Neural Network Neural Network
1 1
""" L]
t t
[Self-Attention]
t t

Source: http://jalammar.github.io/illustrated-transformer/

18/49

http://jalammar.github.io/illustrated-transformer/

Positional encoding

e As each word is processed in parallel, the order of the words in the sentence is lost.

street was animal tired the the because it cross too didn’t

e We need to explicitly provide that information in the input using positional encoding.

e A simple method would be to append anindex? = 1, 2,
robust.

..., to the word embeddings, but it is not very

C ENCODER #1

' ' C DECODER #1

T 1

C ENCODER #0

' ' ' DECODER #0

EMBEDDING
WITH TIME

SIGNAL x| | | | | x2[| [[]
POSITIONAL & [1] t T 1]
+ +
EMBEDDINGS X1 X2
INPUT Je SUis

Source: http://jalammar.github.io/illustrated-transformer/

étudiant

19/49

http://jalammar.github.io/illustrated-transformer/

Positional encoding

e If the elements of the 512-d embeddings are numbers between 0 and 1, concatenating an integer
between 1 and . will unbalance the dimensions.

 Normalizing that integer between 0 and 1 requires to know 7 in advance, this introduces a maximal
sentence length...

 How about we append the binary code of that integer?

0 : 00O 8 : 000
1: 001 9 : 001
2: 010 10 : 010
3 : 011 11: 011
4 ; 1 00 12 : 100
D : 1 01 13: 101
0 : 110 14 : 110
7: 111 15: 111

Source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

e Sounds good, we have numbers between 0 and 1, and we just need to use enough bits to encode very
long sentences.

o However, representing a binary value (0 or 1) with a 64 bits floating number is a waste of computational
resources.

20 /49

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional encoding

e We can notice that the bits of the integers oscillate at various

frequencies:

= the lower bit oscillates every number.

= the bit before oscillates every two numbers.

= etc.

e We could also represent the position of
a word using sine and cosine functions
at different frequencies (Fourier basis).

e We create a vector, where each element
oscillates at increasing frequencies.

e The “code” for each position in the
sentence is unique.

0: 0 0O

1: 001

2: 010 10 :
3: 011 11 :
4 : 100 12 :
0 101 13 :
6 : 110 14 :
7 111 15 :

= = = = O O O O
= = O O k = O O

- O B O = O = O

100
I 075

- 050

- 025

- 0.00

Source: https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

21749

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Positional encoding

e |n practice, a 512-d vector is created using sine and cosine functions.

t(pos, 2¢) = sin(

Token Position

20

Source: http://jalammar.github.io/illustrated-transformer/

pos

30
Embedding Dimension

100002¢/512
t(pos, 2i + 1) = cos(

40

)

POS

100002i/512)

100

-075

0.50

025

000

—0.25

—0.50

-0.75

22 /49

http://jalammar.github.io/illustrated-transformer/

Positional encoding

e The positional encoding vector is added element-wise to the embedding, not concatenated!

| | |
ENCODER #1 DECODER #1
ENCODER #0 DECODER #0

o

T

EMBEDDING
WITH TIME
SIGNAL

POSITIONAL
ENCODING

EMBEDDINGS

INPUT

X1

A

Source: http://jalammar.github.io/illustrated-transformer/

X2

ta| |

+ 11

A2

SUIs

X3

A3

étudiant

23 /49

http://jalammar.github.io/illustrated-transformer/

Encoder layer

e Last tricks of the encoder layers:

+ skip connections (residual layer) N D

e Theinput X is added to the output of the multi- CTT L YT RpRyiyeRyep 4
headed self-attention and normalized (zero mean, A A
unit variance).

» Layer normalization (Ba et al., 2016) is an :” -ayertormt ']
alternative to batch normalization, where the mean u_hJ u_T_l_
and variance are computed over single vectors, not ;

e nm msas
s ZTH o @ @
o xq¢ xo
d J Thinking Machines
1 1

with,u:—Zzz-andcr:—Z(zi—,u)z. . o _

d d Source: http://jalammar.github.io/illustrated-transformer/

e The feedforward network also uses a skip connection and layer normalization.

