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Abstract

Neuro-computational models allow to study the brain mechanisms involved in intelligent be-
havior and extract essential computational principles which can be implemented in cognitive
systems. They are a promising solution to achieve a brain-like artificial intelligence that can
compete with natural intelligence on realistic behaviors. A crucial property of intelligent behav-
ior is motivation, defined as the incentive to interact with the world in order to achieve specific
goals, either extrinsic (obtaining rewards such as food or money, or avoiding pain) or intrin-
sic (satisfying one’s curiosity, fun). In the human brain, motivated or goal-directed behavior
depends on a network of different structures, including the prefrontal cortex, the basal gan-
glia and the limbic system. Dopamine, a neuro-transmitter associated with reward process-
ing, plays a central role in coordinating the activity of this network. It structures processing in
high-level cognitive areas along a limbic-associative-motor gradient and impacts the learning
capabilities of the whole system. In this habilitation thesis, I present biologically-constrained
neuro-computational models which investigate the role of dopamine in visual object catego-
rization and memory retrieval (Vitay and Hamker, 2008), reinforcement learning and action se-
lection (Vitay and Hamker, 2010), the updating, learning and maintenance of working memory
(Schroll et al., 2012) and timing processes (Vitay and Hamker, 2014). These models outline
the many mechanisms by which the dopaminergic system regulates cognitive and emotional
behavior: bistable processing modes in the cerebral cortex, modulation of synaptic transmis-
sion and plasticity, allocation of cognitive resources and signaling of relevant events. Finally, I
present a neural simulator able to simulate a variety of neuro-computational models efficiently
on parallel architectures (Vitay et al., 2015).
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Abstract

Neuronale Modelle nach dem Vorbild des Gehirns bieten die Möglichkeit intelligente, kognitive
Prozesse nicht nur besser zu verstehen, sondern sie stellen auch eine vielversprechende
Lösung dar, um eine Gehirn-ähnliche künstliche Intelligenz für Wahrnehmung und Verhal-
tensweisen zu erreichen, die mit natürlicher Intelligenz konkurrieren kann. Eine entscheidende
Eigenschaft von intelligentem Verhalten ist Motivation, definiert als der Anreiz mit der Welt
zu interagieren, um bestimmte Ziele zu erreichen, sei es extrinsisch (Belohnungen wie
Nahrung oder Geld zu erhalten oder die Vermeidung von Schmerzen) oder intrinsisch (die
Neugier zu befriedigen, Spaß zu haben). Im menschlichen Gehirn basiert motiviertes oder
zielgerichtetes Verhalten auf einem Netzwerk von verschiedenen Strukturen, einschließlich
des präfrontalen Cortex, der Basalganglien und des limbischen Systems. Dopamin, ein
Neurotransmitter, welcher der Belohnungsverarbeitung zugeordnet wird, spielt eine zentrale
Rolle bei der Koordination der Aktivität in diesem Netzwerk. Es strukturiert die Verarbeitung
in High-Level-kognitiven Bereichen entlang eines limbischen-assoziativ-motor Gradienten
und beinflusst die Lernfähigkeit des gesamten Systems. In dieser Habilitation, präsentiere
ich biologisch motivierte neuronale Modelle, die die Rolle von Dopamin in der visuellen
Objektkategorisierung und Gedächtnisabruf (Vitay and Hamker, 2008), Reinforcement Lernen
und Aktionsauswahl (Vitay and Hamker, 2010), Aktualisierung, Lernen und Aufrechterhal-
tung von Arbeitsgedächtnis (Schroll et al., 2012) und Timing Prozessen (Vitay and Hamker,
2014) untersuchen. Diese Modelle beschreiben Mechanismen, durch die das dopaminerge
System kognitives und emotionales Verhalten reguliert: bistabile Verarbeitungsmodi in der
Hirnrinde, Plastizität und Modulation der synaptischen Übertragung, Zuweisung von kognitiven
Ressourcen und Signalisierung von relevanten Ereignissen. Schließlich beschreibe ich einen
neuronalen Simulator, der in in der Lage ist, eine Vielzahl von neuronalen Modellen effizient
auf parallelen Architekturen zu simulieren (Vitay et al., 2015).
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1 Introduction

Minsky (1968) defined the field of Artificial Intelligence (AI) as “the science ofmakingmachines
do things that would require intelligence if done by humans”. Over its almost 70 years of ex-
istence - John MacCarthy invented the term in 1956 -, AI has achieved a lot of progress in
specialized areas such as data-mining, machine learning, computer vision, speech recognition
or even single cognitive tasks such as chess playing or medical diagnosis. Weak (or applied)
AI indeed focuses on methods allowing to solve specific tasks which either necessitate a lim-
ited range of human intellectual abilities (e.g. recognizing objects) or even have nothing to do
with human intelligence (e.g. search engines). Although these improvements have proven very
useful, especially in an industrial context, the real goal of AI - called strong AI by Searle (1980)
- is to obtain systems with a general form of intelligence that could be compared with human
intelligence on complex behaviors. Despite recent advances in machine learning techniques
(e.g. deep learning, LeCun et al., 2015) and prophetic claims that the singularity is approaching
(Kurzweil, 2005), one has to admit that strong AI has basically failed until now (Velik, 2012). As
Marvin Minsky noticed, all we have is a collection of “dumb” specialists which perform single
tasks very well - deep neural networks exceed for example human performance on certain vi-
sual recognition tasks - but which, when put together, do not even get close to the cognitive
abilities of a rodent. Robotic competitions such as RoboCup are good demonstrators of the
limits of strong AI.

Many cognitive architectures for strong AI have been proposed over the years (for a review,
see Langley et al., 2009). They usually take the form of conversational agents, virtual reality
avatars or robotic platforms, although they may also be used in specific applications. They
can be classified generally into two approaches: the symbolic (or cognitivist) approach, which
breaks human intelligence into functional components - e.g. attention, long-term memory, sen-
sory processes - and implements each of them with particular symbolic algorithms - produc-
tion rules, tree searches; and the connectionnist (or emergentist) approach which considers
distributed systems of functional units (often in the form of neural networks) which interact
with each other and learn to perform a task through interacting with an environment. Although
the behavior of a symbolic system is easier to analyze, its suitability for real-world problems is
problematic: if breaking a task into elementary components makes sense for symbolic prob-
lems such as the game of chess, it becomes much harder for recognizing a face, engaging a
conversation appropriately or even playing football. The main issue here is symbol-grounding:
while manipulating the concept of a cup or a ball is easy for a computer, it is much harder to re-
late this concept to the visual perception of a cup or ball with any possible shape, under various
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1 Introduction

lightning conditions or orientations. This explains why symbolic cognitive architectures have
mostly failed to produce interesting behaviors outside restricted lab settings. An additional dif-
ficulty is the amount of work required to create the cognitive architecture: each module of the
system must communicate symbols adequately to the others, which in turn should be able to
cope with potential failures. The resulting architecture becomes quickly tuned to a particular
problem, and any significant change in the environmental conditions may require to redevelop
the whole system.

The connectionnist approach relies heavily on learning to exhibit the desired cognitive func-
tions. Contrary to symbolic architectures, the desired function is not hard-coded in the system
but rather emerges from the interaction of multiple units after learning. An example is artifi-
cial neural networks, where neurons communicate with each other through connections whose
weights evolve with learning: the function performed arises from this interaction, not from the
structure of the network itself. The same network can for example learn to performmany differ-
ent functions, depending on its interaction with the task. The computational properties of neu-
ral networks are heavily used in weak AI, especially in machine learning. The drawback of this
decoupling between the function and the underlying structure is that it becomes complicated
to create complex cognitive architectures: the communication between different modules is
not symbolic anymore, but numerical - the activity of a population of neurons. Psychological
models of cognition, using genericmodules such as planning or long-termmemory, do notmap
easily on a connectionnist substrate.

To overcome this problem, a promising direction for AI is to get inspiration from the only truly
intelligent system known to date: the brain. The brain has intrinsically a connectionnist struc-
ture: it is composed of hundreds of billions of neurons, communicating with each other through
synapses which undergo plasticity based on experience. The core idea of brain-like AI (or brain-
inspired AI) is to study how the brain exhibits natural intelligence and extract the necessary
mechanisms to reproduce it in an artificial system. Velik (2012) defined the basic dogma of
brain-like AI as such:

It is well appreciated that the human brain is the most sophisticated, powerful,
efficient, effective, flexible and intelligent information processing system known.
Therefore, the functioning of the human brain, its structural organization, and
information processing principles should be used as archetype for designing
artificial intelligent systems instead of just emulating its behavior in a black box
manner. To achieve this, approaches should not build on work from engineers only
but on a close cooperation between engineers and brain scientists.

Brain-like AI covers a variety of approaches, from top-downmodels simulating the functions of
particular brain areas using non-brain-inspired implementations (e.g. Bayesianmodels for deci-
sionmaking), to bottom-upmodels simulating with great detail specific brain areas, but without
any relationship to their function (e.g. Human Brain Project). The neuro-computational models
presented in this thesis aim at finding amiddle ground between these approaches: address the
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1.1 Computational neuroscience

problem of intelligence at the functional level (the models should be useful at the end), while
keeping the biological realismhigh enough to explain and predict biological neuralmechanisms.
This link between function and structure in the brain is the fundamental question of computa-
tional neuroscience, which partly overlaps with brain-like AI. Neuro-computational models in
this field are by design close to the architecture of the brain; insights from neuroscience onmo-
tivated behavior can be rapidly integrated to improve both their plausibility and performance.
They furthermore provide an unique way to investigate new computing paradigms.

1.1 Computational neuroscience

Aim

The ambition of computational neuroscience is to bring a computational modeling approach to
the interdisciplinary field of neuroscience, aiming concurrently at an explicative role - explain-
ing why the brain behaves in the observed way - and a predictive one - suggesting previously
unobserved effectswhich can be tested. Themain challenge is to integrate experimental obser-
vations from different levels of description (neuroanatomy, neurochemistry, neurophysiology,
neuro-imaging, cognitive science and behavioral studies) into a biologically realistic neural net-
work. Numerical simulations of this model allow to reproduce the underlying observations in a
systematic way and to better analyze, interpret and understand the available data. Conversely,
predictions can be made based on these simulations, guiding experimentalists in the design of
their experiments (theory-driven neuroscience).

Although the termwas only first coined by Eric L. Schwartz in 1985, the first examples of compu-
tational neuroscience work may be the invention of the integrate-and-fire neuron by Lapicque
(1907) and the complete mathematical characterization of the initiation and propagation of
action potentials in the squid giant axon by Hodgkin and Huxley (1952). Research in compu-
tational neuroscience has long focused mostly on characterizing the dynamics of individual
neurons or small assemblies. The focus has now shifted toward large-scale models, either at
the systems level where functional networks involved in particular processes are investigated
(Dranias et al., 2008; Hamker, 2004a), or at the detailed biological level, with the goal of sim-
ulating complete brain areas, as in the Blue Brain Project (Markram, 2006), or even the whole
brain in its follower Human Brain Project (HBP). Neuro-computational models have virtually ad-
dressed over the years all brain structures and functions, including vision in the occipital and
temporal lobes (Rolls and Deco, 2001), working memory in the prefrontal cortex and basal gan-
glia (Frank et al., 2001; Schroll et al., 2012), long-term memory formation in the hippocampal
formation (Burgess et al., 2007) or motor learning in the cerebellum (Albus, 1971).
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1 Introduction

Neuro-computational models

Neuro-computational models typically study the interaction of different brain areas. Each area
comprises a certain number of artificial neurons, which are modeled differently depending on
the physiological properties of the corresponding biological neuron (pyramidal neuron, medium
spiny neuron, basket cell, etc) and the neuro-transmitter they use (e.g. AMPA, NMDA, GABA).
Many models however use only two types of neurons: excitatory and inhibitory neurons. When
active, excitatory neurons increase the firing rate of neurons receiving synapses from them,
while inhibitory neurons decrease it. One of the simplest -although powerful - neuron model
is the rate-coded neuron, which computes an instantaneous firing rate (corresponding to the
frequency of spike emission at a given time 𝑡) and exchange it with other neurons. A rate-coded
neuron is described by an ordinary differential equation (ODE), which can be of the form:

𝜏 ⋅ 𝑑𝑟(𝑡)
𝑑𝑡 + 𝑟(𝑡) = ∑

𝑖∈Exc

𝑤𝑖 ⋅ 𝑟𝑖(𝑡) − ∑
𝑗∈Inh

𝑤𝑗 ⋅ 𝑟𝑗(𝑡) + 𝐵

𝑟(𝑡) is the instantaneous firing rate of a single neuron, 𝜏 the time constant defining the speed
of its dynamics and 𝐵 its baseline activity (the firing rate it has without inputs). Inputs are rep-
resented by the weighted sums, where each connection to the neuron (a synapse) has a weight
𝑤 (also called the synaptic efficiency) which multiplies the firing rate of the corresponding pre-
synaptic neuron. Two sums are represented here (corresponding to excitatory and inhibitory
synapses, as denoted by their respective positive and negative signs), but more complex rela-
tionships can be used. For example, modulatory inputs can multiply globally a weighted sum
of excitatory inputs. Additionally, a transfer function can be used to restrict the firing rate to
positive values, or implement non-linear effects.

If the description of a single neuron is relatively simple, the computational power of a neuro-
computational model comes from the interconnection of several populations of neurons, al-
lowing the emergence of complex functions. The projection of a population on another can
be dense (all-to-all, i.e. each neuron in the post-synaptic population has a synapse with every
neuron in the pre-synaptic one) or sparse (a synapse exists according to a fixed probability or
some more complex rule). Moreover, synaptic plasticity allows to modify the weights 𝑤 of a
projection based on the activity of the neurons, forming the basis of learning in a neural network.
The simplest and most famous rule for synaptic plasticity is the Hebbian learning rule (Hebb,
1949), which states that the weight of a synapse increases when both pre- and post-synaptic
neurons are active at the same time (correlation-based learning rule):

Δ𝑤 = 𝜂 ⋅ 𝑟pre ⋅ 𝑟post

where 𝑤 is the weight of the synapse, 𝜂 a learning rate defining the speed of learning, 𝑟pre and
𝑟post the instantaneous firing rate of the pre- and post-synaptic neurons, respectively. The disad-
vantage of this rule being that the weights would increase infinitely, several variants have since
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1.1 Computational neuroscience

been introduced, among which the Oja learning rule (which adds a regularization term to keep
the sum of weights coming to a neuron constant, Oja, 1982) or the Bienenstock-Cooper-Munro
rule(BCM, modeling both long-term potentiation - LTP, weight increase - and long-term depres-
sion - LTD, weight decrease - Bienenstock et al., 1982), as well as rulesmodeling themodulatory
influence of dopamine on synaptic plasticity. Although there is flexibility in the choice of the
rules, a hard constraint to obtain a biologically-realistic model is that all the information needed
by the rule should be local to the synapse: the weight change can only depend on variables of
the pre- and post-synaptic neurons, but not other neurons. Many classical machine learning
algorithms such as backpropagation (Rumelhart et al., 1986) can not be used in this context.

Computer science

The cross-fertilization between computational neuroscience and artificial intelligence is well
documented. As explained later, reinforcement learning, a subfield of machine learning (Sutton
and Barto, 1998), has been successfully used to interpret the patterns of activity in dopamin-
ergic areas during classical conditioning (Schultz, 1998). As dopamine modulates processing
and learning in many brain areas, including the prefrontal cortex and the basal ganglia, this
theoretical consideration has radically changed the interpretation of their role in various pro-
cesses such as motor learning, action selection, working memory or decision-making. This
analogy is still widely used by experimentalists and clinicians to interpret their observations,
although several computational neuroscientists have since proposed more detailed and realis-
tic neuro-computational models of the dopaminergic system (Brown et al., 1999; O’Reilly and
Frank, 2006; Vitay and Hamker, 2014).

On the other hand, deep learning networks (LeCun et al., 2015) are directly derived from com-
putational neuroscience research. The basic structure of a deep learning network for visual
recognition is mapped onto the hierarchical organization of the visual cortex, with lower-levels
areas extracting simple and local features from the retinal image (edges, gradients), and higher-
level areas combining these lower features into complex shapes or even objects (Lecun et al.,
1998). The most successful deep learning architectures make also use of sparseness as a reg-
ularization method to ensure an efficient coding of visual features, a concept which was first
extensively studied by computational neuroscientists (Olshausen and Field, 1997; Spratling,
1999; Wiltschut and Hamker, 2009). Dropout, a regularization technique used to improve gen-
eralization in deep networks (Srivastava et al., 2014), is inspired from computational studies of
stochastic synaptic transmission (Maass and Zador, 1999).

Challenges

Several issues are faced by computational neuroscience. The first one is the everlasting contro-
versy on the adequate level of description to explain brain processes. Somemodels can be very
detailed, using a model of the 3D morphology of specific neurons and a detailed description of
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1 Introduction

chemical processes occurring inside the synapses. This bottom-up approach, exemplified by
the Human Brain Project, relies heavily on data analysis to find the correct parameters and repli-
cate observations. There is virtually no end to the degree of details that can be incorporated in
such models. Despite its ambitious nature on this issue, one of the major criticisms addressed
to HBP is that the level of description they chose will not be sufficient to capture all the prop-
erties of brain functioning. Contrary to physics or chemistry, neuroscience (including compu-
tational neuroscience) is non-paradigmatic in the sense of Thomas Kuhn (Kuhn, 1962): there
is no common agreement inside the community on common axiomatic principles or models
that could be used as a framework to interpret observations. Based on the enormous amount
of unexplained experiments, the different schools of thought can select observations that fit
into their paradigm and reject the ones that do not, leading to endless debates. Neuroscience
is still in its infancy as a science, but the hope of defining a unified theory of brain functioning
has to be maintained.

A more serious criticism to the bottom-up approach is that reproducing neural activity does
not obligatorily mean to understand it. A complete simulated model of the brain, up to the last
molecule involved, may end up as difficult to analyze and understand as an actual brain. What
makes a human brain so special is not its number of neurons, nor its variety of cell types and
neurotransmitters, but its different levels of organization: the complex and dynamical interac-
tion between biological structures at different scales. The top-down approach to computational
neuroscience starts from the behavioral function and breaks it iteratively into functional blocks
that may eventually map onto the biological substrate. The corresponding models can be high-
level mathematical descriptions, such as Bayesian inference (Doya et al., 2006), free-energy
minimization (Friston, 2010) or optimization techniques (Sutton and Barto, 1998), while others
use simplified neural models (spiking point-neurons, rate-coded neurons) to capture essential
computational properties of neural networks. Top-down computational models obviously need
to make strong assumptions about the underlying biological substrates and can only explain a
limited range of observations. The whole difficulty is to define precisely enough the validity of
the model: what can this model explain and predict, and where are its limits. For this kind of
models, the key aspect is the ability to make predictions: they usually have enough degrees of
freedom to fit virtually any set of experimental data, so their plausibility can only be evaluated
by their predictive power.

