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1 - Towards biological deep learning?
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The credit assignment problem

Source: https://simons.berkeley.edu/sites/default/files/docs/9574/backpropagationanddeeplearninginthebrain-timothylillicrap.pdf
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Backpropagation is not biologically plausible

Backpropagation solves the credit assignment A synapse does know not the weight of other
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Feedback alignment
An alternative mechanism consists of backpropagating
the error through another set of feedback weights.

Feedback connections are ubiquitous in the brain,
especially in the neocortex.

The feedback weights do not need to learn: they can stay
random.

The mechanism only works for small networks on
MNIST until now.

Lillicrap et al. (2016). Random synaptic feedback weights support error backpropagation for deep learning. Nat Commun 7, 1–10. doi:10.1038/ncomms13276. 5 / 55



Predictive coding
Another alternative is predictive coding (Rao and
Ballard, 1999), where the role of each layer is to
predict the activity of the previous layer by learning
a predictive model and computing a prediction
error.

The brain does not process its sensory inputs in a
purely feedforward manner, it compares it to its
own predictions or expectations: you perceive only
what you cannot predict.

In a hierarchical predictive network, each layer is
composed of error and prediction neurons.

All learning rules are local, no need for
backpropagation. Problem: very slow… Source: https://doi.org/10.1038/s41593-018-0200-7

Rao & Ballard (1999). Predictive coding in the visual cortex: A functional interpretation of some extra-classical receptive-field effects. Nature Neuroscience, 2(1) doi:10.1038/4580 6 / 55
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Active inference
More generally, one can understand brain behavior
as:

1. learning a generative model of the world,
i.e. predicting what is going to happen next.

2. minimizing the surprise / uncertainty, i.e. acting in
order to improve the model and reach desirable
outcomes (rewards).

Active inference proposes that the brain minimizes
its free energy through action selection, perception
and learning:

Although active inference is mostly a framework about Bayesian statistics and neuroscience, deep neural
network implementations (using predictive coding networks) start to appear, paving the way for the next-
gen AI.

F = D  [p(x)∣∣q(x)] +KL H[q(x)]
Source: https://www.frontiersin.org/articles/10.3389/frobt.2018.00021
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Deep learning architectures are way too simple and unidirectional
Deep learning architectures are mostly
unidirectional, from the input to the output, without
feedback connections.

The brain is totally differently organized: a big
“mess” of interconnected areas processing
everything in parallel.

The figure on the left is only for vision, and only for
the cerebral cortex: the thalamus, basal ganglia,
hippocampus, cerebellum, etc, create additional
shortcuts.

Is the complex structure of the brain just a side
effect of evolution, or is it the only possible
solution?

Inductive bias: the choice of the architecture
constrains the functions it can perform / learn.

Felleman, D. J., and Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47. doi:10.1093/cercor/1.1.1. 8 / 55



2 - Neural dynamics
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Biological neurons have dynamics
The artificial neuron has no dynamics, it is a simple mathematical function:

If you do not change the inputs to an artificial neuron, its output won’t change.

Time does not exist, even in a LSTM: the only temporal variable is the frequency at which inputs are set.
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Biological neurons have dynamics
Biological neurons have dynamics:

They adapt their firing rate to constant inputs.

They continue firing after an input disappears.

They fire even in the absence of inputs (tonic firing).

These dynamics are essential to information processing in recurrent populations.
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Reservoir computing
The concept of Reservoir Computing (RC) was developed simultaneously by two researchers at the
beginning of the 2000s.

Herbert Jaeger (Bremen) introduced echo-state networks (ESN) using rate-coded neurons.

Wolfgang Maass (TU Graz) introduced liquid state machines (LSM) using spiking neurons.

Jaeger, H. (2001). The “echo state” approach to analysing and training recurrent neural networks. Technical Report.

Maass, W., Natschläger, T., and Markram, H. (2002). Real-time computing without stable states: a new framework for neural computation based on
perturbations. Neural computation 14, 2531–60. doi:10.1162/089976602760407955.

12 / 55



Echo-state networks
An ESN is a set of recurrent units (sparsely connected) exhibiting complex spatiotemporal dynamics.