Ba, J. L., Kiros, J. R, & Hinton, G. E. (2016). Layer Normalization. ArXiv:1607.06450

24 /49

http://jalammar.github.io/illustrated-transformer/

Encoder

e We can now stack 6 (or more, 96 in GPT-3) of these encoder layers and use the final representation of

each word as an input to the decoder.

ENCODER #2

ENCODER #1

Add & Normalize } :

(->(| Add & Normalize | }

! R R
E (Feed Forward) (Feed Forward)
Meeeeoees e :
'.y(Add & Normalize)

1 1

(Self-Attention)

POSITIONAL
ENCODING

X1 X2

Thinking

Source: http://jalammar.github.io/illustrated-transformer/

Machines

AR AL LLEL L

(Softmax)
A
(Linear)
) 4
TN DECODER #2
i i
;"‘"(Add & Normalize)
AE R 3
1K (Feed Forward) (Feed Forward)
S| TemeTem | Sddaeleleletetets §
0 ;"‘"(Add & Normalize)
E B B
":""‘(Encoder-Decoder Attention)
M —— Bocccncncnmnanannnnn 1
,-p-(Add & Normalize)
' A Y
E (Self-Attention)

25/49

http://jalammar.github.io/illustrated-transformer/

Decoder

e Inthe first step of decoding, the final representations of the encoder are used as query and value vectors

of the decoder to produce the first word.

e The input to the decoder is a “start of sentence” symbol.

Decoding time step:(1)2 3 4 5 6 OUTPUT

?

Linear + Softmax

T

\— \.JJ

ENCODER DECODER
))
ENCODER DECODER
_
“WHTve OO0 [OC0 OO
SIGNAL

EMBEDDINGS CITT] (LT 1] LLI1]

INPUT Je suis étudiant

Source: http://jalammar.github.io/illustrated-transformer/

26 /49

http://jalammar.github.io/illustrated-transformer/

Decoder

e The decoder is autoregressive: it outputs words one at a time, using the previously generated words as

an input.
Decoding time step: 1@3 4 5 6 OUTPUT
{
Kencdec Vencdec (Linear + Softmax)
f B 4 N
ENCODERS DECODERS
L—J h—.‘
_
EMBEDDING 1‘ 1‘ +
WITH TIME [TTT] [T TT] [T T T] (TT1 1]
SIGNAL
EMBEDDINGS LT 1] [T T1TT1] LI T] [T T 1]
o suis étudiant PREVIOUS
NPUT : OUTPUTS

Source: http://jalammar.github.io/illustrated-transformer/

27 149

http://jalammar.github.io/illustrated-transformer/

Decoder layer

e Each decoder layer has two multi-head attention sub-
layers:

= A self-attention sub-layer with query/key/values
coming from the generated sentence.

= An encoder-decoder attention sub-layer, with the
query coming from the generated sentence and the
key/value from the encoder.

e The encoder-decoder attention is the regular attentional
mechanism used in seq2seq architectures.

e Apart from this additional sub-layer, the same residual

connection and layer normalization mechanisms are
used.

(
l D
~>{ Add & Norm |

Feed
Forward

Nx | Add & Norm |

Multi-Head
Attention

7

Qutput
Probabillities

1

Softmax)

1

Linear |
4

|
Add & Norm |<-\

Feed
Forward
J

Add & Norm J=~

Multi-Head
Attention

1 7 J Nx

J

|
Add & Norm](—\

Masked
Multi-Head
Attention

A_1 7

.

\.

Positional
Encoding

Input
Embedding

T

INputs

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention Is All You Need. arXiv:1706.03762.