A second problem faced by computational neuroscience is scalability. As neuro-computational
models grow in size, the computational load to run the simulation becomes critical. The human
brain comprises around 100 billions of neurons and tenths of trillions synapses. Even when us-
ing simple neural and synapticmodels, the number of operations per second and the amount of
memory needed by a complete brain model exceed the power of current supercomputers. The
Human Brain Project has estimated that a complete brain model would require computational
power at the exascale (one exaflops - 1018 - and 100 petabytes of memory) in order to function
in real-time, while the fastest supercomputer at this date only proposes 50 petaflops (5 ⋅ 1016)
of peak performance. The resulting simulation would consume 1.5 GW of energy if today’s ar-
chitectures were simply scaled up (the goal is to reduce it to 20 MW by 2020), while the human
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brain merely requires 30W on average. On the short term, there is obviously a need for applying
state-of-the-art parallel computing methods to the simulation of neuro-computational models.
Several parallel neural simulators exist (NEST, GeNN, Brian, ANNarchy, etc) but they are usually
limited to a particular type of neural models and on specific hardware platforms. On the longer
term, one may need to rethink computer architectures: neural networks are inherently parallel,
with localized processing units - the neurons - interacting through connections - the synapses -
in continuous time. Simulating these networks on serial von Neumann architectures, even with
many cores, is probably a waste of resources. Dedicated neuromorphic hardware solutions are
being developed for the simulation of large-scale neural networks, for example the Spinnaker
(Rast et al., 2011) and BrainScaleS (Fieres et al., 2008) projects, or the IBM SyNAPSE (Systems
of Neuromorphic Adaptive Plastic Scalable Electronics) chip. They rely on fundamentally dif-
ferent concepts, such as asynchronous and event-driven computations, what leads to fast and
energy-efficient simulations. However, these neuromorphic hardware platforms are not com-
monly available yet and require a strong programming effort.

Despite the different issues inherent to the youth of the field, computational neuroscience is a
promising approach to artificial intelligence. It allows to bridge the gap between the quickly ex-
panding knowledge on cognitive and emotional processes involved in behavior and the design
of flexible and robust algorithms for intelligent behaving systems.

1.2 Motivated behavior

Animal behavior

Animal behavior can be decomposed into four categories: reflexes (low-level motor responses
to stimuli which can not be voluntarily controlled), Pavlovian responses (the acquired associa-
tion between a stimulus and an outcome, leading to conditioned responses), habits (more or
less complex sequences of thoughts or actions which are routinely executed when triggered
in a specific context) and goal-directed behavior (or motivated behavior, the ability to perform
actions in order to achieve a particular goal) (Balleine and Dickinson, 1998). Pavlovian (or clas-
sical) conditioning is a passive learning process: an initially neutral stimulus (conditioned stim-
ulus, CS) is repeatedly paired with a meaningful stimulus (unconditioned stimulus, US, which
can be either positive - reward - or negative - punishment). The unconditioned response (UR)
usually associated to the US becomes after a variable number of trials associated to the CS,
becoming a conditioned response (CR). The classical experiment of Pavlov used a tone (CS)
to predict the delivery of food (US) associated with drooling (CR). This form of conditioning
does not require any action to be acquired, but can be used to adapt behavior by signaling the
relevance of sensory events to higher-level functions. In appetitive conditioning, where the US
is a food reward, the appearance of the CS prepares the animal to consumption, mainly through
drooling but also possibly by interrupting the current behavior. In fear conditioning, where the
US is a painful stimulation, the CS may trigger avoidance behaviors.
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Oppositely, habits and goal-directed behavior are two components of instrumental (or operant)
conditioning: the term covers all the processeswhich lead an animal to learn to produce actions
in order to obtain rewards (positive reinforcers) or avoid punishments (negative reinforcers)
(Skinner, 1938; Thorndike, 1911). While in Pavlovian conditioning the animal merely observes
relationships in its environment, in operant conditioning it has control over the occurrence of
reinforcers by adapting its behavior both during the learning phase and the exploitation phase.
Operant conditioning is the key process in educating animals (for example teaching a dog new
tricks by rewarding him after each successful action), but is also fundamental in free behavior:
actions are directed toward the achievement of goals. Achieving a goal is a positive reinforcer
for behavior, increasing the probability to achieve it again in the future, while failing to do so is
a negative reinforcer which forces to adapt the current strategy or find a new one.

Although they are both directed toward goals, the difference between habits and goal-directed
behavior is their dependency on the value of the goal. A classical experiment is the devalua-
tion task: when the value of the reward is suddenly decreased (for example by inducing satiety
before the experiment), goal-directed processes quickly avoid this outcome, while habitual be-
havior can persist for a long period of time (Balleine and Dickinson, 1998). Habits are therefore
stimulus-response (S-R) mechanisms (a stimulus can trigger the behavior, even when the goal
is not interesting anymore) while goal-directed processes are based on action-outcome (A-O)
associations (which action do I need to perform to obtain this particular outcome?). The trans-
fer of a goal-directed behavior to the habitual system is possible when the association is repeat-
edly experienced over an extended period of time. Themechanisms underlying this transfer are
not yet fully understood, but they are thought to play an important role in the development of
addiction (Everitt et al., 2001).

Explicit vs. implicit motivation

Goals can be extrinsically defined, for example when some food item is available in the environ-
ment. If the value of such a goal, possibly previously estimated through classical conditioning
processes, exceeds sufficiently the costs associated to obtaining it, the animal engages in a
series of actions that may lead to its obtainment, in which case these actions are reinforced.
This form of operant conditioning is also called reinforcement learning, which is an important is-
sue for both psychology and computer science. However, animals do not only produce actions
which are directed toward primary reinforcers such as food, water or sexual partners: they play
with their fellows or they explore their environment without any obvious reason for an exter-
nal observer. The goals of such actions are called intrinsic rewards: satisfying one’s curiosity,
checking if one’s beliefs are true, engaging in social interactions are as important from an evo-
lutionary point of view as ensuring food supplies, reproduction or shelter (Barto et al., 2013;
Kaplan and Oudeyer, 2007).

Extrinsic and intrinsic rewards are at the core of motivated behavior, as they determine the
choice and intensity of motor plans to achieve them. Importantly, their value depends not only
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on the outcome itself, but also on its relevance for the organism: food items have an incen-
tive (motivational) value only when the animal is hungry. This fact highlights the importance
of embodiment, i.e. the fundamental link between the body and cognitive, emotional or motiva-
tional processes (Price et al., 2012). These processes are not ethereal as suggested by dualist
theories of the mind but rather grounded in the body and aimed at ensuring its homeostasis
(Cabanac, 1971; Damasio, 1994).

These fundamental properties of animal behavior, especially of human cognitive behavior, are
still unaccessible to artificial systems. Current artificial systems mostly respond to specific
stimuli by applying predefined or learned rules (stimulus-response associations). They are re-
active structures which only seek new and relevant information when instructed to, not when
they “want”, “need” or “like” it. There are only a few attempts to implement motivated behavior
in such systems, e.g. intrinsic motivation on robotic platforms (Baldassarre et al., 2013; Mirolli
et al., 2013), but they are still limited to toy problems. In order to build truly intelligent and au-
tonomous artificial systems, fundamental properties such as intrinsic motivation and transfer
of learning must be understood and formalized.

1.3 Reward and the dopaminergic system

Dopaminergic system

Dopamine (DA) is a key neurotransmitter in the brain. It is primarily produced by two small nu-
clei of the brainstem: the substantia nigra pars compacta (SNc) and the ventral tegmental area
(VTA). Dopamine levels are involved in many processes such as the facilitation of approach
behavior, incentive learning, motivation, novelty and saliency detection as well as reinforce-
ment learning and action selection (Horvitz, 2000; Ikemoto, 2010; Sesack and Grace, 2010).
As shown on Figure 1.1, dopaminergic neurons in SNc and VTA send projections along three
different pathways: the nigrostriatal pathway comprises the projections between SNc and the
basal ganglia (BG), especially its input structure the striatum. While SNc projects almost en-
tirely to the BG, VTA projects both inside and outside the BG: the mesolimbic pathway reaches
subcortical or phylogenetically ancient structures such as the nucleus accumbens (NAcc, also
called ventral striatum in primates), the amygdala (a key area for emotional processing), the
hippocampus (long-term memory formation and spatial navigation) and the cingulate cortex
(error detection, self). VTA also projects diffusely to the cerebral cortex through the mesocorti-
cal pathway, reaching primarily the prefrontal cortex (PFC, planning, workingmemory), but also
the motor cortex (movement) and the temporal lobe (visual processing and memory).

Neurons in VTA exhibit a rather low baseline activity (around 5 Hz) and become transiently
active in response to various stimuli: novel and salient stimuli (Redgrave and Gurney, 2006),
painful stimulations (Matsumoto and Hikosaka, 2009) and reward delivery (Ljungberg et al.,
1992). Importantly, Schultz et al. (1997) showed an interesting characteristic of neural firing
in VTA during classical appetitive conditioning in the primate. A visual conditioned stimulus

11



1 Introduction

Figure 1.1: Efferent pathways of the dopaminergic system. The nigrostriatal pathway connects
SNc to the basal ganglia, especially the striatum. Themesolimbic pathway connects
VTA to the nucleus accumbens (or ventral striatum), the amygdala, the hippocam-
pus and the cingulate cortex. The mesocortical pathway connects VTA mainly to
the prefrontal cortex, but also the motor cortex and temporal lobe. Adapted from
Mancall and Brock (2011).
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(CS) is repeatedly paired with a food reward (US). At the beginning of learning, reward delivery
generates a burst of activation of the VTA dopaminergic neurons (top of Figure 1.2), but not the
appearance of the CS. After a few days of training, the pattern is reversed (middle of Figure 1.2):
the appearance of the CS provokes a DA burst, but not reward delivery anymore. Moreover,
when the reward delivery is predicted by the CS but omitted (bottom of Figure 1.2), DA cells
show a pause in firing (a dip) at the time reward is expected.

Figure 1.2: Recordings of a single VTA neuron during appetitive conditioning. The raster plots
depict the spikes emitted for different trials. The histogram of these spikes is dis-
played above. Top: reward is delivered unexpectedly. Middle: the CS predicts the
delivery of reward. Bottom: the CS predicts a reward, but the reward fails to occur.
Adapted from Schultz (1998).

This pattern of activation suggests that VTA cells collectively encode a reward prediction error
(RPE), defined as the difference between the reward actually received and the predicted reward.
If more reward is received than expected, the RPE is positive, which happens when reward
delivery is unexpected (not - yet - predicted) or when a CS appears (the appearance of the CS
itself is unpredictable, but it signals that reward will be delivered). If less reward is received
than expected, the RPE is negative, corresponding to the dip in VTA activity when reward is
omitted. If reward is received as expected, the error is equal to zero. This happens when the
CS fully predicts reward delivery.
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TD analogy

An analogy between this RPE pattern of VTA cells during conditioning and the temporal differ-
ence (TD) algorithm of reinforcement learning (Sutton and Barto, 1998) became quickly dom-
inant. In the reinforcement learning framework, each state 𝑠 of a finite Markovian Decision
Process (MDP) is associated with a value function 𝑉 𝜋(𝑠) which represents the expectation of
the sum of rewards that will be obtained after being in the state 𝑠 and thereafter following a
policy 𝜋:

𝑉 𝜋(𝑠) = 𝐸𝜋(𝑅𝑡|𝑠𝑡 = 𝑠) = 𝐸𝜋(
∞

∑
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1|𝑠𝑡 = 𝑠)

𝛾 is a discounting factor allowing to scale the relative importance of immediate rewards (which
will be obtained shortly after being in the state 𝑠 at time 𝑡) compared to rewards obtained on
the longer term. In the TD algorithm, the value of a state is estimated iteratively after each
transition between a state 𝑠𝑡 and a state 𝑠𝑡+1:

𝑉 𝜋(𝑠𝑡) ← 𝑉 𝜋(𝑠𝑡) + 𝛼 ⋅ (𝑟𝑡+1 + 𝛾 ⋅ 𝑉 𝜋(𝑠𝑡+1) − 𝑉 𝜋(𝑠𝑡))

The TD error signal:

𝛿𝑡 = 𝑅𝑡 − 𝑉 𝜋(𝑠𝑡) = (𝑟𝑡+1 + 𝛾 ⋅ 𝑉 𝜋(𝑠𝑡+1)) − 𝑉 𝜋(𝑠𝑡)

is a reward prediction error signal, as it compares the rewards actually received after the state
𝑠𝑡 with their prediction𝑉 𝜋(𝑠𝑡). More precisely, the rewards actually received are decomposed
into the reward immediately obtained during the transition (𝑟𝑡+1) and an estimation of the re-
wards that will be obtained after being in 𝑠𝑡+1 (𝑉 𝜋(𝑠𝑡+1), discounted by 𝛾). When more re-
ward is obtained than predicted (either because the immediate reward 𝑟𝑡+1 is high, or because
the transition leads to a state with a high value), the RPE signal is positive and increases the
value of the state. If less reward is received than expected, the TD error signal is negative and
decreases the value of the state.

To account for classical conditioning, states have to represent discrete time events. As by
definition no action is required to obtain the rewards, transitions between states occur on a
fixed schedule. At the beginning of conditioning, all states are initialized with a value of 0. The
first time a reward is delivered, the TD error becomes positive for the preceding state: it was
not predicting any reward but one occurred. At the next trial, if the reward arrives at the same
time, its value will be slightly higher, so the TD error will be smaller. Meanwhile, the preceding
state will see its value increased, because it leads to a state with a positive value. After several
conditioning trials, the value of all states preceding reward delivery will be positive. The TD
error is zero for the transitions between theses states, as they correctly predict reward delivery.

14



1.3 Reward and the dopaminergic system

Only the transition to the state corresponding to the appearance of the CS will have a positive
TD error signal: the system was in a state where no reward is predicted (the animal is waiting
for something to happen) but the transition leads to a state where reward will be delivered after
a certain delay. If the reward is not delivered during the usual transition, the TD error becomes
negative.

However, over the course of learning multiple trials, the positive TD error signal “travels” back
in time, peaking first at reward delivery, then at the preceding state, until it appears at CS onset.
In order to fully account for the observations of Schultz et al. (1997), where reward-related
activation of VTA cells slowly decreases with learning while the CS-related one increases, but
nothing happens in-between, one has to use amodified version of the TD algorithmcalled TD(𝜆)
(Sutton, 1988). In this variant, when a reward is delivered, not only the value of the preceding
state is updated, but also all the preceding states, with amagnitude weighted by the decreasing
series𝜆𝑡−𝑘. Consequently, the state corresponding to CS onset gets also updated the first time
reward is delivered. When 𝜆 is chosen close enough to 1, the resulting pattern of activation of
the TD error signal matches the experimental observations on VTA firing (Schultz, 1998).

Alternative models

This striking analogy was immediately successful and led to many top-down models of the
role of DA in both classical and operant conditioning (Daw and Touretzky, 2002; Rao, 2010;
Samejima and Doya, 2007; Smith et al., 2006; e.g. Suri and Schultz, 2001). There are however
many aspects of DA firing in VTA which are not explained by the TD analogy. When reward is
delivered earlier than predicted, VTA cells are activated at reward delivery but stay at baseline
at the usual time (Hollerman and Schultz, 1998), contrary to what is predicted by TD. When
reward delivery is uncertain, dopaminergic neurons first respond phasically to CS onset and
then increase their activity until reward deliverywith a slope depending on its probability (Fiorillo
et al., 2003). Moreover, DA neurons also respond to novel and salient stimuli which are not
predictive of reward (Redgrave and Gurney, 2006).

The main problem is the way time is represented: transitions between states are supposed to
occur at a fixed rate, determined by some internal clock. A TDmodel is only able to learn a single
CS-US interval with a constant duration. However, classical conditioning is robust to variability
in the CS-US interval (Kirkpatrick and Church, 2000). Many models have been proposed to im-
prove the representation of time in TDmodels, including serial-compound representations (Suri
and Schultz, 2001) and Long Short-TermMemory networks (LSTM, Rivest et al., 2010). More so-
phisticated neuro-computational models separate the mechanisms responsible for CS-related
and US-related activations (Dranias et al., 2008; O’Reilly and Frank, 2006; Vitay and Hamker,
2014). Based on the neuroanatomy of the afferents to the dopaminergic system, they distin-
guish the sources of excitation and inhibition signaling reward delivery to VTA from the ones
signaling predictors of rewards. In Chapter 5, we will discuss these models and explain their
importance for motivated behavior.
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Despite these limitations, it is clear that DA firing in VTA represents a RPE that can be used to
reinforce actions or plans in other structures such as the BG or the prefrontal cortex. However,
if the amount of evidence for the role of positive RPEs is undebatable, it is still unclear what
is the effect of negative RPEs, for example when a predicted reward is omitted. VTA cells fire
at a rather low baseline activity (5 Hz) and the mechanisms by which a pause in firing can
influence plasticity in efferent systems are still a matter of debate (see Shen et al., 2008 for an
explanation on its role in the striatum). Moreover, the observed dip in VTA activity when reward
is omitted has not been reproduced by other researchers (Joshua et al., 2009). Many efforts
remain to be done to fully understand how VTA and SNc signal reward-prediction errors to the
BG and prefrontal cortex. VTA is for example known to send also inhibitory projections to the
ventral striatum (Brown et al., 2012), what opens new questions on the exact role of VTA in
reward processing (Creed et al., 2014).

1.4 Basal ganglia and reinforcement learning

Anatomy

The basal ganglia are a set of nuclei in the basal forebrain (Figure 1.3). They receive inputs from
the entirety of the cerebral cortex (although the frontal lobe is dominant) and project to various
sub-cortical nuclei such as the brainstemor the thalamus, where the processed information can
go back to the cerebral cortex. They are involved in a variety of functions, amongwhich the con-
trol of voluntary movements, action selection, sequence learning, habit formation, updating of
working memory (WM), motivation and emotion. Their importance for behavior is emphasized
by their involvement inmany neurological diseases, including Parkinson’s disease, Huntington’s
disease, Tourette syndrome, obsessive-compulsive disorders, addiction and schizophrenia.

The striatum (STR) is the main input structure of the BG. In the primate, it is composed of the
dorsal striatum (caudate nucleus - CN - and putamen - PUT) and the ventral striatum (nucleus
accumbens - NAcc - and olfactory tubercle). It receivesmassive inputs from the whole cerebral
cortex, with the ventral striatum also receiving inputs from sub-cortical structures such as the
hippocampus or the amygdala (Humphries and Prescott, 2010). It is principally composed of
medium spiny neurons (MSNs) which are able to integrate cortical inputs from different areas
and project inhibitorily inside theBGon theglobus pallidus (GP). Two types ofMSNsare found in
the striatum depending on the dopamine receptors they exhibit: D1-mediated and D2-mediated
MSNs. They contribute to different pathways within the BG depending on the part of the GP
they project on: its internal part (GPi) for D1 MSNS, the external one (GPe) for D2 MSNs. The
second input structure of the BG is the subthalamic nucleus (STN). Although much smaller, it
also receives massive cortical inputs and projects excitatorily on the GP.