Rate-coded neurons in the reservoir integrate inputs and recurrent connections using an ODE:

The output of a neuron uses the tanh function (between -1 and 1):

τ  +
dt

dx  (t)j
x  (t) =j  W  I  (t) +

i

∑ ij
IN

i  W  r  (t)
i

∑ ij i

r  (t) =j tanh(x  (t))j

Tanaka et al. (2019). Recent advances in physical reservoir computing: A review. Neural Networks 115, 100–123. doi:10.1016/j.neunet.2019.03.005. 13 / 55



Echo-state networks
Readout neurons (or output neurons) transform
linearly the activity in the reservoir:

The recurrent weights are randomly initialized and fixed throughout learning:

Supervised learning can be used to train the readout weights to reproduce desired targets.

z  (t) =k  W  r  (t)
j

∑ jk
OUT

j

w  ∼ij N (0,  )
 N

g

Tanaka et al. (2019). Recent advances in physical reservoir computing: A review. Neural Networks 115, 100–123. doi:10.1016/j.neunet.2019.03.005. 14 / 55



Echo-state networks
When , the network has no dynamics: the activity quickly fades to 0 when the input is removed.g < 1
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Echo-state networks
For , the reservoir exhibits some transcient dynamics but eventually fades to 0 (echo-state
property).

g = 1
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Echo-state networks
For , the reservoir exhibits many stable attractors due to its rich dynamics.g = 1.5
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Echo-state networks
For higher values of , there are no stable attractors anymore: chaotic behavior.g
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Representational power at the edge of chaos
For , different inputs (initial states) lead to different attractors.g = 1.5
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Chaotic behavior for high values of 

In the chaotic regime, the slightest uncertainty on the initial conditions (or the presence of noise)
produces very different trajectories on the long-term.

g
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Edge of chaos
The chaotic regime appears for .

 is the edge of chaos: the dynamics are very rich, but the network is not chaotic yet.

g > 1.5

g = 1.5
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Lorenz attractor
The Lorenz attractor is a famous example of a chaotic attractor.

The position  of a particle is describe by a set of 3 deterministic ordinary differential equations:

The resulting trajectories over time have complex dynamics and are chaotic:

The slightest change in the initial conditions generates different trajectories.

x, y, z

  

⎩
⎨

⎧
 = σ (y − x)

dt

dx

 = x (ρ − z) − y
dt

dy

 = x y − β z
dt

dz

Lorenz Attractor simulationLorenz Attractor simulation
ShareShare
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Training the readout neurons

Using the reservoir as input the linear readout
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Pattern separation
The reservoir projects a low-dimensional input into a high-dimensional spatio-temporal feature space
where trajectories becomes linearly separable.

The reservoir increases the distance between the input patterns.

Input patterns are separated in both space (neurons) and time: the readout neurons need much less
weights than the equivalent MLP: better generalization and faster learning.

The only drawback is that it does not deal very well with high-dimensional inputs (images).

Seoane, L. F. (2019). Evolutionary aspects of reservoir computing. Philosophical Transactions of the Royal Society B. doi:10.1098/rstb.2018.0377. 24 / 55



Applications of Reservoir Computing
Forecasting: ESN are able to predict the future of chaotic systems (stock market, weather) much better
than static RNN.

Source: https://towardsdatascience.com/predicting-stock-prices-with-echo-state-networks-f910809d23d4
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Applications of Reservoir Computing
Physics: RC networks can be used to predict the evolution of chaotic systems (Lorenz, Mackey-Glass,
Kuramoto-Sivashinsky) at very long time scales (8 times the Lyapunov time).

Pathak et al. (2018). Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. Physical Review Letters 120, 024102–024102. doi:10.1103/PhysRevLett.120.024102. 26 / 55



Physical Reservoir Computing
The cool thing with reservoirs is that they do not
have to be simulated by classical von Neumann
architectures (CPU, GPU).

Anything able to exhibit dynamics at the edge of
chaos can be used:

VLSI (memristors), magnetronics, photonics
(lasers), spintronics (nanoscale electronics)…

This can limit drastically the energy consumption
of ML algorithms (200W for a GPU).

Even biological or physical systems can be used…

Tanaka et al. (2018). Recent Advances in Physical Reservoir Computing: A Review. arXiv:1808.04962 27 / 55



Pattern recognition in a bucket
A bucket of water can be used as a reservoir.

Different motors provide inputs to the reservoir by creating
weights.

The surface of the bucket is recorded and used as an input to
a linear algorithm.

It can learn non-linear operations (XOR) or even speech
recognition.

Fernando, C., and Sojakka, S. (2003). Pattern Recognition in a Bucket. doi:10.1007/978-3-540-39432-7_63. 28 / 55



RC with a in-silico culture of biological neurons
Real biological neurons can be kept alive in a culture and stimulated /recorded to implement a reservoir.

Frega et al. (2014). Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology. Scientific Reports 4, 1–14. doi:10.1038/srep05489. 29 / 55



RC in cultures of E.Coli bacteria
Escherichia Coli bacteria change their mRNA in
response to various external factors (temperature,
chemical products, etc) and interact with each
other.

Their mRNA encode a dynamical trajectory
reflecting the inputs.

By placing them on a microarray, one can linearly
learn to perform non-linear operations on the
inputs.