\ | /)

(_!_)_® Positional
Encoding
Output
Embedding

T

Outputs
(shifted right)

28 /49

Masked self-attention

e When the sentence has been fully generated (up to the <eos> symbol), masked self-attention has to

applied in order for a word in the middle of the sentence to not “see” the solution in the input when
learning.

e As usual, learning occurs on minibatches of sentences, not on single words.

Self-Attention Masked Self-Attention

Source: https://jalammar.github.io/illustrated-gpt2/

29 /49

https://jalammar.github.io/illustrated-gpt2/

Output

e The output of the decoder is a simple softmax classification layer, predicting the one-hot encoding of the
word using a vocabulary (vocab_size=25000).

Which word in our vocabulary

is associated with this index? afm

Get the index of the cell

with the highest value
(argmax)

log_probs [HEEEN FEEEEEENEEES =

@12 345 + . Vocab_size

logits NN e

B 12 345 + « Vocab_sl1ze
Decoder stack output HENE

Source: http://jalammar.github.io/illustrated-transformer/

30/49

http://jalammar.github.io/illustrated-transformer/

Training procedure

e The transformer is trained on the WMT datasets:

= English-French: 36M sentences, 32000 unique words.

= English-German: 4.5M sentences, 37000 unigue words.

e Cross-entropy loss, Adam optimizer with scheduling, dropout. Training took 3.5 days on 8 P100 GPUs.
e The sentences can have different lengths, as the decoder is autoregressive.

e The transformer network beat the state-of-the-art performance in translation with less computations and

without any RNN.

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 30.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10" 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10¥ 1.5-10%
MoE [32] 26.03 40.56 2.0-10" 1.2.10%°
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 10?0
GNMT + RL Ensemble [38] 26.30 41.16 1.8-10%° 1.1-10%
ConvS2S Ensemble [9] 26.36 41.29 7.7-1017 1.2.10%!
Transformer (base model) 27.3 38.1 3.3-10'8
Transformer (big) 28.4 41.8 2.3-10%

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al. (2017). Attention Is All You Need. arXiv:1706.03762.

31/49

2 - Self-supervised transformers

32/49

Transformer-based language models

e The Transformer is considered as the AlexNet moment of natural language processing (NLP).

e However, it is limited to supervised learning of sentence-based translation.

o Two families of architectures have been developed from that idea to perform all NLP tasks using
unsupervised pretraining or self-supervised training:

= BERT (Bidirectional Encoder Representations from Transformers) from Google.

= GPT (Generative Pre-trained Transformer) from OpenAl https://openai.com/blog/better-language-
models/.

@CPT2 T BERT

DECODER ENCODER
LI L
DECODER ENCODER
DECODER ENCODER

Source: https://jalammar.github.io/illustrated-gpt2/

Devlin J, Chang M-W, Lee K, Toutanova K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:181004805

33 /49

https://openai.com/blog/better-language-models/
https://jalammar.github.io/illustrated-gpt2/

BERT - Bidirectional Encoder Representations from Transformers

e BERT only uses the encoder of the transformer (12 layers, 12 attention heads, d = 768).

e BERT is pretrained on two different unsupervised tasks before being fine-tuned on supervised tasks.

Class Start/End Span
Label

Single Sentence Cluestion Faragraph

Devlin J, Chang M-W, Lee K, Toutanova K. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. arXiv:181004805 34 / 49

BERT - Bidirectional Encoder Representations from Transformers

e Task 1: Masked language model. Sentences from BooksCorpus and Wikipedia (3.3G words) are

presented to BERT during pre-training, with 15% of the words masked.

e The goal is to predict the masked words from the final representations using a shallow FNN.

Use the output of the
masked word's position
to preaict the masked word

Possible classes:
All English words

0.1% | Aardvark
10% Improvisation

0% | Zyzzyva

FFNN + Softmax]

Randomly mask
15% of tokens

(CLS] Lets stick

Input

[CLS] Let’s stick

Source: https://jalammar.github.io/illustrated-bert/

BERT

35/49

https://jalammar.github.io/illustrated-bert/

BERT - Bidirectional Encoder Representations from Transformers

e Task 2: Next sentence prediction. Two sentences are presented to BERT.

e The goal is to predict from the first representation whether the second sentence should follow the first.