The output structures of the BG are GPi and the substantia nigra pars reticulata (SNr). As
they are functionally similar, they are often labeled together as GPi/SNr, although they are not
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anatomically close. Neurons in GPi/SNr are tonically active, meaning that they have an ele-
vated firing rate baseline (between 60 and 80 Hz). At rest, they exert a strong inhibition on
target structures of the BG, including the thalamus. GPi/SNr must be themselves inhibited in
order to release this inhibition and allow the target structures to get activated, a phenomenon
called disinhibition (Chevalier and Deniau, 1990). As a whole, the BG act as a gating regulator
of activity in target structures.

Figure 1.3: Anatomical position of the basal ganglia in the brain. The BG are composed by the
striatum (caudate nucleus and putamen), the globus pallidus (internal and external),
the substantia nigra (pars reticulata and pars compacta) and the subthalamic nu-
cleus. It receives mainly inputs from the cerebral cortex and projects either directly
to the brainstem (red nucleus, superior colliculus) or back to the cortex through the
thalamus.

Pathways

The internal connectivity of the BG shows a complex organization (Figure 1.4). Three principal
pathways can nevertheless be identified. The direct pathway goes directly from D1-mediated
MSNs to GPi/SNr. It is the main source of disinhibition for the output of the BG. The indirect
pathway originates in the D2-mediated MSNs and relays in GPe before targeting GPi/SNr either
directly or through STN. The additional inhibitory relay on GPe makes this pathway globally
excitatory on GPi/SNr: the activation of D2-mediated MSNs increases firing rates in GPi/SNr,
what further prevents target structures to get activated. The opposing effects of the direct and
indirect pathways led to the first models of motor processing in the BG (Albin et al., 1989; De-
Long, 1990). The balance between their opposing effects (“Go” for the direct pathway, “No Go”

17



1 Introduction

for the indirect one) allows to control the initiation, vigor and termination of motor movements.
Pathological imbalance between the pathways can explain neurological diseases: dopamine
loss, characteristic of Parkinson’s disease (PD), weakens the direct pathway, as DA has an ex-
citatory effect on D1-mediated MSNs and inhibitory on D2-mediated ones (Gerfen et al., 1990;
Surmeier et al., 2007). The resulting increased inhibition on motor centers causes hypokinesia,
the inability to initiate movements. On the contrary, excess of dopamine, as in Huntington’s dis-
ease (Chen et al., 2013) or Tourette syndrome (Albin and Mink, 2006), over-activates the direct
pathway and leads to hyperkinetic symptoms, such as involuntary movements and tics.

Figure 1.4: Schematic organization of the BG. The BG takes inputs from the cerebral cortex
and tonically inhibits the thalamus, modulating closed or open loops between the
cortex and the thalamus. The direct pathway starts from D1-mediated MSNs of the
striatum and ends directly in the output structures GPi/SNr. The indirect pathway
starts from D2-mediated MSNs, relays in GPe and reaches GPi/SNr either directly or
through STN. The hyperdirect pathway starts from STN and reaches GPi/SNr either
directly or through GPe. Dopaminergic cells in SNc have inputs from the striatum
and modulate virtually all projections within the BG.

The hyperdirect pathway connects directly STN to GPi/SNr through excitatory synapses, with
a much lower latency than the other pathways (Nambu et al., 2002). It allows to send rapidly
cortical information to the output nuclei of the BG, bypassing computations in the direct and
indirect pathways. Because of its excitatory effect on GPi/SNr and the diffuse projection of SNr
on GPi/SNr (a neuron in STN excites many neurons in GPi/SNr), it carries a “Global No Go” sig-
nal allowing to suppress involuntary movements or to terminate them prematurely. According
to Nambu et al. (2002), the three pathways may cooperate during action selection following
a center-surround model: when a voluntary movement is initiated by cortical areas, the hyper-
direct pathway first inhibits large areas of the thalamus and cerebral cortex that are related to
both the selected movement and its competitors. For example, before moving the arm to the
left, any arm movement previously prepared will be wiped out by the increased excitation in
GPi/SNr. Some milliseconds later, the direct pathway selects the appropriate motor program
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while the indirect pathway selectively inhibits competing movements.

These three pathways form a classical feedforward view of the BG which has been used in
many models (Gurney et al., 2001a; O’Reilly and Frank, 2006; Schroll et al., 2012). As depicted
in Figure 1.4, there exists many other projections inside the BG which render the understand-
ing of processing within the BG much more complex. The thalamostriatal pathway, formed by
projections from the thalamus to the striatum, may for example be involved in attentional pro-
cesses and help the BG solve the credit-assignment problem (Galvan and Smith, 2011). The
reciprocal connections between STN and GPe lead to oscillations under certain circumstances,
what could form the basis of an internal pacemaker inside the BG (Plenz and Kital, 1999), but
can also become pathological in Parkinson’s disease and explain symptoms such as tremor
(Levy et al., 2002). Much remains to be done to fully understand the role of the STN-GPe loop
(Kumar et al., 2011). The role of the pallidostriatal projection between GPe and the striatum is
also still mainly unexplored (Bahuguna et al., 2015; Kita et al., 1999).

Dopamine-mediated plasticity

The striking feature of the BG is their dependency on dopamine, either as amodulator of activity
- elevated DA levels increase the excitability of D1-mediated MSNs and decrease the one of D2
cells (Nicola et al., 2000) - or of plasticity - different DA levels can induce selectively long-term
potentiation (LTP) or long-term depression (LTD) at corticostriatal synapses (Calabresi et al.,
2007). All nuclei of the dorsal BG receive dopaminergic input from SNc, while the ventral part
receives mainly inputs from VTA. Reciprocally, the striatum is a major source of inhibition to
the dopaminergic areas, allowing the BG to control their own dopaminergic input (Haber et al.,
2000).

Dopamine-mediated plasticity is particularly studied in the striatum. MSNs exhibit particular
dynamics: their membrane potential can be either in a hyperpolarized down-state or in a depo-
larized up-state. In the down-state, the excitability of the cell is very low and striatal neurons
do not emit spikes. In the up-state, the cell is very excitable and responds to its cortical inputs.
The transition between these two states can be spontaneous (it occurs at a rate of 0.5 to 2
Hz, Leung and Yim, 1993), induced by a phasic DA burst in VTA/SNc (Gruber et al., 2003) or by
a massive cortical input (McGinty and Grace, 2009). For D1-mediated MSNs, LTP is known to
occur at corticostriatal synapses in the presence of a strong cortical input and under elevated
DA levels when the cell is in the up-state. LTD happens on the contrary when there are weak
cortical inputs, low DA levels and the cell is in the down-state (Calabresi et al., 2007; Reynolds
andWickens, 2000). Put together, plasticity at corticostriatal synapses seems to be driven by a
three-termDA-modulatedHebbian learning rule, where the change in synaptic efficiency is ruled
by the product of the pre-synaptic activity (𝑟pre, presence of cortical inputs), the post-synaptic
activity (𝑟post, up- or down-state) and the deviation of the dopamine level from its baseline 𝛿:

Δ𝑤 = 𝛿 ⋅ 𝑟pre ⋅ 𝑟post
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The opposite pattern is found for D2-mediated MSNs: high DA levels induce LTD while low
levels induce LTP (Shen et al., 2008). With this model of corticostriatal plasticity, DA becomes
able to selectively reinforce corticostriatal associations. If a motor plan selected by the direct
pathway led to reward, DA will strengthen the corticostriatal synapses to D1-mediated MSNs
that were previously activated and reduce the ones to D2-mediated MSNs. This increases the
probability that the same motor plan will be selected again in the future by favoring the direct
pathway in its competition with the indirect one. Oppositely, if the action leads to less reward
than expected, the D1-mediated synapses will be reduced and the D2-mediated ones increased,
what strengthens the indirect pathway and prevents further selection of that motor plan.

This mechanism of dopamine-based reinforcement in the BG further emphasized the analogy
with reinforcement learning, especially the actor-critic architecture (Sutton and Barto, 1998). In
this framework, the critic produces the TD error signal which is used both to update the value of
a state and to reinforce the state-action association that led to reward. Using this error signal,
the actor simply learns to map a state onto the optimal action. In this view, the critic would be
composed by the dopaminergic system and the ventral BG, while the actor represents a loop
between the cerebral cortex and the dorsal BG. Many neuro-computational models of the BG
are based on this architecture (Berns and Sejnowski, 1998; Gurney et al., 2001a; Houk et al.,
1995; Joel et al., 2002).

Many criticisms have been formulated to this model. First, DA cells do not only signal RPEs but
also respond to aversive, salient and novel stimuli, which does not fit into the reward-prediction
error hypothesis (Pennartz, 1995). They also respond to reward-predicting stimuli with a very
short latency, raising the issue of how their reward-predicting value can be predicted in such a
short time (Redgrave et al., 1999). DA is even not required for acquiring the value of a stimu-
lus (“liking”), only for its motivational effect (“wanting”), so the role of the critic might be mis-
understood (Berridge, 2007). Another issue with the actor-critic assumption is the temporal
credit-assignment problem: rewards are usually delivered well after the causal action is exe-
cuted. How can this delayed feedback influence motor representations which have long faded
away?

More detailed neuro-computational models have been introduced to overcome these issues.
The PBWM (prefrontal cortex, basal ganglia working memory) model of O’Reilly and Frank
(2006) makes a strong use of working memory (WM) processes to bridge the temporal gap
between an action and its consequences. It furthermore provides a mechanism by which the
content of WM is gated and updated by functional loops between the PFC and the BG. A simi-
lar approach was taken in Vitay and Hamker (2010), which will be presented in Chapter 3. This
model was the first to consider the importance of plasticity within the BG (specifically in the
projections from the striatum to the globus pallidus) in addition to corticostriatal plasticity.

Generally, the role of the BG in motor learning and action selection is partially understood, but
its contribution to other forms of learning has been less extensively studied. An interesting
view considers the BG as a fast learning device quickly acquiring rewarded associations and
transferring them to the cerebral cortex where they will be generalized and stored in long-term
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memory (Ashby et al., 2005). This hypothesis is backed up by thewell-accepted role of the BG in
habit formation (Seger and Spiering, 2011). Even more generally, one can consider the BG as a
trainer for the cerebral cortex. Learning in the cerebral cortex can be characterized as unsuper-
vised, in the sense that cortical neurons self-organize to represent internal and external events
in the most efficient way. Cortical areas communicate with and adapt to each other, but there
is no obvious objective function guiding the learning process (supervised learning minimizes
an error function, which is unavailable at the cortical level), while reinforcement learning has to
be ruled out because of the slow temporal dynamics of dopamine in the cortex (the bursts and
dips of the DA signal are too smoothed out in the cortex to carry the RPE, Seamans and Yang,
2004). The role of BG would be to transfer specific knowledge acquired by reinforcement learn-
ing to the more general unsupervised cortical system. In the view of Stocco et al. (2010), the
BG may also act as a conditional information-routing system, enabling transmission between
remote cortical areas and allowing the learning of new associations.

1.5 Multiple loops and organization of behavior

It was mentioned that the striatum receives projections from the entirety of the cerebral cortex.
However, the organization of these projections follows a specific topology on the surface of the
striatum. As depicted in Figure 1.5, different cortical regions project onto different parts of the
striatum: the motor and premotor (PMC) cortices project mainly onto the putamen, the dorso-
lateral prefrontal cortex (dlPFC) projects mainly on the caudate nucleus, while the orbitofrontal
(OFC) and ventromedial prefrontal (vmPFC) cortices project mainly on the nucleus accumbens.
As this segregation is preserved throughout the BG, from the projections of the striatum on the
GP to the thalamic nuclei relaying the output of the BG back to the cortex, the prefrontal cortex
/ basal ganglia system is said to be organized in parallel segregated loops (Alexander et al.,
1986).

Each loop is therefore specialized in a particular functional domain: the motor loop is involved
in motor learning and action selection, the associative loop in cognitive processes such as
sequence learning and WM updating, the limbic loop in motivation and goal-directed learning.
These subdivisions can be further refined: themotor loop is in fact composed ofmultiple segre-
gated loops depending on the cortical region of origin (M1, SMA, pre-SMA…). Other loops have
been identified, such as the oculomotor loop, devoted to the control of eye movements, or the
visual loop, linking the inferotemporal and medial temporal cortices to the tail of the caudate
nucleus. The importance of the visual loop will be explained in Chapter 2 and Chapter 3. A
similar topological segregation can further be extended to the projections within a functional
loop: the topology of the cortical area (e.g. the somatotopic representation of body parts in the
motor cortex) is preserved inside the BG (Nambu, 2011). In this view, the PFC/BG system is
composed by thousands of small parallel loops (O’Reilly and Frank, 2006).

The segregation is however not total: a certain degree of overlap is observed in the corticostri-
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Figure 1.5: Parallel segregated loops between the cerebral cortex and the BG. The motor loop
starts from the motor and premotor cortices and involves mainly the putamen. The
associative (or cognitive) loop involves the dorsolateral cortex and the caudate nu-
cleus. The limbic loop involves the orbitofrontal and ventromedial cortices to the
ventral striatum (nucleus accumbens). Adapted from Rodriguez-Oroz et al. (2009).

atal projections, allowing for example parts of the striatum to integrate both motor and asso-
ciative information. The funneling structure of the BG - there are 100 timesmore neurons in the
striatum than in GPi/SNr - also increases the probability that the loops communicate with each
other inside the BG (Bar-Gad et al., 2003). Finally, the thalamic nuclei relaying the output of the
BG back to the cortex do not target only the original cortical area, but reach also adjacent ones.
In the PFC / BG system, one distinguishes closed loops, where a single cortical area projects
to the striatum and receives the processed information back, from open loops, where a cortical
area sends information to the BG and the result is “forwarded” to another cortical area (Ebner
et al., 2015). Category learning in the visual loop between the inferotemporal cortex and the BG
is for example transferred to the motor cortex through an open loop (Seger, 2008). The exact
organization of the PFC / BG system into closed and open loops is still not precisely known,
but this is an important mechanism by which the BG can modulate information transmission
in the prefrontal cortex (Stocco et al., 2010).

The question that arises is how these multiple loops could learn useful associations in their
respective domains based on a single unitary reward-prediction error signal, as hypothesized by
the TD analogy. SNc and VTA actually display a complex topological organization depending on
their reciprocal connections with the striatum (striato-nigro-striatal system, Haber et al., 2000).
As depicted in Figure 1.6, each region of the striatum engaged in a closed loop with the cerebral
cortex forms reciprocal connections with a specific region of the SNc/VTA dopaminergic areas:
the striatum sends inhibitory connections to SNc/VTA, which returns a dopaminergic signal.
However, each striatal region also projects on the adjacent dopaminergic region along a rostro-
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caudal axis, i.e. from limbic to associative tomotor domains. This pattern on connectivity forms
a spiraling structure which allows different striatal regions to influence others by modulating
their dopaminergic inputs.

Figure 1.6: Spiraling connectivity pattern in the striato-nigro-striatal system. Different cortical
areas (here, vmPFC, OFC, dACC - the dorsal anterior cingulate cortex -, dlPFC and
SMC - the supplementary motor area) form closed loops with different parts of the
striatum (ventral for vmPFCandOFC, dorsal for the others) following a rostro-caudal
axis. Each part of the striatum projects on specific regions of the SNc/VTA sys-
tem, which reciprocate the connections. However, they also project on adjacent
dopaminergic regions in the caudal direction, forming a spiraling structure allowing
the different closed loops to communicate through dopaminergic activity. Adapted
from Keramati and Gutkin (2013).

The resulting organization of PFC-BG loops along a limbic-associative-motor gradient has fun-
damental consequences on goal-directed behavior. Limbic regions, critical formotivational and
affective processes, are in a position to influence how cognitive plans are formed and learned
by associative regions, which themselves control how individual movements and actions are
executed in motor regions. This highlights the tight integration between cognitive and emo-
tional processes: goals are mainly represented in OFC, which is strongly connected with the
limbic system (amygdala, ventral BG) and influences cognitive processes in dlPFC. Based on
neuro-anatomical evidence, the classical view opposing cognition and emotion as competitors
to produce behavior has to be replaced by an emphasis on the cooperation between the two
systems.

This gradient also has consequences on learning: striatal regions associated to goal-directed
learning influence plasticity in striatal regions associated to habit formation (Khamassi and
Humphries, 2012; Yin et al., 2004). This provides a mechanism by which flexible behaviors
acquired through goal-directed learning can be transferred into procedural memory to become
habits. Similarly, Pavlovian-to-Instrumental transfer (PIT) is the ability to transfer stimulus val-
ues acquired through Pavlovian conditioning to instrumental behavior: after a first phase of
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operant conditioning where a rat learns to press levers to obtain different outcomes (say, food
and water), a classical conditioning phase is introduced, pairing initially neutral stimuli (tone or
light) to the same outcomes. The effect of PIT is that, when back in the operant conditioning
room, the conditioned stimuli will now trigger the lever press leading to the same outcome (Cor-
bit and Balleine, 2011). The mechanisms allowing a transfer of learning between classical and
instrumental conditioning happen in the cooperation between two loops within the ventral BG,
involving two parts of the nucleus accumbens, the core and the shell (Gruber and McDonald,
2012).

Although the concept of multiple parallel PFC/BG loops has been often used in neuro-
computational models (N’guyen et al., 2014; e.g. Nakahara et al., 2001; O’Reilly and Frank,
2006), only a few have used the underlying limbic-associative-motor gradient in dopaminergic
connectivity to investigate the organization of behavior. Keramati and Gutkin (2013) for
example studied this system to explain the mechanisms of addiction. In Schroll et al. (2012)
(Chapter 4), we proposed a neuro-computational model of working memory formation and
maintenance involving three PFC/BG loops, two associative and one motor, which coordinate
their learning through the spiraling striato-nigro-striatal system. The dopaminergic system has
a central role in organizing behavior and learning; very simplified models such as TD actually
limit our ability to understand the underlying processes.