Jones, B., Stekel, D., Rowe, J., and Fernando, C. (2007). Is there a Liquid State Machine in the Bacterium Escherichia Coli? doi:10.1109/ALIFE.2007.367795. 30 / 55



3 - Spiking networks and Neuromorphic computing
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Biological neurons communicate through spikes
The two important dimensions of the information
exchanged by neurons are:

The instantaneous frequency or firing rate:
number of spikes per second (Hz).

The precise timing of the spikes.

The shape of the spike (amplitude, duration) does
not matter much.

Spikes are binary signals (0 or 1) at precise
moments of time.

Rate-coded neurons only represent the firing rate
of a neuron and ignore spike timing.

Spiking neurons represent explicitly spike timing,
but omit the details of action potentials.

Rossant et al. (2011). Fitting Neuron Models to Spike Trains. Front. Neurosci. 5. doi:10.3389/fnins.2011.00009 32 / 55



The leaky integrate-and-fire neuron (Lapicque, 1907)
The leaky integrate-and-fire (LIF) neuron has a
membrane potential  that integrates its input
current :

 is the membrane capacitance,  the leak
conductance and  the resting potential.

In the absence of input current ( ), the
membrane potential is equal to the resting
potential.

When the membrane potential exceeds a threshold 
, the neuron emits a spike and the membrane

potential is reset to the reset potential  for a
fixed refractory period .
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Hebbian learning
Hebbian learning postulates that synapses strengthen based on the correlation between the activity of
the pre- and post-synaptic neurons:

Source: 

When an axon of cell A is near enough to excite a cell B and repeatedly or persistently takes part in
firing it, some growth process or metabolic change takes place in one or both cells such that A’s
efficiency, as one of the cells firing B, is increased.

Donald Hebb, 1949

https://slideplayer.com/slide/11511675/
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STDP: Spike-timing dependent plasticity
Synaptic efficiencies actually evolve depending on the the causation between the neuron’s firing patterns:

If the pre-synaptic neuron fires before the post-synaptic one, the weight is increased (long-term
potentiation). Pre causes Post to fire.

If it fires after, the weight is decreased (long-term depression). Pre does not cause Post to fire.

Bi, G. and Poo, M. (2001). Synaptic modification of correlated activity: Hebb’s postulate revisited. Ann. Rev. Neurosci., 24:139-166. 35 / 55



STDP: Spike-timing dependent plasticity
The STDP (spike-timing dependent plasticity)
plasticity rule describes how the weight of a
synapse evolves when the pre-synaptic neuron fires
at  and the post-synaptic one fires at .

STDP can be implemented online using traces.

More complex variants of STDP (triplet STDP) exist,
but this is the main model of synaptic plasticity in
spiking networks.

t  pre t  post

Δw =   

⎩
⎨
⎧A exp −  if t  > t  

+
τ+

t  − t  pre post
post pre

A exp −  if t  > t  

−
τ−

t  − t  pre post
pre post

Bi, G. and Poo, M. (2001). Synaptic modification of correlated activity: Hebb’s postulate revisited. Ann. Rev. Neurosci., 24:139-166. 36 / 55



Deep convolutional spiking networks
A lot of work has lately focused on deep spiking networks, either using a modified version of
backpropagation or using STDP.

The Masquelier lab has proposed a deep spiking convolutional network learning to extract features using
STDP (unsupervised learning).

A simple classifier (SVM) then learns to predict classes.

Kheradpisheh et al. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67. doi:10.1016/j.neunet.2017.12.005. 37 / 55



Deep convolutional spiking networks
The convolutional and pooling layers work just as in regular CNNs (shared weights), except the neurons
are integrate-and-fire (IF).

There is additionally a temporal coding scheme, where the first neuron to emit a spike at a particular
location (i.e. over all feature maps) inhibits all the others.

This ensures selectivity of the features through sparse coding: only one feature can be detected at a
given location.

STDP allows to learn causation between the features and to extract increasingly complex features.

Kheradpisheh et al. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67. doi:10.1016/j.neunet.2017.12.005. 38 / 55



Deep convolutional spiking networks
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Deep convolutional spiking networks

STDP-based spiking deep convolutional neural networks for object recognitionSTDP-based spiking deep convolutional neural networks for object recognition
ShareShare
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https://www.youtube.com/watch?v=u32Xnz2hDkE


Deep convolutional spiking networks
The network is trained unsupervisedly on various datasets and obtains accuracies close to the state of
the art:

Caltech face/motorbike dataset.

ETH-80

MNIST

Kheradpisheh et al. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67. doi:10.1016/j.neunet.2017.12.005. 41 / 55



Deep convolutional spiking networks
The performance on MNIST is in line with classical 3-layered CNNs, but without backpropagation!