Predict likelihooa
that sentence B
belongs after

1% | IsNext

99% NotNext

sentence A
[FFNN + Softmax]
& & 8
BERT
Tokenized °o o
|HDUt [CLS] the man [MASK] the store [SEP]
|HDUt [CLS] the man [MASK] to the store penguin [MASK] are flightless birds
I Sentence A I I Sentence B I

Source: https://jalammar.github.io/illustrated-bert/

36 /49

https://jalammar.github.io/illustrated-bert/

BERT - Bidirectional Encoder Representations from Transformers

e Once BERT is pretrained, one can use transfer learning with or without fine-tuning from the high-level

representations to perform:

= sentiment analysis / spam detection

= question answering

86% Spam

15% Not Spam

[Classifier]

BERT

1 2 3 4

[CLS] Help Prince Mayuko

Source: https://jalammar.github.io/illustrated-bert/

512

37 /49

https://jalammar.github.io/illustrated-bert/

BERT - Bidirectional Encoder Representations from Transformers

1 - Semi-supervised training on large amounts
of text (books, wikipedia..etc).

The model is trained on a certain task that enables it to grasp
patterns in language. By the end of the training process,

BERT has language-processing abilities capable of empowering
many models we later need to build and train in a supervised way.

Semi-supervised Learning Step

F_______

[
I Model:
|
|

I Dataset:
Objective: Predict the maakgd word
(langauge modeling)
\ — L I - — — e #

Source: https://jalammar.github.io/illustrated-bert/

2 - Supervised training on a specific task with a
labeled dataset.

I Model:
(pre-trained
I in step #1)

I Dataset:

Supervised Learning Step

/ I I I I I I I

o ‘ 75% ‘ Spam
Classifier —_—
29% | Not Spam

Email message

Buy these pills

Win cash prizes

Dear Mr. Atreides, please find attached...

Class
Spam
Spam

MNot Spam

N\

38/49

https://jalammar.github.io/illustrated-bert/

GPT - Generative Pre-trained Transformer

e Asthe Transformer, GPT is an autoregressive language model learning to predict the next word using
only the transformer’s decoder.

6 DECODER BLOCK
. @

2 DECODER BLOCK

DECODER BLOCK

%Transformer— Jecoder

[Feed Forward Neural Network)

Masked Self-Attention

<s> robot must obey

1 2 3 4 4000

Source: https://jalammar.github.io/illustrated-gpt2/

39/49

https://jalammar.github.io/illustrated-gpt2/

GPT - Generative Pre-trained Transformer

Input

Output

recite

the

FIEST

law

Source: https://jalammar.github.io/illustrated-gpt2/

40/49

https://jalammar.github.io/illustrated-gpt2/

GPT - Generative Pre-trained Transformer

e GPT-2 comes in various sizes, with increasing performance.

e GPT-3is even bigger, with 175 billion parameters and a much larger training corpus.

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

DECODER

Model Dimensionality: 768 Model Dimensionality: 1024 Model Dimensionality: 1280 Model Dimensionality: 1600

Source: https://jalammar.github.io/illustrated-gpt2/

41/49

https://jalammar.github.io/illustrated-gpt2/

GPT - Generative Pre-trained Transformer

o GPT can be fine-tuned (transfer learning) to perform machine translation.