1.6 Structure of the thesis and contribution

This thesis is composed of five articles published in international peer-reviewed journals.
They were selected to be representative of the different aspects of my research on the role
of dopamine in motivated behavior. In Vitay and Hamker (2008) (Chapter 2), we studied the
influence of dopamine on memory retrieval in the perirhinal cortex, a part of the temporal lobe
involved in object recognition and visual memory. In Vitay and Hamker (2010) (Chapter 3), we
designed a neuro-computational mode of the BGwhich is able to solve delayed rewarded visual
memory tasks. This fundamental model was the first to introduce plasticity within the BG and
was further extended in collaboration with Dr. Henning Schroll to account for working memory
formation Chapter 3. In Vitay and Hamker (2014) (Chapter 5), we designed a detailed model of
the dopaminergic system during conditioning, with a strong emphasis on its dependency on
timing processes. Additionally, in Vitay et al. (2015) (Chapter 6), we present a neural simulator
that was developed in parallel and which allows to define these neuro-computational models
easily and simulate them efficiently on parallel hardware. A detailed description of the content
of these articles is provided in the following sections.
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List of publications included in the thesis

1. Vitay, J. and Hamker, F. H. (2008). Sustained activities and retrieval in a computational
model of the perirhinal cortex. Journal of Cognitive Neuroscience, 20, 11, 1993-2005, doi:
10.1162/jocn.2008.20147

2. Vitay, J. and Hamker, F. H. (2010). A computational model of basal ganglia and its role
in memory retrieval in rewarded visual memory tasks. Frontiers in Computational Neuro-
science, 4, doi: 10.3389/fncom.2010.00013

3. Schroll, H., Vitay, J., and Hamker, F. H. (2012). Workingmemory and response selection: a
computational account of interactions among cortico-basalganglio-thalamic loops. Neu-
ral Networks, 26, 59–74, doi: 10.1016/j.neunet.2011.10.008

4. Vitay, J. and Hamker, F. H. (2014). Timing and expectation of reward: a neuro-
computational model of the afferents to the ventral tegmental area. Frontiers in
Neurorobotics, 8, 4, doi: 10.3389/fnbot.2014.00004

5. Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: a code generation ap-
proach to neural simulations on parallel hardware. Frontiers in Neuroinformatics, 9, 19,
doi:10.3389/fninf.2015.00019

Contribution to each article

I am the primary author of articles 1, 2 and 4, having conducted the research, implemented the
models, performed the experiments, analyzed the results and primarily written themanuscripts.
Prof. Hamker supervised the research, guided the whole process and participated in the writ-
ing. For article 3, Dr. Henning Schroll is the primary author. He implemented the model, ran
the experiments, analyzed the results and primarily wrote the article. I co-supervised the devel-
opment of the model together with Prof. Hamker and participated in the writing. For article 5,
Helge Ülo Dinkelbach was involved in developing the neural simulator and running the experi-
ments, co-supervised by Prof. Hamker and me. I developed equally the neural simulator and
wrote primarily the manuscript.

1.6.1 Chapter 2 : Perirhinal cortex and dopamine

Working memory is the ability to temporarily store and manage information in order to use it
for cognitive processes (Baddeley, 1986). A typical example is remembering a phone number
before typing it: the number is stored in short-term memory as long as it is needed for the
action, but the memory fades away when it is not required anymore. The neural correlate of
WM processes is sustained activation: neurons which are activated by the presence of the in-
formation stay active during the whole period between its disappearance and its later use by
cognitive processes. Sustained activation has been found in many brain areas, including the
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prefrontal cortex (Funahashi et al., 1989), the parietal cortex (Koch and Fuster, 1989), the infer-
otemporal cortex (Ranganath et al., 2004) and themedial temporal lobe (Naya et al., 2003). The
medial temporal lobe (MTL) has an important role in interfacing high-level visual information
represented in the inferotemporal cortex (IT) with long-term mnemonic information encoded
in the hippocampal formation. It is composed of the perirhinal (PRh), entorhinal (ERh) and
parahippocampal (PHC) cortices.

PRh is in particular involved in visual object categorization (Murray and Richmond, 2001),
multimodal integration (Taylor et al., 2006), long-term memory encoding (Buffalo et al., 2000)
and retrieval (Brown and Xiang, 1998). In visual object categorization, PRh develops view-
independent representation of objects: objects are in general seen from particular angles or
are only partially visible. PRh learns to integrate over time these different views and bind them
together in a unitary representation. In the model of PRh we developed (Vitay and Hamker,
2008), PRh is represented by two populations of excitatory and inhibitory neurons, respectively,
with biologically plausible proportions and connectivity. Different objects are presented to
the model through connections from a model of IT to the excitatory neurons. Each object is
composed of different parts, which are randomly selected at each presentation: for example
the first presentation of a chair would contain its right side and three feet, the second would
be its back and only two feet, and so on. Through plasticity in the lateral connections between
the excitatory neurons, we observe the formation of connected clusters of neurons which
represent the object as whole: individual neurons of the cluster receive visual input from only
one part of the object, but they have become connected to neurons representing all the other
parts of the object.

Sustained activation has been observed in PRh during delayed matching-to-sample (DMS)
tasks, where a visual object (the sample) is shortly presented and removed for a variable
duration called the delay period. The same or a different object (the match) is then presented
and the subject has to respond if the new object matches the sample. PRh neurons repre-
senting the sample object stay active during the delay period (Nakamura and Kubota, 1995).
The model reproduces this effect by incorporating the effect of DA on synaptic transmission
in the cortex, extrapolated from its known influence in the prefrontal cortex (Durstewitz et al.,
2000; Seamans and Yang, 2004). We observed that PRh neurons show sustained activation
under intermediate levels of DA, but not low or high doses, a phenomenon known as inverted-U
curve in the prefrontal cortex (Vijayraghavan et al., 2007). Moreover, intermediate levels of
DA favor the propagation of activity within a cluster: while at low DA levels only the neurons
receiving visual information get activated, the whole cluster gets activated at intermediate
levels because of the enhanced lateral connections within the cluster. Instead of representing
a partial view of the object, PRh represents all possible views at the same time, leading to a
complete representation of the object. This provides a mechanism by which DA modulates
processing in PRh and allows memory retrieval.

The mechanisms used in this model are a very important step for visual processing as they
allow view-invariant representations of an object to be formed and retrieved by cognitive pro-
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cesses. Under optimal DA levels, object representations can be completed and help catego-
rization. Furthermore, the visual template representing an object in PRh can be activated by
cognitive processes (either through direct projections from the PFC or through the thalamus)
and used to guide visual search. The visual system is principally organized in two separate
pathways: the ventral pathway, originating in the primary visual cortex (V1) and ending in the
inferotemporal lobe, is specialized in object recognition; the dorsal pathway, originating in V1
and ending in the parietal cortex, focuses on the localization of visual objects and their ma-
nipulation (Ungerleider and Mishkin, 1982). Activating a template in PRh biases IT toward the
characteristic features of this object, which itself biases representations in the ventral pathway
through feedback projections. Once the corresponding features are enhanced in V1, the dorsal
pathway can then locate the object and direct an action toward it (Hamker, 2004a; Hamker,
2005b). Understanding how visual templates are formed and retrieved is a first step toward
understanding the cognitive control of vision.

Insights on the role of DA

Tonic levels of DAcontrol the processing properties of PRh by switching froma representational
mode - only the perceived information is represented - to a mnemonic one - visual templates
are completed or retrieved.

1.6.2 Chapter 3 : Basal ganglia and memory retrieval

Maintaining visual templates in PRh is a critical component of delayed rewarded tasks such
as delayed match-to-sample (DMS, reward is delivered if a response is made when the target
matches the sample), delayed non-match-to-sample (DNMS, the response is rewarded only if
the target does not match the sample) or delayed pair-association (DPA, similar to DMS but
there is a an arbitrary association between the sample and the rewarded target - e.g. respond
for an apple when the sample is a car). The visual loop of the BG, linking high-level visual
cortical areas such as IT and PRh with the body and tail of the caudate nucleus, is involved in
selectively activating visual templates during the delay period of such tasks in order to prepare
the correct response (Levy et al., 1997). The major difficulty of these three tasks is that the
visual template to be activated can be different from the presented sample, so the target has
to be retrieved from memory.

In Vitay and Hamker (2010), we developed a neuro-computational model of the visual loop
of the BG. It is composed of a closed loop between PRh, the caudate nucleus, SNr and the
ventro-anterior thalamus, and an open loop with a projection from the dlPFC to the caudate
nucleus. Contrary to the generic scheme described on Figure 1.4, we only modeled the direct
pathway of this loop. In the experimental setup, a sample is first presented and stored in dlPFC.
After a delay of 150 ms, a cue indicated which task to perform (DMS, DNMS or DPA) is pre-
sented and stored in dlPFC. Finally, after another delay, two stimuli are presented: the target
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(which matches the sample depending on the task) and a distractor. After a delay, we mea-
sure the maximal activity in PRh and deliver reward to SNc if the target has a higher activity.
The dopaminergic signal in SNc in response to the reward modulates learning at corticostriatal
synapses (both from PRh and dlPFC) according to the three-term DA-modulated Hebbian learn-
ing rule presented in this chapter. This is in line with many models of the BG (e.g. Brown et al.,
1999; O’Reilly and Frank, 2006). The novelty of this model is that DA also modulates plasticity
within the BG, in the connections from the striatum to SNr as well as in the lateral connections
of SNr.

This internal plasticity, confirmed by experimental evidence (Rueda-Orozco et al., 2009), re-
leases the constraints on the striatum. In other models, each striatal region converges on a
small number of GPi/SNr cells, allowing to disinhibit a single action. The corticostriatal projec-
tionsmust therefore solve two different problems: integrating different cortical representations
(here, the sample and the task cue) and map them on the correct action. If plasticity in the pro-
jection between the striatum andGPi/SNr is added, corticostriatal projections only need tomap
cortical associations on the striatum (a form of self-organization), while the striatopallidal ones
learn to map these representations onto the correct action. Additionally, plasticity within SNr
ensures selectiveness in the output of the BG.

The resulting model is able to learn through reinforcement learning the three tasks using a
limited number of objects. It provides a novel mechanism by which cognitive processes in the
PFC can learn to influence visual processing by retrieving visual templates. Two limitations of
this model should be outlined: first, it only considers the direct pathway of the BG, neglecting
the indirect and hyperdirect ones; second, the mechanisms to encode the sample and the task
cue in working memory in dlPFC are hard-coded and not learned. The first limitation was since
overcome by an extension of this model including the indirect and hyperdirect pathways, with
a strong emphasis on the dopamine-modulated plasticity in these pathways. This extended
model was successfully used to explain cognitive deficits in various BG-related diseases, such
as Parkinson’s disease (Schroll et al., 2014) and Huntington’s disease (Schroll et al., 2015).
Flexible WM mechanisms to learn to maintain relevant information in dlPFC are presented in
the next section (Schroll et al., 2012).

Insights on the role of DA

Dopamine regulates plasticity in the projections to the BG, but also between the different nu-
clei of the BG. Its phasic component carries a reward-prediction error that reinforces successful
stimulus-response associations. DA-mediated plasticity occurs only in the acquisition phase,
when the success of a response is not predicted yet. When a striatal representation is associ-
ated with reward delivery, it cancels dopaminergic activation and suppresses learning.

28



1.6 Structure of the thesis and contribution

1.6.3 Chapter 4 : WM and multiple basal ganglia loops

Updating and maintaining information in WM is a complex cognitive process involving mainly
the dlPFC and the BG (Frank et al., 2001), although many other cortical areas play a significant
role (Ashby et al., 2005; Jonides et al., 1998). Many neuro-computational models consider that
the BG is involved only in WM updating, i.e. the conditional entry of stimuli into it (Helie et al.,
2013; Uttal, 2015). One of the most prominent models of WM (O’Reilly and Frank, 2006) for
example considers the BG as a gating mechanism allowing, based on reinforcement learning,
sensory information to enter recurrent loops within the PFC. It has among others been applied
to the complex 1-2-AX task, which can be described as followed: a sequence of letters (A, B, X,
Y) and digits (1, 2) is displayed on a screen. The subjects have to respond with the left button
if they see an A followed by an X, but only if the last digit they saw was a 1. If that last digit was
a 2, they have to press left when they see a B followed by a Y. In all other cases, they have to
press right.

The 1-2-AX task is very complex, even for humans. It involves maintaining two levels of infor-
mation in WM: what was the last digit I saw (outer loop) and have I just seen an A or a B (inner
loop)? If these two pieces of information are kept in WM, deciding whether to press left or right
when an X or Y appears becomes as trivial as a stimulus-response association. The difficulty
is to know how a system can learn to maintain the outer and inner loops based solely on rein-
forcement learning, i.e. without explicit knowledge of the task. O’Reilly and Frank (2006) solve
the problem by implementing three parallel PFC/BG loops, one learning to maintain 1 and 2,
another A and B and the last one X or Y. The structural credit assignment problem - if the re-
sponse is incorrect, which of these three loops has failed? - is solved by allowing each loop to
modulate its own dopaminergic reward signal, but these loops are mostly independent of each
other. Moreover the BG are only used to update WM content, not actually maintain it, contrary
to experimental evidence (Landau et al., 2009).

In Schroll et al. (2012), we proposed a neuro-computational model of WM updating and main-
tenance involving three PFC-BG loops: two associative loops and a motor one. The role of the
motor loop is to decide whichmotor response (left or right) should be executed based on short-
termmnemonic information maintained in the associative loops during a 1-2-AX task. The role
of the two associative loops is to learn tomaintain the outer (1 and 2) and inner (A and B) loops,
respectively. Based on an idea by Krueger and Dayan (2009), we posit that shaping plays an
important role in organizing the different loops: animals usually don’t address complex cog-
nitive tasks directly, but incrementally generate more and more complex behavior by reusing
abilities that were previously acquired. In the case of the 1-2-AX task, this would correspond
to responding first to a 1 or 2, then to 1 followed by A or 2 followed by B, and finally by the
1-2-AX task task itself. Once a subtask is mastered, errors in performance can be interpreted
as a change in task complexity, signaling that more cognitive resources should be allocated to
solve the problem.

In the first shaping phase (only digits are presented), the motor PFC/BG loop learns to respond
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appropriately using the same mechanisms as in Vitay and Hamker (2010). When the second
phase is introduced (A-X or B-Y), the motor loop can not solve the problem because it has no
memory of the last digit seen. One of the two associative loops then starts learning tomaintain
this information through a closed loop. The sustained activation of a digit then biases the
motor loop to respond correctly to a 1-A or 2-B association. Finally, when the full 1-2-AX task
is introduced, the associative and motor loops fail again, as only the outer loop is maintained.
The associative loop sends a “distress” signal, telling the other associative loop to help solve
the task. The new loop then learns to maintain A and B, providing enough information to the
motor loop to execute the correct motor response.

Associative PFC/BG loops learn from errors as long as they are not confident in their output.
When they become confident but thewhole behavior fails, they ask formore cognitive resources
to be allocated to the task instead of simply unlearning what they were previously correctly do-
ing. Communication between the loops and the subsequent recruitment of cognitive resources
is based on the spiraling striato-nigro-striatal connectivity (Haber et al., 2000): each loop has
its own dopaminergic signal, which can be activated by loops higher in the hierarchy. When
the first associative loop fails to solve the task although it was previously performing well, it
signals the second loop through its dopaminergic system that it should get engaged in order
to improve the organism’s ability to acquire rewards.

Monitoring of performance is a crucial mechanism by which cognitive resources can be allo-
cated to solve a problem. The brain does not relearn everything every time it is confronted
with a new problem, it first tries already acquired solutions and only tries to combine or update
them when the performance is not satisfying (Botvinick et al., 2009). Based on neuro-anatomy
and the functional importance of dopamine in goal-directed behavior, the spiraling structure
of the striato-nigro-striatal system is a good candidate to coordinate the flexible recruitment
of PFC-BG loops. However, the anterior cingulate cortex (ACC) is known to be crucial in self-
performance assessment and error monitoring. As ACC is involved in a PFC-BG loop located
just in between the limbic regions (OFC, vmPFC) and the associative ones (dlPFC) (Haber and
Knutson, 2010), its dominating position may be the crucial link to determine the involvement
of different associative loops to solve cognitive problems. In all cases, understanding how
the dopaminergic system processes reward expectations and errors in these different loops is
important for the understanding of the organization of PFC-BG loops.

Insights on the role of DA

The activation of dopaminergic neurons is not uniform but specific to each PFC-BG loop. Differ-
ent loops can control their learning ability bymodulating their influx of dopamine. Moreover, the
hierarchical organization of the reciprocal connections between the striatum and the dopamin-
ergic areas allows the flexible recruitment of cognitive resources when needed.
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1.6.4 Chapter 5 : Timing and expectation of reward

The TD error signal depends only on two pieces of information: the prediction of the value of
a state (or action) and the reward actually received. As shown on Figure 1.7, VTA receives
information from many other brain regions: a massive inhibitory projection from NAcc (possi-
bly excitatory through a relay on the ventral pallidum - VP), direct cortical excitation from the
PFC, excitatory connections from reward-related brainstem regions such as the pedunculopon-
tine tegmental nucleus (PPTN), the lateral habenula (LHb) or the lateral hypothalamus (LH). As
discovered recently, it also receives inhibitory connections from the mesopontine rostromedial
tegmental nucleus (Bourdy and Barrot, 2012; RMTg, Jhou et al., 2009). Inhibitory neurons in the
VTA furthermore control the activity of VTA cells and project on NAcc and PFC. The complexity
of the afferent system to VTA suggests that it computes more than a simple reward-prediction
error signal.

Figure 1.7: Major afferent areas to VTA. The prefrontal cortex (PFC), the basolateral amygdala
(BLA), the ventral subiculumof the hippocampus (vSub/Hipp) project on the nucleus
accumbens (NAc), which has a strong inhibitory influence onVTA. VTA also receives
direct excitatory connections from the PFC. The pedunculopontine tegmental nu-
cleus (PPTg), laterodorsal tegmental nucleus (LDT), lateral hypothalamic and lat-
eral preoptic areas (LHA/LPOA), lateral habenula (LHb), among others, also provide
excitatory inputs to the dopaminergic cells of VTA. The mesopontine rostromedial
tegmental nucleus (RMTg) provides inhibitory input. VTA also comprises GABAer-
gic cells, which inhibit the dopaminergic ones as well as the PFC and NAc. Adapted
from Sesack and Grace (2010).

Several neuro-computational models of the dopaminergic system have been proposed to ex-
plain this organization (Brown et al., 1999; O’Reilly et al., 2007; Tan and Bullock, 2008). A com-
mon point of these dual-pathway models is that they distinguish the excitatory and inhibitory
components driving VTA activity for rewards and reward-predicting stimuli, although some de-
bate exists on the exact structures carrying these informations. The DA burst in response to
delivery of reward likely originates from the PPTN, while the cancellation of this response when
the reward is fully predicted originates from the striatum. Reward-predicting stimuli activate
VTA either though the excitatory projection from PFC or from the amygdala. The main differ-
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ence between those models is how the temporal component of the DA signal is computed: in
the experiments of Schultz et al. (1997), VTA shows a dip below baseline at the exact time
where a reward was expected but did not occur. As no sensory event happens at this time, this
indicates that internal timing mechanisms are involved in generating the DA signal.