Kheradpisheh et al. (2018). STDP-based spiking deep convolutional neural networks for object recognition. Neural Networks 99, 56–67. doi:10.1016/j.neunet.2017.12.005. 42 / 55



Event-based cameras

Event-Based Camera vs Standard CameraEvent-Based Camera vs Standard Camera
ShareShare
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https://www.youtube.com/watch?v=kPCZESVfHoQ


Event-based cameras

High Speed and High Dynamic Range Video with an Event CameraHigh Speed and High Dynamic Range Video with an Event Camera
ShareShare
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https://www.youtube.com/watch?v=eomALySSGVU


Neuromorphic computing
Event-based cameras are inspired from the retina (neuromorphic) and emit spikes corresponding to
luminosity changes.

Source: 

Classical von Neumann computers cannot cope with the high fps of event-based cameras.

Spiking neural networks can be used to process the events (classification, control, etc). But do we have
the hardware for that?

https://www.researchgate.net/publication/280600732_A_Computational_Model_of_Innate_Directional_Selectivity_Refined_by_Visual_Experience
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Intel Loihi

https://en.wikichip.org/wiki/intel/loihi 46 / 55
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Intel Loihi
Loihi implements 128 neuromorphic cores, each containing 1,024 primitive spiking neural units grouped
into tree-like structures in order to simplify the implementation.

https://en.wikichip.org/wiki/intel/loihi 47 / 55
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Intel Loihi
Each neuromorphic core transits spikes to the other cores.

Fortunately, the firing rates in a spiking network are usually
low (10 Hz), what limits the communication costs inside the
chip.

Synapses are learnable with STDP mechanisms (memristors).

https://en.wikichip.org/wiki/intel/loihi 48 / 55
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Neuromorphic computing
Intel Loihi consumes 1/1000th of the energy
needed by a modern GPU.

Finding suitable algorithms would solve the
power consumption of current deep learning-
based algorithms.

Alternatives to Intel Loihi are:

FPGA

IBM TrueNorth

Spinnaker (University of Manchester and
Dresden).

Brainchip

Intel Loihi 2 (2022)

The number of simulated neurons and synapses is
still very far away from the human brain, but getting
closer!

Source: https://fuse.wikichip.org/news/2519/intel-labs-builds-a-
neuromorphic-system-with-64-to-768-loihi-chips-8-million-to-100-million-
neurons/
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4 - Self-organization
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Self-organization

There are two complementary approaches to unsupervised learning:

the statistical approach, which tries to extract the most relevant information from the distribution of
unlabeled data (autoencoders, etc).

self-organization, which tries to understand the principles of organization of natural systems and use
them to create efficient algorithms.

Self-organization is a generic process relying on four basic principles: locality of computations, learning,
competition and cooperation.
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Self-organization
Self-organization is observed in a wide range of natural processes:

Physics: formation of crystals, star formation, chemical reactions…

Biology: folding of proteins, social insects, flocking behavior, brain functioning, Gaia hypothesis…

Social science: critical mass, group thinking, herd behavior…

52 / 55



Self-organization : locality of computations and learning
Not self-organized: Self-organized:

A self-organizing system is composed of elementary units (particles, cells, neurons, organs, individuals…)
which all perform similar deterministic functions (rule of behavior) on a small part of the available
information.

There is no central supervisor or coordinator that knows everything and tells each unit what to do:

they have their own rule of behavior and apply it to the information they receive.

The units are able to adapt their behavior to the available information: principle of localized learning.

There is no explicit loss function specifying what the system should do: emergence.
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Example: Conway’s game of life.
The rules of Conway’s Game of Life (1970) are
extremely simple:

A cell is either dead or alive.

A living cell with less than 1 neighbor dies.

A living cell with more than 4 neighbors dies.

A dead cell with 3 neighbors relives.

Despite this simplicity, GoL can exhibit very complex patterns (fractals, spaceships, pulsars).

The GoL is an example of self-organizing cellular automata.

Source: https://www.jakubkonka.com/2015/03/15/game-of-life.html

https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life 54 / 55
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Key differences between deep networks and the brain
Bio-inspired AI has to tackle many challenges.

No backpropagation in the brain, at least in its
current form.

Information processing is local to each neuron and
synapse.

Complex recurrent architecture (feedback
connections).

Neurons have non-linear dynamics, especially as
populations (edge of chaos).

Emergence of functions: the whole is more than
the sum of its parts

Self-organization. There is no explicit loss function
to minimize: the only task of the brain is to ensure
survival of the organism (homeostasis).

Embodiment: the brain is part of a body.

Source: https://www.wsj.com/articles/should-artificial-intelligence-copy-
the-human-brain-1533355265
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