Training Dataset

I am a student <to-fr>
let them eat cake <to-fr>

good morning <to-fr> Bonjour

Source: https://jalammar.github.io/illustrated-gpt2/

je sSuis

Qu’ils mangent

etudiant

de

how

Output #2

Position #5 allez-vous
Time step #?2

Output #1

Position #4 [Comment
Time step #1

%Transformer— Decoder

are you <to-fr>

2 3 4 1024

421749

https://jalammar.github.io/illustrated-gpt2/

GPT - Generative Pre-trained Transformer

e GPT can be fine-tuned to summarize Wikipedia articles.

o -

WIKIPEDLA

Thar Bt Byl

R [
Cimtpas
Friturpd iy

W s e

[1]

Temgs

5, 3 vl
2 E

& ri wpen v Tl Conieafd Dbl biiad Lo

Aty Tak Rgsd Ean View raspdy | Seasch Wikipeda Q

Positronic brain

a0 FOT FORENoTe A00ar]

T artiche in abows pica cirvige, For P g covmpuy Daged i Springfield, Magoor, mae Poason (compury

Thiy e npeds. sddtional ciistions fer veritication. Faass felp oo Toartc By addng clatons i rplabis
e PR T PSR Py D CPel e eied] eyl
T BT, P BT - P - PRl - Dee0d - Tk - TR i SO T Ao R e IO N i TR

)

A bormin i & cggical dewicn, orig Ey Bty wries huass THiRy a8 comdral g i JC P
YOO E, . e D] . DAOAAOM TR AT i AOITT d CO e B TRO0RE O B0 PTIEN. VTR AR TR hed RaE nO0On S0 i PROS wngl 1Rag,
| Wl e 3 B Buis weeed mddied a G i of o scheron i wopl. Th Sfen dioey
™ o by oy concegl. in e conied of his Solonal Thees Laws. of Aobotios

[PR
1 il v
2w Abes Wiy

J Helgeross in ofer icion and lime
A1 Abbof ard Coalslio o To ey
1.2 e Avirpird
13 Dot Wi
34 S Tred
A% Py Frocas
34 | Rabor 304 Firm
1.7 Daeninrrea’ ban
10 Buch Moges in P 250 Corlery
9 Mippieny Seamncy Thaase MO0
ERL I S
A1 Smedaeng

& Helprp e

5 Cxiwerad e

Concepiual overview |«

Ay i g BRI el SRR O e Sl aedepd B Ene] T P ol T il Yo e b i gl S piten e e w il Ty
vy] A0 B) A3 ACpAnINTly iFwohan i P o wolite Marmiary (A0S SEGH I MORRGN U] i (o ILIDR Reogerg B B RN ")
The bodut of pimire’s. BM0ras ik DOCHed] Mo Mo, Tl St] PO0WOES — Basch dnh T Thes Lt of AG0RCH — T Tl bt i o wih imaiiemapndand.
gy B b b i Pl e T S i i porieineret Briin il W Thoes Line @ weid] Fuirvi Bt raildiiniiey |8 iSerd piiind idhinigyruryy e fursliarseritil
BOGrTmCh ipy e brsin dued

WY g 0 Of FOCnd O BRI B W RHAHODTHNY Dy U S FODOtE. ASSTONS [SIAIEC DR b NS O DAY M0 B M D RCTRDAORC] AT, Wy O
sy,

A P] b D wrhut MR BEg th T b sy el s Sup ol Wil crapcaly moaady it pahurene Bansvior sl pRHTITSE
b el Ve, Bl S EEH, Y B Pl e 26 e b [SO N T TR Ll S g Meb Dl b Sl it e e A
Thury arg rostend By sy By of e el lxgrtur with matfyrmaton, P greme soiutcn bnder berg Dr. S Cabvan, Chied
Pargngepepcruoiggedd of Ll 5 Pladaons

T TR Lirws e [i D0 rai 7% CMRNY esbubion. Very Cormosl DRRsTS DS k3 FUSNe mirel Sooniemyy rlerpeel e Fasl Liby 01 aopaided 1ens 10
incilda oty an oppceed o a uingle harran; in Aumoa's lator worice s Rodors and Eper T in refermed o se the "Teroth Law™. A o ong Brain conatrucied s
B CCUARING T, B8 OO K g B ADDC COMMTDl CRRDGE, w. SO 0 Furel 3 SiDie, chiglion DAVECAInY 5O T I wREE BEM I0 SRR GFOUT DrobeTe
witazol tha Throe Laws il # corpioioly. Speosiied b s ™ v maxel werer b B hawe ra e cmaity ol