The hypothesis taken by Brown et al. (1999) and Tan and Bullock (2008) is that the striatum im-
plements a spectral timingmechanism (Grossberg and Schmajuk, 1989) where striatal neurons
have intracellular calcium levels which peak at different times after stimulus onset: detecting
these peaks allows to estimate the time elapsed since onset. Because of the lack of evidence
for such a mechanism, we decided in Vitay and Hamker (2014) to investigate alternative mech-
anisms for interval timing. A successful model of interval timing is the Striatal-Beat Frequency
model (Matell and Meck, 2004). The basic principle is that cortical neurons behave as oscilla-
tors at different frequencies which are synchronized at stimulus onset. The population code
composed by these oscillators provides a unique description of the time elapsed since onset:
if enough neurons and a large enough range of frequencies are used, the population will never
display twice the same pattern, while being reproducible between different trials. Striatal neu-
rons can then detect the elapsed duration by learning to respond to the cortical pattern present
when reward is delivered: the DA burst at reward delivery influences plasticity at corticostriatal
synapses so they become selective only for that pattern. This model capturesmany aspects of
the link between dopaminergic activity and timing processes, including the accelerated sense
of time when DA is elevated - for example in aroused states or during recreational drug use - or
the effect of lesions of SNc/VTA or the striatum on interval timing (Coull et al., 2011).

Using this hypothesis, we developed a novel neuro-computational model shedding new light
on the afferent system to VTA based on neuro-anatomical evidence. Although the response
to primary rewards is classically mediated through PPTN, we propose that conditioned stimuli
activate VTA through the existing connection between the amygdala - a structure known for
its involvement in classical conditioning - and PPTN. Furthermore, we propose that the can-
cellation of the DA burst when a reward is predicted and the DA dip when a reward is omitted
are processed by two different mechanisms: the direct inhibitory projection from NAcc to VTA
can inhibit the response to primary rewards, but bringing VTA activity below baseline requires
a complex sub-network linking the ventral BG (NAcc and VP) to VTA through LHb and RMTg.

The model is able to reproduce a wealth of experimental findings: the progressive appearance
of phasic bursts at CS onset through classical conditioning, the progressive canceling of the
amplitude of the phasic bursts elicited by primary rewards, the strong phasic inhibition at the
time when reward is expected but not delivered, the dependency on reward magnitude of the
activities in BLA and VTA, the response to reward delivered earlier than expected (Fiorillo et
al., 2003; Pan and Hyland, 2005; Schultz et al., 1997). This model is currently limited to VTA
activity during classical conditioning but provides a detailed functional basis to address the
mechanisms of dopamine release in the PFC-BG system.
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1.6 Structure of the thesis and contribution

Insights on the role of DA

The dopaminergic system integrates information from diverse structures, signaling reward de-
livery, prediction and omission through different projections. Cognitive, motor and emotional
information converge on the dopaminergic system, which then redistributes back the most rel-
evant aspects. It is critically involved in timing processes and therefore the organization of
behavior through time.

1.6.5 Chapter 6 : Neural simulator ANNarchy

Neuro-computational models are described by a limited set of information:

1. The number of populations of neurons (or areas), the number of neurons in each popula-
tion and possibly a topology;

2. A set of ordinary differential equations (ODE) describing the dynamics of each neuron
model in the model;

3. Connectivity patterns for the projections between the populations: all-to-all, probabilistic,
distance-based, etc;

4. A set of ODEs describing the dynamics of synaptic plasticity for the projections;
5. Methods to provide inputs and read out outputs of the network.

Some of these informations can be inferred from anatomical and physiological data. Neural
and synaptic dynamics are well studied, so only small modifications usually need to be applied
to standard models. The main difficulty is actually to find sensible values for the free param-
eters of the model: time constants, learning rates, etc. Although experimental data constrain
the range of possible values, this is the most time-consuming part of the design of a neuro-
computational model.

Another difficulty is that neural networks can very quickly become expensive to simulate: the
number of connections grow quadratically with the number of neurons and the computations
can become very slow if no special care is taken about the optimality of the implementation.
Parallel computing offers many advantages for the simulation of neural networks as each neu-
ron only processes local information, but writing optimized parallel code on different hardware
(shared-memory systems, distributed systems or recently general-purpose graphical cards -
GPU) can be quite difficult and time-consuming.

Consequently, researchers in computational neuroscience use neural simulators instead ofwrit-
ing their own simulation code. These are libraries allowing the definition of a model, usually in
a high-level scripting language such as Python or Matlab, and hiding from the user all the low-
level implementation details necessary to run efficiently simulations in parallel. Another posi-
tive side effect is that neural simulators facilitate the exchange of models between researchers
for validation and the integration of different models to obtain more functionalities.
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Many different neural simulators are available to the community: NEURON, NEST, GENESIS,
Brian, GeNN, Auryn Vitay et al. (2015). They all have different strengths and drawbacks: the
exhaustiveness of the set of neural and synaptic models which can be included in a model,
the simplicity of the interface, their optimization for a particular parallel hardware, etc. These
simulators focus on the simulation of spiking networks, where neurons exchange information
through discrete events (spikes), while rate-coded models, where neurons exchange directly
a firing rate, are usually impossible or very difficult to define. At the exception of Brian, these
simulators provide a fixed set of neural and synaptic models which can only be extended with
great difficulty: as long as one only needs standard models, these simulators are very practical,
but if one wants to investigate new mechanisms, the programming effort becomes important.
Brian proposes a very flexible code generation approach, where neural and synaptic dynamics
are described using a text-based equation-oriented mathematical description which is used to
generate Python code at run-time (Stimberg et al., 2014). Using code generation allows the
user to define virtually any neural or synaptic model.

In parallel to the design of the neuro-computational models presented above, I developed over
several years a neural simulator named ANNarchy (Artificial Neural Networks architect), later
in collaboration with Helge Ülo Dinkelbach. Two main principles guided the development: first,
it should allow the rapid definition of neural networks, for both rate-coded and spiking models.
Second, the simulation should be able to run transparently and efficiently on different parallel
hardware (using OpenMP for shared-memory systems, MPI for distributed ones and CUDA for
GPUs). Code generation is the core principle of the simulator: the definition of the network in a
Python script is analyzed and used to generate entirely the simulation code (including a transla-
tion from the text-based description of ODEs to executable code statements), using templates
adapted to the parallel framework.

In Vitay et al. (2015), we presented the neural simulator to the community and showed that
its parallel performance is at least comparable to the alternatives. It is freely available and
released under an open-source license. In addition to being used inside the professorship of
Artificial Intelligence of the TU Chemnitz, several research groups have shown interest in this
simulator and have started using it for their own research. More than just a tool, ANNarchy is
also a very promising platform to study the issues raised by neuro-computational models to
the parallel computing community: relying on code generation, it allows to explore systemat-
ically the different optimizations and algorithms that allow specific networks to be simulated
efficiently on different hardware.

1.7 Conclusion

The common theme of this thesis is the role of dopamine in the cognitive, motor and emotional
processes involved in goal-directed behavior. Using biologically-realistic neuro-computational
models, I investigated its role in visual object categorization and memory retrieval (Vitay and
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Hamker, 2008), reinforcement learning and action selection (Vitay and Hamker, 2010), the up-
dating, learning and maintenance of working memory (Schroll et al., 2012) and timing pro-
cesses (Vitay and Hamker, 2014). The involvement of dopamine in such a wide variety of
processes highlights the importance of understanding the mechanisms leading to dopamine
release aswell as its effect on the activity and plasticity of cortical and subcortical structures.

The different models outline different facets of the effect of DA release in the brain. In the
cerebral cortex, the most important effect of DA is the modulation of synaptic transmission
in localized networks of excitatory and inhibitory neurons. DA release in the prefrontal cortex
influences short-term memory processes by inducing two modes of computation: an “open
gate” mode, where multiple sensory information can enter the neural substrate and be repre-
sented in parallel; and a “closed gate” mode, where only the strongest and most important
representation is maintained, allowing sustained activation (Seamans and Yang, 2004). The
transition between these two modes follows an inverted U-curve, where low and high DA levels
lead to open gates and intermediate levels to closed gates. The proposed model of PRh (Vitay
and Hamker, 2008) exhibits a similar mechanism: PRh can switch between a representational
state (driven by inputs) and amnemonic state (where visual memory is retrieved) depending on
the modulatory influence of DA on synaptic transmission. It is likely that DA is able to induce
such different modes of computation in all cortical areas receiving dopaminergic input (the
whole frontal lobe, the inferotemporal and parietal cortices). The functional consequences of
this property still need to be explored, especially with respect to the spatial scale: do all these
cortical areas receive the same dopaminergic input from VTA, or is there a functional topology
allowing to selectively switch single areas?

In the basal ganglia, the main mode of action considered in the models is the inducement of
plasticity by phasic DA bursts or dips. These short-term deviations around the baseline shape
synapses coming from the cortex, but also inside the BG. Although more complex models of
plasticity have been used, their influence basically follows a three-term DA-modulated Hebbian
learning rule. DA bursts reinforce PFC/BG representations which lead to reward, while DA dips
“punish” the ones which led to omission of reward or punishment (Schroll et al., 2012; Vitay
and Hamker, 2010). This mechanism is fundamentally in line with actor/critic analogies. The
short-term duration and the short latency of these phasic responses furthermore allow DA to
signal precisely the occurrence of meaningful events, what can be used to learn time intervals
and provide an internal sense of elapsed time (Vitay et al., 2015). One aspect of dopamine that
will be addressed by future work is the influence of its tonic activity on the BG, which are known
to influence the strength and vigor of motor responses as well as the exploration/exploitation
trade-off (Beeler et al., 2010; Niv et al., 2007).

An important mechanism proposed in this work is how multiple PFC/BG loops can communi-
cate by influencing each other’s dopaminergic signal. The striato-nigro-striatal connectivity is
a remarkable anatomical property whose functional consequences remain largely unexplored.
We proposed in Schroll et al. (2012) that it provides a mechanism allowing PFC/BG loops to
recruit other loops when the task becomes too complex. The ability of each loop to control its
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dopaminergic input is here fundamental: by knowing howwell it performs on a task, it can know
if a mistake is its own responsibility, in which case it should continue learning, or if it should
rather ask for more cognitive resources to solve the task. This mechanism is fundamental for
life-long learning: complex behaviors emerge by composing already acquired simple behav-
iors, not by learning them from scratch. Future work will broaden this idea to other systems,
especially the coordination between the limbic and associative loops which form the basis of
goal-directed behavior.

Without a deep comprehension of the neural mechanisms underlying dopamine activity, it
would be difficult to design artificial systems showing an intelligent and flexible organization of
behavior. Research in computational neuroscience has therefore the opportunity to advance
considerably artificial intelligence by transposing biological principles into flexible algorithms.
In the proposed work, goal-directed learning focuses on extrinsic rewards. Intrinsic rewards
are able to generate more interesting behaviors, such as the discovery of relevant information
driven by curiosity or playfulness. Fortunately, dopamine influences similarly the structures
responsible for these behaviors and the ones involved with extrinsic rewards, so the principles
presented in this thesis will be useful to design such systems. However, intrinsic rewards
require an internal state to be acted upon: a core idea of intrinsic motivation is that some
actions are directed toward maintaining the system in its “comfort zone” - the homeostasis, for
example maintaining the body’s temperature, satiety or safeness - while others on the contrary
are the consequence of drives that can never be satiated - curiosity can for example never
be completely satisfied, so it keeps the organism exploring its environment (see Oudeyer and
Kaplan, 2007 for a typology of intrinsic motivation). This internal state obviously requires a
body, so that actions acquire a better meaning than simply collecting external rewards. This
outlines the importance of embodiment and future work will address the implementation of
the proposed models on robotic platforms.
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2 Sustained activities and retrieval in a
computational model of perirhinal cortex

Abstract

Perirhinal cortex is involved in object recognition and novelty detection, but also in multimodal
integration, reward association and visual working memory. We propose a computational
model that focuses on the role of perirhinal cortex in working memory, particularly with respect
to sustained activities and memory retrieval. This model describes how different partial
informations are integrated into assemblies of neurons that represent the identity of an object.
Through dopaminergic modulation, the resulting clusters can retrieve the global information
with recurrent interactions between neurons. Dopamine leads to sustained activities after
stimulus disappearance that form the basis of the involvement of perirhinal cortex in visual
working memory processes. The information carried by a cluster can also be retrieved by a
partial thalamic or prefrontal stimulation. Thus, we suggest that areas involved in planning
and memory coordination encode a pointer to access the detailed information encoded in
associative cortex such as perirhinal cortex.

2.1 Introduction

Perirhinal cortex (PRh), composed of cortical areas 35 and 36, is located in the ventromedial
part of the temporal lobe. It receives its major inputs from areas TE and TEO of inferotemporal
cortex, as well as from entorhinal cortex (ERh), parahippocampal cortex, insular cortex and
orbitofrontal cortex (Suzuki and Amaral, 1994). As part of the medial temporal lobe system
(with hippocampus and ERh), its primary role is considered to be object-recognition memory,
as shown by impairements in delayed matching-to-sample (DMS) or delayed nonmatching-to-
sample (DNMS) tasks following PRh cooling or removal (Buffalo et al., 1998; Horel et al., 1987;
Meunier et al., 1993; Zola-Morgan et al., 1989). It is thought to be particularly involved in the
representation and learning of novel objects (Brown and Xiang, 1998; Pihlajamäki et al., 2003;
Wan et al., 1999), with a greater activation for these objects than for familiar ones. suggest
that novel objects do not have a strong preexisting representation in inferotemporal cortex,
and traces of long-term memory in PRh could be used to manipulate these objects.
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2 Sustained activities and retrieval in a computational model of perirhinal cortex

Despite the huge amount of evidence for a mnemonic role of PRh, some recent findings sug-
gest that it is also involved in high-level perception (for a controversy, see and ), such as ob-
ject categorization and multimodal integration, by integrating different sources of information
about the identity of an object Taylor et al. (2006). PRh indeed receives connections from in-
sular cortex (somatosensory information) and the dorsal bank of the superior temporal sulcus
(vision/audition coordination), therefore being at a central place for integrating differentmodali-
ties of an object. Interestingly, monkeys with lesions of PRh are unable to select a visible object
first sampled by touch Goulet and Murray (2001) or by a partial view of that object Murray et al.
(1993).

Accordingly, PRh is neither a purely mnemonic nor a perceptual area: it is a multimodal area
which is presumably involved in the goal-directed guidance of perception. This link to the goals
of the task at hand is reflected by themodulation of PRh activity by reward association (Mogami
and Tanaka, 2006), which strongly depends on D2 dopamine receptors (Liu et al., 2004). Also,
PRh is involved in visual working memory, which is known to use integrated representations of
objects rather than individual features (Lee and Chun, 2001; Luck and Vogel, 1997). showed
that PRh cells are more active during a DMS task when their preferred stimulus is the sample
(the object to be remembered) than when it is the match (the target) and that this property is
actively reset between trials, supporting the evidence of a higher cognitive involvement. Some
PRh cells also exhibit sustained activity between sample and match: their proportion has been
estimated to 35% compared to 22% in IT or 71% in ERh (Nakamura and Kubota, 1995; Naya et al.,
2003). However, contrary to ERh, these sustained activities are not robust to the presentation
of distractors between sample and match (Miller et al., 1993b; Suzuki et al., 1997). The exact
mechanism and purpose of these sustained activities is still unknown. Are they only provoked
by feedback connections fromprefrontal cortexwhere sustained activities are robust to distrac-
tors (Miller et al., 1996), or does prefrontal cortex just control the maintenance or suppression
of these sustained representations that are created with intrinsic mechanisms in PRh?

This article presents a computational model of PRh focused on the involvement of this cortical
area in visual working memory processes, by emphasizing the effect of dopamine modulation
on perirhinal cell activation. Our aim is neither to model every aspect of PRh functioning nor to
explore the biophysical properties of sustained activation. We rather propose a new interpreta-
tion at the functional level of these sustained activities in the framework of multimodal object
identification or categorization. Themodel demonstrates how different aspects of an object or
a category are linked into a neural assembly according to their cooccurence through time and
how this assembly can be reactivated for memory retrieval.
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2.2 Methods

2.2.1 Context

There are only few computational models of PRh. One of the most famous is the perceptual-
mnemonic feature conjunction (PMFC) model by Bussey, Saksida and colleagues (Bussey and
Saksida, 2002; Cowell et al., 2006). As its name indicates, it is primarily concerned with the
interplay of perceptual and mnemonic processes in PRh. PRh is represented by a feature-
conjunction layer that integrates individual features and learns to represent effectively objects
in concurrent discrimination or configural learning tasks. Learning occurs either through a
Rescorla-Wagner rule (Bussey and Saksida, 2002) or through self-association in Kohonenmaps
(Cowell et al., 2006). Despite its good predictions about the effects of PRh lesions on discrimi-
nation and configural learning tasks, it is a purely static model that can not deal with sustained
activities. The model by is much more detailed and dynamic (spiking neurons) but only deals
with familiarity discrimination: its Hopfield-like structuremakes it able to tell rapidly if an object
has already been seen but it does not allow to recollect its details. It is a purely mnemonic view
of PRh. The model we propose is original with regards to the functions it describes (autoasso-
ciative memory, sustained activation, memory retrieval) and its dynamical structure.

2.2.2 Architecture of the model

To keep themodel as simple as possible, we donot consider the precise timing of spikes but use
mean-rate artificial neurons whose activity is ruled by a dynamical differential equation. This
positive scalar activity represents the instantaneous firing rate, which is directly derived through
a transfer function from the membrane potential, without using a spike-generation mechanism.
As a consequence, the neurons used in this model exchange only this time-varying scalar activ-
ity through their connections, similar to dynamical neural fields (Amari, 1977; Taylor, 1999).

The neural network (Figure 2.1 - a) is composed of a population of excitatory pyramidal cells in-
terconnected with a population of inhibitory interneurons. In order to reflect approximately the
relative number of GABAergic interneurons in the cerebral cortex, the excitatory population is
four times bigger that the inhibitory one Beaulieu (1993). Each inhibitory cell receives excitatory
inputs from a subset of excitatory cells, with a gaussian connectivity kernel centered on the cor-
responding neural location. Reciprocally, each excitatory cell receives connections from a sub-
set of inhibitory cells with a broader gaussian connectivity kernel. Additionnally, inhibitory cells
are reciprocally connected with each other in a all-to-all manner, with the connection strength
decreasing with the distance between cells. Excitatory cells are also reciprocally connected in
an all-to-all manner, but the strength of these connections is modifiable with experience.

