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Vision transformer (ViT)

e The transformer architecture can also be applied to computer vision, by splitting images into a sequence
of small patches (16x16).

e The sequence of patches can then be classified using the first output of the Transformer encoder (BERT)
using supervised learning on Imagenet.

Source: https://ai.googleblog.com/2020/12/transformers-for-image-recognition-at.html

Dosovitskiy et al. (2021). An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv:201011929
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Vision transformer (ViT)

e The Vision Transformer (ViT) outperforms state-of-the-art CNNs on Imagenet while requiring less
computations (Flops), but only when pretrained on bigger datasets.

e The performance is acceptable when trained on ImageNet (1M images), great when pre-trained on
ImageNet-21k (14M images), and state-of-the-art when pre-trained on Google’s internal JFT-300M dataset
(300M images).

e Transfer learning on smaller datasets is also SotA.
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2 - Self-supervised Vision Transformer
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Self-supervised Vision Transformer (SiT)

o ViT only works on big supervised datasets (ImageNet). Can we benefit from self-supervised learning as in

BERT or GPT?

e The Self-supervised Vision Transformer (SiT) has an denoising autoencoder-like structure, reconstructing
corrupted patches autoregressively.
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Self-supervised Vision Transformer (SiT)

e Self-supervised learning is possible through from data augmentation, where various corruptions
(masking, replacing, color distortion, blurring) are applied to the input image, but SiT must reconstruct the

original image (denoising autoencoder, reconstruction loss).

Random
Replace

Colour
Distortion

e An auxiliary rotation loss forces SiT to predict the orientation of the image (e.g. 30°).

e An auxiliary contrastive loss ensures that high-level representations are different for different images.

Linear Evaluation

Domain Transfer

Method Backbone CIFARTO CIFARI00 | Tiny-ImageNet | CI00—CI0 C10 = C100

DeepCluster [19] ResNet-32 | 43.31% £0.62 | 20.44% £0.80 | 11.64% +0.21 | 43.39% + 1.84 | 18.37% & 0.41
RotationNet [23] ResNet-32 | 62.00% £0.79 | 29.02% L£0.18 | 14.73% £ 0.48 | 52.22% £ 0.70 | 27.02% & 0.20
Deep InfoMax [20] ResNet-32 | 47.13% £0.45 | 24.07% £0.05 | 17.51% £0.15 | 45.05% +0.24 | 23.73% + 0.04
SImCLR [38] ResNet-32 | 77.02% £0.64 | 42.13% £0.35 | 25.79% £0.4 | 65.50% £0.76 | 36.21% + 0.16
SImCLR [8] ResNet-56 | 78.75% £ 0.24 | 44.33% = 0.48 n/a 66.19% £ 0.80 | 36.79% & 0.45
Relational Reasoning [21] | ResNet-32 | 74.99% & 0.07 | 46.17% £0.16 | 30.54% £ 0.42 | 67.81% £0.42 | 41.50% + 0.35
Relational Reasoning [21] ResNet-56 77.51% +0.00 | 47.90% + 0.27 n/a 68.66% + 0.21 | 42.19% +0.28
EI.T (ours) - Transformer | 81.98% +0.24 | 54.31%+0.13 | 40.35% =+ 0.27 | 73.79% +0.15 | 55.72% =+ 0.13

Inear projection
SIT (ours) - Transformer | 83.50% & 0.11 | 57.75% +0.21 | 43.06% +0.14 | 75.52% & 0.11 | 57.89% + 0.14

Non-Linear projection

Atito, S., Awais, M., and Kittler, J. (2021). SiT: Self-supervised vision Transformer. arXiv:2104.03602
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Self-distillation with no labels (DINO)

e Another approach for self-supervised learning has been proposed by Facebook Al using self-distillation.
e The images are split into global and local patches at different scales.

e Global patches contain label-related information (whole objects) while local patches contain finer details.

Davide Coccomim | 2021

Source: https://towardsdatascience.com/on-dino-self-distillation-with-no-labels-c29e9365e382

Caron et al. (2021). Emerging Properties in Self-Supervised Vision Transformers. arXiv:2104.14294
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Self-distillation with no labels (DINO)

e The idea of self-distillation in DINO is to use two similar ViT networks to oss.
classify the patches. - p2log pi
s

e The teacher network gets the global views as an input, while the student

softmax softmax
network get both the local and global ones. centian'ng
e Both have a MLP head to predict the softmax probabilities, but do not . ema [ h'
student gy, - cacher gt
use any labels. i :

o The student tries to imitate the output of the teacher, by minimizing the cross-entropy (or KL divergence)
between the two probability distributions.

e The teacher slowly integrates the weights of the student (momentum or exponentially moving average
ema):

Hteacher A 5 Hteacher + (]- _ 6 ) Hstudent

Caron et al. (2021). Emerging Properties in Self-Supervised Vision Transformers. arXiv:2104.14294 9/16



Self-distillation with no labels (DINO)

Source: https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-supervised-transformers-and-10x-more-efficient-training/

Caron, M., Touvron, H., Misra, |., Jégou, H., Mairal, J., Bojanowski, P, et al. (2021). Emerging Properties in Self-Supervised Vision Transformers. arXiv:2104.14294
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Self-distillation with no labels (DINO)

The predicted classes do not matter when pre-
training, as there is no ground truth.

The only thing that matters is the high-level
representation of an image before the softmax
output, which can be used for transfer learning.

Self-distillation forces the representations to be
meaningful at both the global and local scales, as
the teacher gets global views.

ImageNet classes are already separated in the
high-level representations: a simple kNN (k-nearest
neighbour) classifier achieves 74.5% accuracy

(vs. 79.3% for a supervised ResNet50).
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https://ai.facebook.com/blog/dino-paws-computer-vision-with-self-
supervised-transformers-and-10x-more-efficient-training
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Self-distillation with no labels (DINO)

e More interestingly, by looking at the self-attention layers, one can obtain saliency maps that perform
object segmentation without ever having been trained to!

@ Advancing the state of the art in computer vision with self-supervised Vision Iransformers

A0
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3 - Other domains



Transformer for time series

e Transformers can also be used for time-series classification or forecasting instead of RNNs.

o Example: weather forecasting, market prices, etc.
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Speech processing

e XLS-R from Facebook is a transformer-based architecture trained on 436,000 hours of publicly available
speech recordings, from 128 languages.

e Self-supervised: contrastive learning and masked language modelling.

e Other models: UniSpeech, HUBERT, BigSSL...
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Source: https://ai.facebook.com/blog/xls-r-self-supervised-speech-processing-for-128-languages/
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Additional resources

nttps://theaisummer.com/vision-transformer/

nttps://theaisummer.com/transformers-computer-vision/

nttps://iaml-it.github.io/posts/2021-04-28-transformers-in-vision/

nttps://d2l.ai/chapter_attention-mechanisms-and-transformers/vision-transformer.html
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