LS koqrtic FnAsnn, S TROgS Laws Can o COMANS, & T modAcaton of T ATt meois Jerugn

w Flobet Tl B D b SO vl S el e T (LI Ol Ty D0 1ol Pulrvel) (0000 PabiTebabivid. 190 FLBTR, Wm0 Tl DA™ S0 DA Dol At By na
& Floboty Tl 90 POl MRS CRTHTE T & P ieng ey Fure e Saecrndl Lo Soinses. Bnd theeelof NN Lralor DAaEL BN, IOVGEnG: thary G0 NGl SMoURE

i T Livs.
u Flobs Ml 5 OriOaalg, SR Maos DAEYE Froem @ haimusn Desne) S S N S0 K3 PASTT 8 Paiman, all i Niusnt drver Tl IFIrmt L. ek S0 ta it of
abrmn all Tt 1 cussid poreforiabiy B etk e sl of an sl
Poisoiy of they lter type d: | THCECY peacIon, Shough ety roboby. S CONLEn palely MERSONL BN RYHNTIL, 1 & Donceen e higman

B bk BT il el A i Wl AR . N W e, D) LB e el R o TR ST D B

In Allen’s trilogy (e

Slpmirein) Pt bor i Riren beshe wermes) by SiNer drtord Mg Adrmen i deat For aeacls. w floger VB die Men s Cailac ooy & Spates rdetens Saled
[rabbept Acitas el B gravilioods besdn B oSy npeandd and capascry impy swpmaEtiy o aldonad poiness degns. bt e siong nfiuence of bacinn maky
VORNA TS LBl it AviPm s i DRy Do'el S0ialos Frdndelh Lireisu), oPaicied B OO0 (Pt Deiml ok f SPech Fuie Jy Dide'cs L0 o) ool S0l Dsed Bapid &
WErralied i e Throe Laws B Ty B e 3 “durn ! BT MaArEh raRares S can B8 prograsrmed @i R wacdasd Lasn
VRS Of B LR B R TRy DTy whecth soscety re e ad sl

Source: https://jalammar.github.io/illustrated-gpt2/

o -

WIKIPEDLA

Thar Bt Byl

R [
Cimtpas
Friturpd iy

W s e

[1]

Temgs

5, 3 vl
2 E

& ri wpen v Tl Conieafd Dbl biiad Lo

Aty Tak Rgsd Ean View raspdy | Seasch Wikipeda Q

Positronic brain

a0 FOT FORENoTe A00ar]

T artiche in abows pica cirvige, For P g covmpuy Daged i Springfield, Magoor, mae Poason (compury

Thiy aricin npsds. sdditional cfiabiony. tor veritication. Figas help e see T artcn Iy addng otatons i rplabis
e PR T PSR Py D CPel e eied] eyl
T BT, P BT - P - PRl - Dee0d - Tk - TR i SO T Ao R e IO N i TR

ey
Ap bermin i & ol ST hmm““m‘mlMH!wmﬂﬂmh
YODE. B S LA i SO TR AT WETeb hasrmony wTOhE Peg Bt n0D0n E0ne 0 1 B3G W 10D,

] : parkean. sl 1 e o sesren ko S coreog The e viory
P by i Bl rnclt i e coemda off b Botonal Thews Lawn. of Rotamon

[T T T

1 Carcaphesl poaroas
2 by Wby

J Helgeross in ofer icion and lime
A1 Abbof ard Coalslio o To ey
1.2 e Avirpird
13 Dot Wi
34 S Tred
A% Py Frocas
34 | Rabor 304 Firm
1.7 Daeninrrea’ ban
10 Buch Moges in P 250 Corlery
9 Mippieny Seamncy Thaase MO0