Each excitatory cell receives a cortical input that could originate in a visual area like TE or in the
multimodal parahippocampal cortex. showed that neighbouring cells in PRh tend to represent
the same objects after visual experience. This finding could be explained by a self-organization
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2 Sustained activities and retrieval in a computational model of perirhinal cortex

Figure 2.1: a) Architecture of the model. It is composed of 𝑁 × 𝑁 excitatory cells (E) and
𝑁
2 × 𝑁

2 inhibitory cells (I). Excitatory and inhibitory cells are reciprocally connected
through gaussian connectivity kernels. Inhibitory cells are also reciprocally con-
nectedwith each other with a strength decreasingwith the distance. Excitatory cells
are reciprocally connected with each other, but the strength of the connections is
learned. Each excitatory cell receives a cortical input C from other areas. Addition-
nally, some excitatory cells receive a thalamic input T. All connections except the
cortical ones are modulated by dopamine (hatched squares). b) Feed-forward con-
nectivity for excitatory cells. Two different objects have to be learned by the model:
object A (light grey) and B (dark grey, hatched) are each represented by five parts
(numbered from 1 to 5), corresponding to different views or modalities. Each part
is represented by a cortical input to four cells, what makes each object being repre-
sented by a cluster of 20 cells.
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of receptive fields, i.e. the modification of feedforward connections. Our model does not in-
clude this feed-forward learning but is rather designed to show how the gathering of these
different informations can occur in PRh. The cortical input to a cell will therefore be a time-
varying scalar value, reflecting the weighted sum of the activity of its afferent cells, without any
information about its origin. The basic idea of the model is that the perirhinal neurons repre-
senting a given object or category have receptive fields selective for a particular aspect of that
object or category, either in visual space (different views of an object or different exemplars of
a category sharing some visual features) or in multimodal space (some neurons are preferen-
tially activated by the sound associated to this object, or its touch). In the following, we will not
distinguish between the learning of different views or modalities of an object, or the learning
of a category represented by different exemplars: the mechanism remains the same and we
will use the term “object” for either a real object or a category. The increase in the strength
of the lateral reciprocal connections between excitatory cells will provoke a clustering effect:
the representation of an object will be distributed over several cells (forming what is called a
cluster or an autoassociative pattern) which are individually selective for a particular aspect.

In our simulations, an object is represented by five parts corresponding each to a particular
aspect. Each part provides a cortical input to four excitatory cells in PRh (randomly chosen
in the population), meaning that the representation of all aspects of an object forms a cluster
of twenty neurons (Figure 2.1 - b). During learning, each object will be successively presented
during a certain amount of time (250 ms here), but each of its parts will be randomly active
with a probability of 0.6. The random activation of parts means that each presentation of an
object will be incomplete in most cases. The goal of the learning in the lateral connections will
be to correlate the different parts, even if they do not constantly appear together. Unless stated
otherwise, all the simulations have been done with two different objects.

2.2.3 Dopamine modulation

Dopamine (DA) modulation is a very important feature of the model, responsible for most of its
interesting properties. Unfortunately, little is known about its effects in PRh. We will therefore
assume that dopamine modulation in PRh is similar to what occurs in prefrontal cortex, given
the fact that PRh has a similar ratio of D1/D2 receptors, even if their density is higher (Hurd
et al., 2001). An exhaustive review about dopamine effects on prefrontal cells can be found in
. The picture that emerges from experimental observations is very heterogeneous. However,
there is some accumulating evidence for the following properties:

• the effect of DA is strictlymodulatory: it does not induce excitatory post-synaptic currents
by itself (Yang and Seamans, 1996);

• DA modulates both pyramidal and fast-spiking inhibitory interneurons (Gorelova et al.,
2002);

• DA modifies the cell’s excitability by modulating intrinsic ionic currents like Na+ and K+

(Yang and Seamans, 1996);
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• the effect of DA is dose-dependent: D1 receptor activation can have opposing functional
effects depending on the level of stimulation, following an inverted U-shape (Goldman-
Rakic et al., 2000);

• the effect of DA is neurotransmitter receptor-dependent: NMDA- (excitatory activity-
dependent) and GABA- (inhibitory) mediated currents are enhanced by DA, but AMPA-
(excitatory) mediated ones are decreased (Cepeda et al., 1992; Momiyama et al., 1996);

• the effect of DA is dendrite-dependent: DA reducesmore strongly the EPSPs generated in
apical dendrites (long-distance cortical inputs) than in the basal ones (neighbouring pyra-
midal cells), through a reduction of dendritic Ca2+ currents (Yang and Seamans, 1996;
Zahrt et al., 1997);

• the effect of DA is activity-dependent: the more the cell is active, the more DA modulates
its inputs (Calabresi et al., 1987);

• DA levels are long-lasting in the target area Huang and Kandel (1995). The phasic DA
bursts in the dopaminergic cells are therefore not relevant: we will only consider the tonic
component of DA activity, not its phasic component.

Existing models of dopaminergic modulation of sustained activies in prefrontal cortex do not
all make the same hypothesis about the exact influence of DA. A detailed model by supposes
that DA enhances the persistent Na+ ionic currents, reduces the slowly inactivating K+ ionic
currents, reduces the efficiency of apical inputs, reduces the amplitude of glutamate-induced
EPSPs (including NMDA, even if they admit this is controversial) and increases the sponta-
neous activity of GABAergic cells as well as the amplitude of IPSPs in pyramidal cells. In their
respective models, as well as suppose that DA only enhances NMDA-mediated currents in the
basal dendrites in coordination with a simultaneous increase of the amplitude of IPSPs. On the
contrary, consider that DA momentarily restricts excitatory inputs on apical dendrites. More re-
cently, considered that DA only modifies the gain of cells by increasing their firing threshold,
without being more specific about synaptic currents.

The major link between most of these models is that they distinguish the effects of DA on
apical dendrites and on basal dendrites of pyramidal cells: the influence of long-distance corti-
cal inputs is reduced by DA whereas the influence of neighbouring pyramidal cells is increased.
This last assumtion is coherent with the fact that basal dendrites are primarily NMDA-mediated
(Schiller et al., 2000). The reduction of apical currents allows the network to be momentarily
insensitive to external inputs, increasing the robustness of sustained activities when they ap-
pear. In the case of PRh, as we know that sustained activities are not robust to the appearance
of distractors (Miller et al., 1993a), we neglected this effect. Accordingly, the major influences
of DA we consider in our model are therefore the increase of the efficiency of lateral connec-
tions between excitatory cells (on an activity-dependent manner, as they are mainly mediated
by NMDA receptors), the increase of the amplitude of IPSPs (by increasing the efficiency of the
connections from inhibitory to excitatory cells) and the increase of the activity of the inhibitory
cells through an increase in the efficiency of the connections from excitatory to inhibitory cells.
These assumptions are summarized in Figure 2.1 - a. The modification of the excitability of
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cells through modulation of ionic currents has not been taken into account since the effects of
this mechanism are thought to be similar to the selective modulation of synaptic currents. The
differential effects of D1-like and D2-like receptors have not been considered since there exists
no sufficient experimental evidence to draw a precise line between them.

2.2.4 Equations for updating the activity

Themodel consists of a single map of𝑁 ×𝑁 excitatory units and 𝑁
2 × 𝑁

2 inhibitory units. We
use 𝑁 = 20 for the results in this paper, but the properties of the model do not depend on this
particular size: it has been tested from 𝑁 = 10 to 𝑁 = 40, showing that distributed compu-
tations and flexible learning can induce scalability. We used a mean-field approach, where the
activity of each unit follows an ordinary differential equation, discretized with a timestep of 1
ms. In the mean-field approach, a unit represents a population average of a certain number of
single cells. Since the true underlying circuitry is not well known, we do not explicitely derive
the mean-field solution but describe the dynamics at the macroscopic population level. Never-
theless, for the sake of simplicty, we use the term “cell” for a unit. The mean activity 𝐼𝑖(𝑡) of
an inhibitory cell at time 𝑡 is ruled by Equation 2.1:

𝜏𝐼 ⋅ 𝑑𝐼𝑖(𝑡)
𝑑𝑡 + 𝐼𝑖(𝑡) = ∑

𝑗≠𝑖
𝑊 𝐼𝐼

𝑖𝑗 ⋅ 𝐼𝑗(𝑡) + (1 + 𝐾𝐸𝐼 ⋅ 𝐷𝐴) × ∑
𝑘

𝑊 𝐸𝐼
𝑖𝑘 ⋅ 𝐸𝑘(𝑡) + 𝜂𝐼

𝑖 (𝑡)

(2.1)

where 𝜏𝐼 = 10 ms is the net time constant of the unit. 𝑊 𝐼𝐼 is the set of connections between
inhibitory cells, decreasing with the distance between the cells and 𝑊 𝐸𝐼 is the set of connec-
tions from the excitatory cells (activity denoted 𝐸𝑘(𝑡)) to the inhibitory cell (formulas given in
the appendix). The dopamine level in the network (represented by the scalar value𝐷𝐴 between
0 and 1) increases the gain of inputs from excitatory cells. 𝐾𝐸𝐼 is a fixed scaling parameter.
Finally, 𝜂𝐼(𝑡) is a noise added to the cell that randomly fluctuates in the range [−0.1, 0.1].
The resulting activity is restricted to positive values.

The mean activity 𝐸𝑖(𝑡) of an excitatory cell at time 𝑡 is ruled by Equation 2.2:

43



2 Sustained activities and retrieval in a computational model of perirhinal cortex

𝜏𝐸 ⋅ 𝑑𝐸𝑖(𝑡)
𝑑𝑡 + 𝐸𝑖(𝑡) = 𝑓((1 + 𝐾𝐸𝐸 ⋅ 𝜎𝑙𝑎𝑡(𝐷𝐴) ⋅ 𝜎𝐸𝐸(𝐸𝑖(𝑡))) ⋅ ∑

𝑗≠𝑖
𝑊 𝐸𝐸

𝑖𝑗 ⋅ 𝐸𝑗(𝑡)

+(1 + 𝐾𝐼𝐸 ⋅ 𝜎𝐺𝐴𝐵𝐴(𝐷𝐴) ⋅ 𝐸2
𝑖 (𝑡)) ⋅ ∑

𝑘
𝑊 𝐼𝐸

𝑖𝑘 ⋅ 𝐼𝑘(𝑡)

+𝑊 𝐶
𝑖 ⋅ 𝐶𝑖(𝑡)

+(1 + 𝐾𝑇 ⋅ 𝜎𝑇 (𝐷𝐴)) ⋅ 𝑇𝑖(𝑡)
+𝜂𝐸

𝑖 (𝑡))
(2.2)

where 𝜏𝐸 = 20 ms is the net time constant of the unit. This value is chosen twice as large as
in the inhibitory units to reflect the ratio of membrane time constants between pyramidal cells
and inhibitory interneurons in the cortex (McCormick et al., 1985). 𝑓(𝑥) is a transfer function,
ensuring that the activity of the cell does not reach too high values. It is linear in the range
[0, 1] and then saturates slowly to a maximum value of 1.5 (formula given in the appendix).
There are five terms inside this transfer function. The first term denotes the influence of the
lateral connections between excitatory cells 𝑊 𝐸𝐸. Its gain depends on dopamine through a
sigmoidal term 𝜎𝑙𝑎𝑡 and a fixed scaling parameter 𝐾𝐸𝐸 but also on the activity of the cell
itself through another sigmoidal function 𝜎𝐸𝐸. For these predominantly NMDA-mediated lat-
eral connections, the influence of DA is therefore activity-dependent. These two sigmoids are
independent to ensure that DA only modulates active cells and that effective transmission of
activity through NMDA-mediated connections between excitatory cells only occurs in the pres-
ence of DA. The second term represents the influence of the connections from the inhibitory
cells with a negative strength 𝑊 𝐼𝐸. Their efficiency also increases with dopamine (sigmoidal
function 𝜎𝐺𝐴𝐵𝐴 and fixed scaling parameter 𝐾𝐼𝐸) and the activity of the cell. The feedfor-
ward inhibition produced by the increase of the efficiency of IPSPs by high levels of DA on pyra-
midal cells, as proposed by , is realized through a square of the activity of the cell itself. The
third term is the contribution of the cortical input 𝐶𝑖(𝑡) through a random weight 𝑊 𝐶

𝑖 , with-
out any dopaminergic modulation since they are considered to reach apical dendrites (see the
Dopamine modulation section). When the cell is stimulated, we set 𝐶𝑖(𝑡) = 1.0. The fourth
term is the contribution of a possible thalamic input 𝑇𝑖(𝑡), increased by dopamine through 𝜎𝑇

and the scaling parameter 𝐾𝑇 . This term is clearly distinct from the cortical inputs: although
PRh is dysgranular - with a very thin layer IV (Rempel-Clower and Barbas, 2000) - thalamocor-
tical afferents from the dorsal and medial geniculate nuclei target layers I, III/IV and VI (Furtak
et al., 2007; Linke and Schwegler, 2000), therefore on both apical and basal dendrites of pyra-
midal cells, as well as on various interneurons. We therefore assume that the thalamic input
has a driving force through apical dendrites, similar to the cortical input, and a dependence on
dopamine through the basal dendrites. The last term 𝜂𝐸(𝑡) is a noise randomly fluctuating in
[−0.5, 0.5]. The resulting activity is restricted to positive values. Details about the sigmoidal
functions and other parameters are given in the appendix.
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While the general properties of DA modulation are largely supported by the discussed observa-
tions, the exact parameters and sigmoid functions have been determined through trial-and-error
processes to enable sustained activities. Although the results we present here quantitatively
depend on these choices, the global properties we intend to highlight admit some variations in
the values of the parameters.

2.2.5 Learning rule

The lateral reciprocal connections between excitatory cells 𝑊 𝐸𝐸 are subject to learning. We
considered a covariance rule combining input- and output-dependent LTP (long-term potentia-
tion) and output-dependent only LTD (long-term depression):

𝜏𝑊 ⋅ 𝑑𝑊 𝐸𝐸
𝑖𝑗 (𝑡)
𝑑𝑡 = (𝐸𝑖(𝑡) − ̂𝐸𝑖(𝑡))+ ⋅ ((𝐸𝑗(𝑡) − ̂𝐸𝑗(𝑡))+ − 𝛼𝑖(𝑡) ⋅ 𝑊 𝐸𝐸

𝑖𝑗 (𝑡) ⋅ (𝐸𝑖(𝑡) − ̂𝐸𝑖(𝑡))+)
(2.3)

where 𝐸𝑖(𝑡) is the pre-synaptic activity of cell 𝑖, 𝐸𝑗(𝑡) the post-synaptic activity of cell 𝑗. ()+

is the positive part function. ̂𝐸𝑘(𝑡) is a temporal sliding-mean of the activity 𝐸𝑘(𝑡) over a
window of 𝑇 ms defined by:

̂𝐸𝑘(𝑡) = (𝑇 − 1) ⋅ ̂𝐸𝑘(𝑡 − 1) + 𝐸𝑘(𝑡)
𝑇

(2.4)

with 𝑇 = 5000 ms in this model. This term ensures that learning occurs only when pre-
synaptic or post-synaptic activities are significantly higher than their baseline value, ruling out
learning of noise. However, the final weights determined by this rule alone are strongly depen-
dent on the value of the parameter 𝛼𝑖, which is constant in classical covariance rules. If 𝛼𝑖
is set too high, weights will never increase enough to produce post-synaptic activity, but if 𝛼𝑖
is too low, the post-synaptic cell will have maximal activity for a too large set of stimuli. As
we want our model to deal with different cluster sizes, we had to use a more flexible approach
for the learning rule. We therefore focused on homeostatic learning, where the learning rule
uses as a constraint that the activity of a cell should not exceed a certain value, in order to save
energy (Rossum and Turrigiano, 2001; Turrigiano and Nelson, 2004). Homeostatic learning is
possible when the parameter 𝛼𝑖 can vary with the experience of the cell, in our case when the
cell’s activity exceeds a certain threshold. The following rule is used:

𝜏𝛼 ⋅ 𝑑𝛼𝑖(𝑡)
𝑑𝑡 + 𝛼𝑖(𝑡) = 𝐾𝛼 ⋅ 𝐻𝑖(𝑡) (2.5)

𝜏𝐻 ⋅ 𝑑𝐻𝑖(𝑡)
𝑑𝑡 + 𝐻𝑖(𝑡) = 𝐾𝐻 ⋅ ((𝐸𝑖(𝑡) − 𝐸𝑚𝑎𝑥)+)2 (2.6)
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2 Sustained activities and retrieval in a computational model of perirhinal cortex

with 𝐻𝑖(𝑡) and 𝛼𝑖(𝑡) restricted to positive values and 𝛼𝑖(0) equal to 10.
When𝐸𝑖(𝑡) exceeds𝐸𝑚𝑎𝑥 (1.0 in our model), 𝐻𝑖(𝑡) becomes rapidly highly positive, leading
to a slow increase of 𝛼𝑖(𝑡). The inhibitory part of Equation 2.3 becomes preponderant and all
the weights decrease. The reason why𝐻𝑖(𝑡) is introduced is that𝛼𝑖(𝑡)must have a slow time
constant so that learning is stable. This learning rule is similar to the classical BCM rule (Bi-
enenstock et al., 1982) but is more stable, since the inhibitory term in Equation 2.3 represents a
constraint both on a short time scale - by its dependance on𝐸𝑖(𝑡) and𝑊 𝐸𝐸

𝑖𝑗 (𝑡)- and on a long
time scale with 𝛼𝑖(𝑡). The effect of this learning rule is that weights will rapidly increase at the
beginning of learning (the Hebbian part of Equation 2.3 is preponderant) but when the cells be-
gin to overshoot, 𝛼𝑖(𝑡) increases and forces the cell to find a compromise between increasing
its afferent weights and activity overshooting. When learning is efficient, 𝛼𝑖(𝑡) stabilizes to an
optimal value that depends on the mean activity of the cell.

2.3 Results

Wewill first show the consequence of learning the lateral connections between excitatory cells
on the formation of clusters and the propagation of activity within the cluster. We then demon-
strate the effect of DA modulation on sustained activities in the network and show that the
model follows the classical inverted-U shaped curve. After introducing these basic properties,
we then demonstrate the specific properties for memory recall such as the dependence of the
propagation of activity between two clusters on the strength of their reciprocal connections, as
well as the effect of thalamic stimulation on memory retrieval

2.3.1 Learning and propagation of activity within a cluster

During learning, a sequence of stimuli is shown to the network. The first object is presented for
250 ms, activating a random number of parts of the corresponding cluster. No stimulation is
given to the network for the next 250 ms, followed by the second object for 250 ms and further
on. This sequence is repeated for 100 times. Please note that this is one particular learning
protocol, but that other protocols ensuring that each objet is sufficiently often presented also
work. The dopamine level is set to a low value of 0.1 during learning, for reasons explained in
the Discussion section.

After learning, each cell has built connections with the cells representing other parts of an ob-
ject. Figure 2.2 - a shows the 25 highest connection values for a randomly selected cell in the
first cluster. One can observe that this cell has formed positive connections with the 19 other
cells of the cluster. The weights within a cluster are not all equal, reflecting the probability of
cooccurrence of the different parts during learning. Oppositely, the connections with cells of
another cluster have been reduced to neglictable values.
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2.3 Results

After learning, how do we functionaly retrieve the information about the correlation between
different parts? Our hypothesis is that the activation of a sufficient number of parts should
provoke activity in the remaining parts, at least under certain dopamine levels. Figure 2.2 - b
shows themean activity of the remaining parts dependent on the numbers of parts that receive
cortical activation. When dopamine has too low (0.2) or high (0.8) levels, the remaining parts
show only little activation, even if four out of five parts are stimulated. When dopamine has an
intermediate level (0.4 or 0.6) and three or more parts are activated, the remaining parts show
strong activity, as if they actually received cortical input. This shows that under intermediate
dopamine levels, the network is able to retrieve all the parts of a cluster if a majority of them is
stimulated. We also simulated clusters of bigger size (up to 20 parts of four cells, i.e. 80 cells)
and observed that this minimum proportion of stimulated parts is slightly decreasing with the
cluster size, but it is always superior to one third.

Figure 2.2: a) Weight values for a given cell in the first cluster. Only the 25 highest values are
represented in descending order. We observe that this cell has positive connections
with the 19 cells that form the cluster and none with other cells. b) Mean activity of
unstimulated parts relative to the number of stimulated parts. We observe that for
low (0.2) or high (0.8) dopamine levels, the remaining parts are only poorly activated.
For intermediate levels (0.4 or 0.6), three stimulated parts are sufficient to provoke
a high activity in the remaining two unstimulated parts.

2.3.2 Sustained activities and intermediate values of dopamine

In the following experiments, we stimulate only three parts of a cluster (12 cells out of 20) and
record two different neurons, one belonging to these three parts and called the “stimulated”
cell, the other to one of the two remaining parts and called the “unstimulated” cell.

To determine the adequate range of dopamine levels, it is interesting to look at the sustained
activities observable in the network. Figure 2.3 - a shows the timecourse of the activity of two
cells during the successive presentation of the two objects. With a low dopamine level (0.1),
only the stimulated cell shows significant activity (around 1.0) during the presentation of the
object. With an intermediate dopamine level (0.4), both cells become highly active (around
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2 Sustained activities and retrieval in a computational model of perirhinal cortex

Figure 2.3: a) Time course of the activity of two different cells in the same cluster. The first
one (“stimulated cell”) belongs to one of the three parts that receive cortical input,
the other one (“unstimulated cell”) receiving no cortical input. When the dopamine
level is low (𝐷𝐴 = 0.1), the stimulated cell responds strongly to the presentation
of the object but not the unstimulated one. When the stimulation ends, the activ-
ity of these two cells return to baseline. When the dopamine level is intermediate
(𝐷𝐴 = 0.4), the two cells respond equally strong to the presentation of the object.
After disappearance, they show sustained activity until a new object is presented.
b) Effect of dopamine on two cells in the same cluster. The two upper curves rep-
resent the activity of the stimulated and unstimulated cells during stimulation, 200
ms after the corresponding object onset. With intermediate levels of DA, the activ-
ity of the unstimulated cell is high and only slightly inferior to the stimulated one
(difference of 0.2). With large dopamine levels (> 0.6), the activity of the two cells
is drastically reduced because of the enhancement of inhibition by dopamine. The
two lower curves (which seem identical) represent the activity of these two cells
100 ms after the end of the stimulation. We observe an inverted-U shape meaning
that the level of dopamine necessary to observe sustained activities is between 0.3
and 0.7.
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2.3 Results

1.2 and 1.0, respectively) during the stimulation, with a little timelag due to the propagation of
activitywithin the cluster. When the stimulation ends, their activity does not fall back to baseline
but stays at a high level (1.0). This sustained activity is only due to the reciprocal interactions
between excitatory cells and their modulation by dopamine.

When the second object is presented, its representation competes with the sustained activa-
tion. If the two representations are equally distributed on themap, which is the case here, some
of their excitatory cells will be connected to the same inhibitory cells, leading to enhanced in-
hibition and disruption of the sustained activities. If the two representations are spatially seg-
regated on the map (corresponding for example to two objects from very different categories,
like a face and a tree), the two representations can exist in parallel. Data from about the robust-
ness of sustained activities in PRh does not deal with the distribution of competing stimuli on
the surface of the cortex, allowing this property to be a prediction of the model. However, if the
distracting stimulus has a low intensity (𝐶𝑖(𝑡) < 0.4) or is not represented by more than two
parts, the sustained representation can resist its appearance, thanks to the increased activity
of inhibitory cells.

Figure 2.3 - b shows the influence of the dopamine level on the activities of the two considered
cells during and after stimulation. When the cluster is partly stimulated, dopamine globally en-
hances the activity of the stimulated cell when DA is inferior to 0.4 but then begins to depress it.
For the unstimulated cell, one can observe a strong enhancing effect when dopamine is around
0.25 due to the propagation of activity within the cluster. When dopamine exceeds 0.8, the ac-
tivity of this cell falls abruptly to zero, showing that propagation of activity is not possible under
high levels of dopamine, because of the enhancement of the reciprocal connections between
inhibitory and excitatory cells. The two lower curves of Figure 2.3 - b show the sustained activity
of the two cells 100 ms after the end of the stimulation. They have an inverted-U shape which
is typical for dopaminergicmodulation of workingmemory in prefrontal cortex (Goldman-Rakic
et al., 2000). The graph shows that the values of dopamine in our model that allow to observe
sustained activities range between 0.3 and 0.7. The amplitude of the sustained activities is rel-
atively high (up to 80% of the activity during stimulation depending on the dopamine level) but
is coherent with cellular recordings (Curtis and D’Esposito, 2003; Naya et al., 2003; Ohbayashi
et al., 2003). Due to the balanced background inhibition, we can also change the parameters
of the model to obtain lower sustained activities.

2.3.3 Propagation of activity between clusters

The propagation of activity within a cluster is an interesting property in the framework of mul-
timodal object categorisation and identification. However, contrary to the preceding experi-
ments where the two learned objects do not share any parts, learning in the real world does not
ensure that parts of two different objects are not activated at the same time in PRh, for example
because these objects share these parts. Consequently, the weights between two clusters are
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not necessarily equal to zero. What happens to the propagation of activity if two clusters are
reciprocally connected with small weight values?

Figure 2.4: a) Influence of the connections between different clusters on the propagation of
activity. For simplicity, only four excitatory cells by cluster and just a few connec-
tions are shown on the figure. Two clusters C1 and C2 are learned. Each exci-
tatory cell 𝑖 of the cluster C2 receives connections (𝑊 𝐸𝐸

𝑖𝑗 )𝑗∈C1
from excitatory

cells of the cluster C1, but they are very low after learning. In this experiment,
the weights of these inter-cluster connections are artificially set proportional to the
mean value of the intra-cluster connections to the corresponding cell in the second
cluster 𝑊 𝑚𝑒𝑎𝑛

𝑖 = 1
𝑁 × ∑𝑗∈C2

𝑊 𝐸𝐸
𝑖𝑗 . b) Results. Three parts of the first cluster

are then stimulated andwe plot themean activity of the second cluster after 200ms.
When dopamine is low (0.2) or high (0.8), the second cluster becomes only poorly ac-
tivated by the first cluster, even when the connections have equal strengths. When
dopamine is intermediate, the inter-cluster weights must be below 40% of the intra-
cluster weights to avoid the propagation of activity.

Figure 2.4 shows the influence of these inter-cluster connections. After the two clusters have
been learned, we artificially increase the strength of connection between the two groups of
cells. As each cell does not receive the same amount of cortical input because of the random
weights 𝑊 𝐶

𝑖 , their lateral connections 𝑊 𝐸𝐸
𝑖𝑗 are not equal. We therefore computed the mean

value of these lateral connections for each cell of the second cluster (called the intra-cluster
connection value) and set the connections from the first cluster to the corresponding cell in the
second cluster proportional to this value (inter-cluster connection value).

We then stimulate three parts of the first cluster and record the mean activity of the second
cluster. Under low or high dopamine levels, inter-cluster connections can be equal to the intra-
cluster connections (meaning that they form one bigger cluster) without observing any propa-
gation of activity to the second cluster. Under intermediate dopamine levels, the ratio between
these connections must be below 40% to avoid that the activation of one cluster propagates
without control to other weakly connected clusters. This result ensures a reasonable trade-off
between stability of object representation and propagation of activity.
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2.3.4 Thalamic stimulation

The preceding results show that our model is able to learn to correlate different parts of an
object through lateral connections and to propagate activity between these parts under inter-
mediate dopamine levels. It also exhibits sustained activity after an object is presented, but
which is easily disrupted by similar distractors. What can be the interest of such unrobust sus-
tained activities in the more general framework of visual working memory? Our conviction is
that this high-level representation of an object does not need to be actively maintained through
time but only regenerated when needed. A cluster describes quite exhaustively the different
aspects of an object: what needs to be remembered is more the location of the cluster in PRh
than the details of its representation. Propagation of activity within a cluster seems a useful
mechanism in the sense that external activation of parts of a cluster can be sufficient under
intermediate dopamine levels to retrieve the whole information carried by the cluster. This ex-
ternal activation can take its origins either from prefrontal cortex or from the basal ganglia -
through the dorsal nucleus of the thalamus- where sustained activities are robust.

Figure 2.5: a) Thalamic stimulation of clusters of different sizes under intermediate dopamine
level (DA = 0.5). A certain percentage of the cells of each cluster is fed with a thala-
mic input. b) Results. With an intermediate dopamine level, propagation of activity
within the cluster of 12 cells happenswhen at least 35% of the cells receive thalamic
input. Clusters of bigger size need an even smaller proportion of stimulated cells.

Figure 2.5 shows the influence of partial thalamic stimulation of the cells of a cluster. For this
experiment, the network learned simultaneously four clusters of different sizes: 12 cells (3
parts), 20 cells (5 parts), 28 cells (7 parts) and 36 cells (9 parts). A learning cycle (the suc-
cessive presentation of the four partially stimulated objects) is therefore two times longer (2
seconds) and learning is stopped after 200 cycles. For each cluster, we feed a certain percent-
age of cells with thalamic input (𝑇𝑖 = 1.0) and we record the mean activity of the remaining
cells. Using an intermediate dopamine level (0.5), one can observe that, for the cluster of 12
cells, a thalamic stimulation of at least 35% of its cells is sufficient to propagate activity in the
cluster. This proportion is even smaller with clusters of bigger sizes. This property allows the
retrieval of the encoded information in the cluster without knowing all its details. The conse-
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quence is that a robust working memory of an object does not require to contact all the cells
of a cluster but only a small portion of them, making manipulation easier and more flexible.

2.4 Discussion

The proposed computational model of PRh focuses on multimodal object representation. It
learns to integrate different parts of an object, even if they do not all appear together dur-
ing learning. The resulting clusters of reciprocally interconnected neurons are modulated by
dopamine, so that, under an intermediate level, activation of a majority of parts propagates to
the rest of the cluster and sustained activities appear after stimulus disappearance. Despite
the fact that these sustained activities are not robust to distractors - as experimentally found
in -, a cluster can be reactivated through thalamic stimulation of less than 35% of its cells (de-
pending on the size of the cluster) and allows the retrieval of the global information.

The major implication of this model is that the maintenance in working memory of the visual
attributes of an object is located in PRh - more precisely in the lateral connections of its cells
- but that the manipulation of the content of working memory (robustness to distractors, re-
trieval) has to come from external regions like the thalamus or prefrontal cortex. A testable
prediction is that unrobust sustained activities can be observed in PRh without any feedback
from prefrontal cortex, as proposed also by or . Similarly to what is observed in prefrontal
cortex (Goldman-Rakic et al., 2000), we also suggest that sustained activities in PRh have an
inverted-U shape dependence with dopamine levels: no sustained activity for low or high lev-
els of dopamine, sustained activities in the intermediate range. Cellular recordings could also
reveal our “propagation of activity” property: cells that are selective for a part of an object that
is not presented should respond to the object under intermediate level of DA but not under low
levels. Moreover, we predict that these activations will be slightly delayed.

This model principally relies on the modulation by dopamine of various synaptic currents. Al-
though a lot of -sometimes contradictory - data exists regarding the action of DA on prefrontal
cells (Seamans and Yang, 2004), little is known about its action on PRh cells. We hypothesized
that PRh cells are similarily modulated by DA, but put emphasis on different aspects. In partic-
ular, some models of sustained activation in prefrontal cortex (Dreher et al., 2002; Durstewitz
et al., 1999) consider that DA primarily restricts the efficiency of cortical inputs on apical den-
drites, allowing the network to be isolated from outside distractors. As sustained activities are
not robust in PRh, we considered that this apical reductionwas not as important as in prefrontal
cortex and chose not to use it in the model. On the contrary, we considered that the main influ-
ences of DA are to enhance the NMDA-mediated currents provoked by the lateral connections
from neighbouring cells and the GABA-mediated currents coming from inhibitory cells like in
(Brunel and Wang, 2001; Deco and Rolls, 2003). This assumption is at the core of our model
and is susceptible to be experimentally confirmed.
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We focused on the tonic component of DA release by considering DA levels in PRh constant
over sufficiently long periods. We are not aware of any study that investigated the effect of
DA over time in PRh, but our assumption is motivated by observations in hippocampus where
the effects of DA can last up to three hours (Huang and Kandel, 1995) and in prefrontal cor-
tex (Grace, 1991) where similar observations have been made. Such long-lasting DA effects
can be critical in the learning phase. Here, we set DA to a low value (0.1) since intermediate
values partially impair learning: the global efficiency of excitatory lateral connections has to
compensate almost exactly the global efficiency of inhibitory connections (which increases
faster than the dopaminergic modulation term of excitatory connections). If the DA level is too
high during learning, the afferent weights can not increase enough since the homeostatic rule
impairs learning when the activity of the cell exceeds a threshold. Thus, the lateral connections
will not compensate the disappearance of the cortical input: there will be no sustained activ-
ity. However, they remain strong enough to propagate activity within the cluster. Therefore,
this model can not handle high constant levels of DA during the whole learning process (what
would be however unrealistic), but only some increases to high levels for a finite period of time.
These transient increases (which are not however phasic bursts) could momentarily signal the
behavioural importance of certain objects and favorize their learning, but on the long-term DA
should show habituation to these objects.

The sustained activation in this model relies on the reciprocal interactions between excitatory
cells. This concept has already been used in the previously cited computational models of
working memory in prefrontal cortex (Brunel and Wang, 2001; Chadderdon and Sporns, 2006;
Deco and Rolls, 2003; Dreher et al., 2002; Durstewitz et al., 1999). The major differences with
most of these models is that in our model these lateral connections are primarily relevant for
memory recall and that they adapt to the experience of the system so that the attractors of the
network can evolve through time. Another remarkable property is that the cells of a cluster do
not need to receive input at the same time: a partial activation is enough to propagate activity
and to create sustained activities in the whole cluster. It could be possible that the sustained
activities in PRh have no direct purpose but they occur as a side effect of the propagation of
activity for memory retrieval.

What do the clusters of cells in PRh exactly represent? We used the term “object” in a very broad
sense, as a collection of parts that frequently appear together during learning. This could relate
to spatial arrangements of parts of an object (the back, the seat and the feet of a chair, for
example) that do not all appear at the same time depending on the point of view to the object,
but partly view-invariant cells are already present in IT (Booth and Rolls, 1998). However, When
PRh is functional, learning to discriminate a set of visual objects under a certain viewpoint
can be easily transfered to the same objects under another viewpoint, whereas this capacity
is severely impaired without PRh (Buckley and Gaffan, 1998). Another level of abtsraction for
PRh is multimodal integration, i.e. linking the visual representation of an object with its tactile
information, its sound or the associated action (grasping, pushing, sitting, etc).

A cluster could also represent a subordinate-level category in the sense of: different objects
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sharing a sufficient number of sensory features (parts) would be represented by the same clus-
ter. For example, a cluster could be generic for different espresso cups but not mugs, lacking
the genericity of the “cup” basic-level category but providing a minimal sensory abstraction.
This is coherent with the study by that indicates that PRh is only involved in fine-grained cat-
egorization. Such narrow categories could be used as “templates” to guide attention to the
corresponding target through feedback connections to the ventral pathway (Hamker, 2005b),
as broader categories have been shown to be useless in visual search (Smith et al., 2005).

Our primary aim has been to extend the concept of visual working memory to association ar-
eas where the detailed visual properties of an object are stored. Most computational models
of working memory make no such distinction and primarily deal with sustained activities in
prefrontal cortex. We propose that memory retrieval is achieved through a loop between PRh,
basal ganglia and thalamus. PRh receives thalamocortical connections from dorsal and me-
dial geniculate nuclei of the thalamus and in turn projects heavily to the caudate putamen, a
part of the main input structure of the basal ganglia, the striatum (Furtak et al., 2007). When a
given object has to be retrieved, the basal ganglia can selectively disinhibit the thalamus and
therefore favorize the thalamic stimulation of the cluster to be retrieved.

This pathway through the basal ganglia significantly compresses the information encoded in
the cerebral cortex and can not represent its rich and detailed representations: as pinpoints,
the number of neurons projecting to the striatum is two orders of magnitude greater than the
number of striatal neurons (Kincaid et al., 1998). We propose that the basal ganglia acts as a
pointer that allows to retrieve the detailed representation when necessary through the disinhi-
bition of thalamus. Similarly, prefrontal cortex is probably not encoding the content of memory,
but rather a rule to retrieve this content. In a realistic DMS task, basal ganglia and prefrontal
cortex have to learn which object has to be retrieved and which should be forgotten. This work
is facilitated by the fact that the exact content of a cluster in PRh does not need to be known
by this external loop: stimulating 35% of its cells (or even less for bigger clusters) is sufficient
to retrieve its details.
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Appendix: details of the model

All equations described in theMaterials and methods section are numerized according to the fi-
nite difference method, with a timestep of 1 ms. Their evaluation occurs asynchronously: cells
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are randomly evaluated and their new activity is immediately used in the rest of the computa-
tions, in order to emphasize the competition between neuronal representations (Rougier and
Vitay, 2006).