310 Soe BT
AL]
& Helprp e
5 Coiorrad e
- 2 .
"E.-mw-:munlu\-:n'l-.m' r 3
<wim v e v BlE TNa Db gl G O Ern T e b el T i Ll " wad e = : xa] tary
rungralg Io calainn §nd sppanrily imvohag a e of < Ty RO rEtl I AGrEg Ml 4 pOwWWY IOLIDE ey B Ersng. i
o LT . Tl bl i el OGRS — il dnh T TPk Lo of PRGEn0Ra0d — Tl Woil P o o o™ 1 7 el PP il
Wt @ o ilated e P = Prn afo o Thres Laew @ weaied M Been reswriiiey b o] peari rediagreyg De Frsla—arrls
BOGT DT IR O T b
[F] e ¥ 5l W] Tobd ul T " ' FE [DA H W i T i n PPN AT Aee Ty

A PO B, CART pily b b 150 FDOF WA AT Sra MRy mmaaiity et D B B GEHTITA Y
EsT ey D e W e i Treind Lindd =i wf) Peb Dl &l A& Vo Sy el
Thary ol By sy B e T T Bt B

F 1] Ladwih

T Treted Lirad ade bl & DN ROPFEFhIabon. Vafy COToM DR DESQed 1 AN w0y

ncilda Frmardy e oppoed o wingle: harman; in Aaimos's leior workcs b

CPliol D BT B0 T A Al AW W Sl GO
E cn wer lalid o hive o peftucraily o &
4 AL

» Flobait Tl B8 OF i BR0U i Syl (e TRl LI Dietiiad | Ty O Nl Puryel T [0SO Pty |

& Robofy and D

B DA f N5 OOPRHEEE b B & P DOR DONl CHDLE RS Sl] B0 el g Sk
withuoul Tha Throe Lews infiblng # comploioly. Spociaiiied B sr 'ﬁ [Ieb
AR W AN I o ok

i i rofgrrod da e b
Lireer ppasric corciSony, e Thips Ly can oe o T mEaic i TH S =

s Faboms Dl 8o I DATHBE BTN & PaATLAN Derd) Iy funl T s onedl LW cnned. an thee sl TN Araber b o
s The re

= Aot Nl B8 O-00an o a0yl P S, Froems i I Dudsru) D A4 T A AT el ol TG
proally o ulry tor - ar amiall Pl A conald O oy P okt w il OF &N e

Pagiots o thap mer b Snpshy (R e COmETEnr STy IRChIETUN TENDCE B RSCE, g -t rocaoby. o5 SO RaNey MERALIY Bnd BRI N a Sonce i huran

Im Allen's trilogy

By o st ylew gy Fure B we e by oepe i Trme) ke 18]

& menne B greviionic besin B oSy apeed and
POl 8 LD FipBl] Afr il d w0 (el SO0t edT. Frindiy
i i e Fivee Laws. Bocisie Ty a0 f? Sbpender

VIR OF T LI o §NTN TRy TS st Bpascty M

43 /49

https://jalammar.github.io/illustrated-gpt2/

GPT - Generative Pre-trained Transformer

e GPT can be fine-tuned to summarize Wikipedia articles.

Output #2
Position #115
Time step #?2

Output #1
Position #114
Time step #1

Training Dataset

Article #1 tokens <summarize> Article #1 Summary
: . Article #2 .
Article #2 tokens = <summarize> padding
Summary @Transformer— Decoder
Article #3 tokens <summarize> LD
Summary

<summarize>

1 e 113 114 256

Source: https://jalammar.github.io/illustrated-gpt2/

44 / 49

https://jalammar.github.io/illustrated-gpt2/

Try transformers at https://huggingface.co/

pip install transformers

o,

Write With Transformer distil-gpt2 ©

I: Shuffle initial text @ Trigger autocomplete or | tab Select suggestion _t || Jand | enter Cancel suggestion | esc

1r
Save & Publish u

Neurocomputing is‘

the leading topic of the next century.
now more popular than a year ago, wit...

a new field of study that explores the w...

451749

Github copilot

e Github and OpenAl trained a GPT-3-like architecture on the available open source code.

e Copilot is able to “autocomplete” the code based on a simple comment/docstring.

https://copilot.github.com/

import da

def parse_expenses(ex 3= g.
"""Parse the list of expenses and return the list of triples (date, va

46 / 49

https://copilot.github.com/

ChatGPT

< C' @& chat.openai.com/chat

+ New chat

[J Adding Regularization Z i

Clear conversations

Dark mode

OpenAl Discord

Updates & FAQ

Ju

a & % B

Why can you only apply backpropagation through time (BPTT) for a limited number of
steps on a RNN and when is this a problem? Explain and provide an example.

Backpropagation through time (BPTT) is an algorithm for training recurrent neural
networks (RNNs) that involves unrolling the RNN through time and applying the
backpropagation algorithm to each time step. However, BPTT can only be applied for a
limited number of steps on an RNN because it suffers from the vanishing and exploding

gradients problem.

The vanishing gradients problem occurs when the gradients of the weights in the network
become very small, which can make it difficult for the optimization algorithm to update the
weights in a meaningful way. This can slow down the training process and make it difficult

for the network to learn.

The exploding gradients problem occurs when the gradients of the weights in the network
become very large, which can cause the weights to become unstable and may even cause

the network to diverge.

Both of these problems can be exacerbated when BPTT is applied for a large number of
time steps, as the gradients can become increasingly small or large as they are
propagated through the network. This can make it difficult for the optimization algorithm

to find a good set of weights and can lead to poor performance on the task.

For example, suppose we are training an RNN to predict the next word in a sentence given
the previous words. If we try to apply BPTT for a very long sequence of words (e.g., a
paragraph or an entire book), the gradients may become very small or large as they are
propagated through the network, making it difficult for the optimization algorithm to find a
good set of weights. In this case, it would be advisable to limit the number of time steps
for which BPTT is applied in order to avoid the vanishing and exploding gradients

problems. > Regenerate response

https://chat.openai.com/

[¢

47 149

https://chat.openai.com/

Transformers and NLP

o All NLP tasks (translation, sentence classification, text generation) are now done using Large Language
Models (LLM), self-supervisedly pre-trained on huge corpuses.

e BERT can be used for feature extraction, while GPT is more generative.

e Transformer architectures seem to scale: more parameters = better performance. Is there a limit?

e The price to pay is that these models are very
o expensive to train (training one instance of GPT-3
T3 (1759 o costs 12MS) and to use (GPT-3 is only accessible
with an API).

e Many attempts have been made to reduce the size
of these models while keeping a satisfying
performance.

BERT-Large (340M) u D|St|IBER-I-, ROBERTa, BAR-I-, TS, XLNet

e See https://medium.com/mlearning-ai/recent-
language-models-9fcf1b5f17f5

100 Megatron-Turing NLG (530B)

Megatron-LM (8.3B)
Turing-NLG (17.2B)

10

GPT-2 (1.5B)

Model Size (in billions of parameters)

0.1

ELMo (94M)

Source: https://julsimon.medium.com/large-language-models-a-new-
moores-law-66623de5631b

48 /49

https://julsimon.medium.com/large-language-models-a-new-moores-law-66623de5631b
https://medium.com/mlearning-ai/recent-language-models-9fcf1b5f17f5

References

e Various great blog posts by Jay Alammar to understand attentional networks, transformers, etc:

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seg-models-with-
attention/

nttp://jalammar.github.io/illustrated-transformer/

nttps://jalammar.github.io/illustrated-bert/

nttps://jalammar.github.io/illustrated-gpt2/

o Application of transformers outside NLP:

https://medium.com/swlh/transformers-are-not-only-for-nlp-cd837c9f175

49 /49

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/
http://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-gpt2/
https://medium.com/swlh/transformers-are-not-only-for-nlp-cd837c9f175