Themodel is composed of 20×20 excitatory cells and 10×10 inhibitory cells. Excitatory and
inhibitory cells are reciprocally connected through gaussian connectivity kernels. We thus de-
fined a distance between cells: let the excitatory cell 𝐸𝑖 have coordinates (𝑥𝑖, 𝑦𝑖) ∈ [0..20]2
on the map and the inhibitory cell 𝐼𝑗 have coordinates (𝑥𝑗, 𝑦𝑗) ∈ [0..10]2. The distance
𝑑𝐸𝐼(𝑖, 𝑗) between the two cells is therefore given by:

𝑑𝐸𝐼(𝑖, 𝑗) = √(𝑥𝑖 − 2 × 𝑥𝑗)2 + (𝑦𝑖 − 2 × 𝑦𝑗)2

Similarly, the distance 𝑑𝐼𝐼(𝑖, 𝑗) between two inhibitory cells 𝐼𝑖 with coordinates (𝑥𝑖, 𝑦𝑖) ∈
[0..10]2 and 𝐼𝑗 with coordinates (𝑥𝑗, 𝑦𝑗) ∈ [0..10]2 is given by:

𝑑𝐼𝐼(𝑖, 𝑗) = √(𝑥𝑖 − 𝑥𝑗)2 + (𝑦𝑖 − 𝑦𝑗)2

We then define the gaussian connectivity kernels by:

𝑊 𝐼𝐸(𝑖, 𝑗) = −0.12 × exp(−(𝑑𝐸𝐼(𝑖, 𝑗)
2.5 )2)

𝑊 𝐸𝐼(𝑖, 𝑗) = 0.3 × exp(−(𝑑𝐸𝐼(𝑖, 𝑗)
2 )2)

The connections between two inhibitory cells are given by:

𝑊 𝐼𝐼(𝑖, 𝑗) = {0.02 × exp (−(𝑑𝐼𝐼(𝑖,𝑗)
5 )2) if 𝑖 ≠ 𝑗

0 𝑒𝑙𝑠𝑒.

The parameters of Equation 2.1 are the same for each inhibitory cell: 𝜏𝐼 = 10ms,𝐾𝐸𝐼 = 1.2
and 𝜂𝐼

𝑖 (𝑡) is a random value uniformly distributed between -0.1 and 0.1. The parameters of
Equation 2.2 are: 𝜏𝐸 = 20 ms, 𝐾𝐸𝐸 = 3.0, 𝐾𝐼𝐸 = 3.0, 𝐾𝑇 = 1.0 and 𝜂𝐸

𝑖 (𝑡) a random
value uniformly distributed between -0.5 and 0.5. Cortical weights 𝑊 𝐶 are randomly chosen
in the range [0.8, 1.2]. The sigmoidal functions𝜎𝑙𝑎𝑡(𝑥), 𝜎𝐸𝐸(𝑥), 𝜎𝐺𝐴𝐵𝐴(𝑥), 𝜎𝑇 (𝑥) all have
the same shape:

𝜎(𝑥) = 1
1 + exp (−𝑙 ⋅ (𝑥 − 𝑐)) − 1

1 + exp (𝑙 ⋅ 𝑐)
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2 Sustained activities and retrieval in a computational model of perirhinal cortex

with 𝑙 and 𝑐 being: for𝜎𝑙𝑎𝑡(𝑥) 𝑐 = 0.3, 𝑙 = 20; for𝜎𝐸𝐸(𝑥) 𝑐 = 0.3, 𝑙 = 20; for𝜎𝐺𝐴𝐵𝐴(𝑥)
𝑐 = 0.5, 𝑙 = 10; for 𝜎𝑇 (𝑥) 𝑐 = 0.5, 𝑙 = 10. The transfer function 𝑓(𝑥) is defined as
follows:

𝑓(𝑥) =
⎧{
⎨{⎩

0 if 𝑥 < 0
𝑥 if 0 ≤ 𝑥 ≤ 1

0.5
1+exp (−10.0⋅(𝑥−1)) + 0.75 if 𝑥 > 1

The parameters of Equation 2.3, Equation 2.5 and Equation 2.6 are: 𝜏𝑊 = 50000 ms, 𝜏𝛼 =
50000 ms, 𝐾𝛼 = 100, 𝜏𝐻 = 100 ms, 𝐾𝐻 = 200, 𝐸𝑚𝑎𝑥 = 1.0.
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3 A computational model of basal ganglia and
its role in memory retrieval in rewarded visual
memory tasks

Abstract

Visual working memory tasks involve a network of cortical areas such as inferotemporal, me-
dial temporal and prefrontal cortices. We suggest here to investigate the role of the basal gan-
glia in the learning of delayed rewarded tasks through the selective gating of thalamocortical
loops. We designed a computational model of the visual loop linking the perirhinal cortex, the
basal ganglia and the thalamus, biased by sustained representations in prefrontal cortex. This
model learns concurrently different delayed rewarded tasks that require to maintain a visual
cue and to associate it to itself or to another visual object to obtain reward. The retrieval of
visual information is achieved through thalamic stimulation of the perirhinal cortex. The input
structure of the basal ganglia, the striatum, learns to represent visual information based on its
association to reward, while the output structure, the substantia nigra pars reticulata, learns to
link striatal representations to the disinhibition of the correct thalamocortical loop. In parallel,
a dopaminergic cell learns to associate striatal representations to reward andmodulates learn-
ing of connections within the basal ganglia. The model provides testable predictions about the
behavior of several areas during such tasks, while providing a new functional organization of
learning within the basal ganglia, putting emphasis on the learning of the striatonigral connec-
tions as well as the lateral connections within the substantia nigra pars reticulata. It suggests
that the learning of visual working memory tasks is achieved rapidly in the basal ganglia and
used as a teacher for feedback connections from prefrontal cortex to posterior cortices.

3.1 Introduction

During object-based visual search, target templates stored in visual workingmemory (WM) can
bias attentional processing in visual areas to favorize the relevant objects (Desimone and Dun-
can, 1995; Woodman and Luck, 2007). Visual WM can be investigated through a number of
different tasks in rats, primates or humans, among which change detection, recall procedures,
delayed matching to sample (DMS), delayed nonmatching to sample (DNMS) or delayed pair-
association (DPA) tasks are frequently used. These experiments have allowed to shed light
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3 A computational model of basal ganglia and memory retrieval

on the psychophysical mechanisms involved in visual WM (Luck and Vogel, 1997) as well as
to delineate the neural substrates subserving these functions (Ranganath, 2006). Visual WM
has several computational aspects: encoding of the relevant items (potentially in an abstract
manner), maintenance of the items through time in face of distractors, retrieval of the sensory
content of the item, abstraction of the underlying rule. It faces both a structural credit assign-
ment problem (which item to store and retrieve) and a temporal assignment problem (how to
link encoding in WM with the delayed delivery of reward).

Specific attention has been directed towards the prefrontal cortex which is well-known to be
involved in WM maintenance and manipulation in various modalities (Funahashi et al., 1989;
Fuster and Alexander, 1971). Prefrontal lesions do not totally eliminate visual WM but impairs
the ability to maintain it during long delays or in front of distractors (D’Esposito et al., 2006;
Petrides, 2000). Neurons in PFC exhibit robust object-specific sustained activities during the
delay periods of visual WM tasks like DMS or DNMS (Miller et al., 1996). However the informa-
tional content of WM-related activities in PFC is still unclear (Romanski, 2007). Inferotemporal
(IT) neurons have been shown to encode object-specific information (Nakamura et al., 1994)
as they are located at the end of the ventral visual pathway (Ungerleider and Mishkin, 1982).
They have been shown to be critical for visual WM (Fuster et al., 1981; Petrides, 2000) and also
exhibit sustained activation during the delay period, even if their responses can be attenuated
or cancelled by intervening distractors (Miller et al., 1993a), what can be partly explained by
feedback cortico-cortical connections originating from PFC (Fuster et al., 1985; Webster et al.,
1994).

The medial temporal lobe (MTL, composed of perirhinal - PRh -, entorhinal - ERh - and parahip-
pocampal - PH - cortices) also plays an important also not essential role in visual WM. Com-
pared to IT, a greater proportion of neurons in PRh and ERh exhibit sustained activation dur-
ing the delay-period (Nakamura and Kubota, 1995) and are robust to distractors (Suzuki et al.,
1997). They are especially crucial when visual objects are novel and complex (Ranganath and
D’Esposito, 2005). Particularly, PRh cells are more strongly involved in visual recognition when
it requires visual WM processes (Lehky and Tanaka, 2007). They are reciprocally connected
with IT neurons and can provide them with information about novelty or category membership
since they can rapidly encode relationship between visual features (Murray and Bussey, 1999;
Rolls, 2000), as well as the association of objects to reward (Mogami and Tanaka, 2006). Ran-
ganath (2006) provided a complete account of the functional relationship between IT, PFC and
MTL in visual WM. He considers that the visual aspects of the remembered object are main-
tained in the ventral pathway at various levels of complexity (low-level features in V1 or V4,
object-related representations in IT) through sustained activation of cells. Top-down activation
of these neurons by MTL would provide them with information about novelty and help to re-
construct a coherent mental image of the objects composing the visual scene, thanks to the
link between MTL and hippocampus. Top-down activation by PFC helps the ventral stream to
maintain representations in face of distraction and also allows stimulus-stimulus associations
(like in the delayed pair-association task) in IT (Gutnikov et al., 1997).
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3.1 Introduction

A structure that is absent in this scheme but that is nevertheless very important in visual WM is
the basal ganglia (BG), a set of nuclei in the basal forebrain. Human patients with BG disorders
(such as Parkinson’s disease) show strong deficits in delayed response tasks (Partiot et al.,
1996). Several experiments have recorded visual WM-related activities in various structures
composing the BG, especially the striatum (STR) (Chang et al., 2007; Hikosaka et al., 1989;
Lewis et al., 2004; Mushiake and Strick, 1995). Almost all cortical areas send projections to
the input nuclei of BG (STR and the subthalamic nucleus STN), while the output nuclei of BG
(the internal segment of globus pallidus GPi and the substantia nigra pars reticulata SNr) ton-
ically inhibit various thalamic nuclei, allowing selective modulation of corticothalamic loops
(Parent and Hazrati, 1995b). The BG are organized through a series of closed loops, which
receive inputs from segregated cortical regions and project back to them quite independently
(see Haber (2003) for a review). The number and functional domain of these loops is still an
open issue (Alexander et al., 1986; Lawrence et al., 1998; Nambu et al., 2002), but two of them
are of particular relevance for our model. The executive loop involves the dorsolateral part of
PFC (dlPFC), the head of the caudate nucleus (a region of the dorsal striatum), GPi-SNr and the
mediodorsal nuclei of thalamus (MD). The structures involved in this loop have all been shown
to be involved in WM processes in various modalities and provide a basis for the maintenance
and manipulation of items in cognitive tasks (see Frank et al. (2001) for a review about the
functional requirements of WM). The visual loop involves the inferotemporal and extrastriate
occipital cortices, the body and tail of the caudate nucleus, SNr and the ventral-anterior nu-
cleus of the thalamus (VA) (Middleton and Strick, 1996; Seger, 2008). This loop is particularly
involved in visual categorization and visual discrimination, but also sends output to premotor
areas to link category learning with appropriate behavior. In addition to IT neurons, the body of
the caudate nucleus is involved in visual WM tasks, what suggests a role of the entire visual
loop in visual WM (Levy et al., 1997).

What remains unknown is how these two loops can interact together in order to subserve vi-
sual WM functions in the context of efficient behavior. Previous models have particularly ad-
dressed the updating of working memory content as part of the executive BG loop (e.g. Brown
et al. (1999) or O’Reilly and Frank (2006)). We here focus on how such memory content can
be used to bias the visual loop allowing for a goal-directed memory recall in the context of re-
warded tasks such as DMS, DNMS or DPA. Among the different mechanisms by which two BG
loops can interact, we focus on the overlapping projection fields of cortical areas: a cortical
area sends principally projections to a limited region of the striatum, but its axons send collat-
erals along the surface of the striatum. In particular, the body of the caudate, which is part of
the visual loop and principally innervated by inferotemporal projection neurons, also receives
connections from the dorsolateral prefrontal cortex (Selemon and Goldman-Rakic, 1985). This
model is thus composed of the visual loop linking PRh with BG and the thalamus, while the
executive loop is reduced to sustained activation in dlPFC which projects on the region of the
striatum belonging to the visual loop. The model is alternatively presented with specific com-
binations of visual cues and tasks symbols that allow the system to perform actions leading
to the delivery of reward (as proposed by Gisiger and Kerszberg (2006). Our emphasis is on
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the reward-modulated self-organization of connectivity between distributed populations. The
model provides hypotheses about how sustained representations in dlPFC can bias learning
in the visual loop so that object-related activities in the ventral visual pathway can be retrieved
through thalamic stimulation in the context of a particular cognitive task to provide anticipatory
top-down signals for the visual system, as observed physiologically (Naya et al., 2003; Takeda
et al., 2005). In particular, self-organization in the model relies on the competitive selection of
relevant cortical representations in the output structures of the BG.

3.2 Material and Methods

3.2.1 Architecture of the model

Each structure used in this model is composed of a set of dynamical neurons, whose mem-
brane potential is governed by a time-dependent differential equation and transformed into a
mean firing rate through a non-linear transfer function. These neurons therefore exchange a
real instantaneous value instead of spikes, as it saves considerably computational costs and
allows to use efficient learning rules that are not yet available for spiking neurons. Although
we do not capture some biophysical details, this paradigm is sufficiently complex to show the
emergence of dynamic behaviors through the interaction of distributed computational units
(Rougier, 2009). The differential equation that rules the evolution of the activity of each neu-
ron is discretized according to the Euler method with a time-step of 1 ms and is evaluated
asynchronously to allow stochastic interactions between functional units (Rougier and Vitay,
2006).

Biological details gave us some insights on the choice of certain parameters, such as the time
constants for the different neurons, as we know for example that striatal cells are faster than
cortical cells (Plenz and Aertsen, 1996). Other parameters have been set to bring the model
into a functionally meaningful range. Control simulations showed that minor variations on their
values do not change qualitatively the results presented here.

The architecture of the model is depicted in Figure 3.1 A. Visual inputs are temporally repre-
sented in the perirhinal cortex (PRh), each cell firing for a particular visual object. These perirhi-
nal representations project to the prefrontal cortex (dlPFC) where they are actively maintained
for the duration of the task. These sustained activations in dlPFC are artificially controlled by a
set of gating signals, leaving unaddressed the temporal credit assignment problem. PRh and
dlPFC both project extensively to the caudate nucleus (CN), which learns to represent them in
an efficient manner according to the task requirements. Depending on reward delivery in the
timecourse of learning, each active striatal cell learns to integrate perirhinal and prefrontal in-
formation in a competitivemanner due to inhibitory lateral connections. Thismechanism leads
to the formation through learning of clusters of striatal cells that represent particular combina-
tions of cortical information depending on their association to reward. These CN cells send
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inhibitory projections to the SNr, whose cells are tonically active and learn to become selective
for specific striatal patterns. This learning between CN and SNr is also dependent on reward
delivery. Learning of the lateral connections between SNr cells additionally allows to limit the
number of simultaneously inhibited SNr cells. These cells in SNr tonically inhibit thalamic cells
(VA)which have reciprocal connectionswith PRh. The connections fromSNr toVAandbetween
VA and PRh are not learned but focused (one-to-one connection pattern), meaning that the inhi-
bition of one SNr cell leads to the thalamic stimulation of a unique cell in PRh. A dopaminergic
cell (SNc) receives information about the delivered reward (R) and learns to associate it with
striatal activities. Its signal modulates learning at the connections between cortical areas (PRh
and dlPFC) and CN, between CN and SNr, as well as within SNr. We now present in detail each
structure and the differential equations followed by their neurons.

Figure 3.1: (A) Architecture of the model. Pointed arrows denote excitatory connections and
rounded arrows denote inhibitory ones. Circular arrows within an area represent lat-
eral connections between the cells of this area. (B) Timecourse of the visual inputs
presented to the network. Top: rewarded trials like DMS, DNMS or DPA. Bottom:
delay conditioning.

3.2.2 Perirhinal cortex

The input of our model is a high-level visual area with mnemonic functions which is able to bias
processing in the ventral visual stream. In general, the area TE of the inferotemporal cortex is
a potential candidate, but we particularly focused on PRh, as it has been shown to be preferen-
tially involved in recognition tasks that require visual WM (Lehky and Tanaka, 2007). We previ-
ously designed a detailed computational model of PRh that is able to learn object-related rep-
resentations in clusters of cells based on partial information (Vitay and Hamker, 2008). These
clusters linked through lateral connections are able to exhibit sustained activation when the
dopamine (DA) level in the network is within an optimal range. The visual information that they
contain can also be easily retrieved through a partial stimulation coming from the thalamus. We
hypothesize that this memory retrieval through thalamic stimulation under an accurate level of
DA can be a basis for the guidance of visual search.

Here, we reduced the size of PRh to 8 cells, each of them representing a particular object that
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is presented to the network (see Section 3.2.8 for the description of these objects). In our
previous model, PRh contained hundreds of cells and each object was represented by a cluster
of different cells. Each cell 𝑖 has a membrane potential 𝑚𝑖(𝑡) and an instantaneous firing rate
𝑢PRh

𝑖 (𝑡) which are governed by the following equations:

𝜏 ⋅ 𝑑𝑚𝑖(𝑡)
𝑑𝑡 + 𝑚𝑖(𝑡) = 𝑉𝑖(𝑡) + 𝑊 VA

𝑖 ⋅ 𝑢VA
𝑖 (𝑡) + ∑

𝑗∈PRh

𝑊 PRh
𝑖,𝑗 ⋅ 𝑢PRh

𝑗 (𝑡) + 𝜖(𝑡) (3.1)

𝑢PRh
𝑖 (𝑡) = (𝑚𝑖(𝑡))+

where 𝜏 = 20 ms is the time constant of the cell, 𝑉𝑖(𝑡) its visual input (see Section 3.2.8) and
𝑊 VA

𝑖 = 0.5 the weight of a connection coming from the corresponding thalamic cell whose
firing rate is 𝑢VA

𝑖 (𝑡). 𝜖(𝑡) is an additional noise whose value varies uniformly at each time-step
between −0.3 and 0.3. The transfer function used for perirhinal cells is simply the positive
part of the membrane potential ()+. Each perirhinal cell additionally receives inhibitory lateral
connections from the seven neighboring perirhinal cells with a fixed weight of 𝑊 PRh

𝑖,𝑗 = −0.3
to induce competition between the perirhinal cells.

3.2.3 Dorsolateral prefrontal cortex

Wedo notmodel explicitly the executive loop and rather use a very simpleWM representation in
dlPFC, including mechanisms of updating and resetting. Future work will address these ques-
tions in the context of WM gating in the executive loop (Frank et al., 2001; Gruber et al., 2006).
The dlPFC is here composed of 8 cells which keep track of activity in PRh through temporal
integration:

𝜏 ⋅ 𝑑𝑚𝑖(𝑡)
𝑑𝑡 = 𝐺(𝑡) ⋅ 𝑊 PRh

𝑖 ⋅ (𝑢PRh
𝑖 (𝑡) − 0.5)+

𝑢dlPFC
𝑖 (𝑡) =

⎧{
⎨{⎩

0 if 𝑚𝑖(𝑡) < 0
𝑚𝑖(𝑡) if 0 ≤ 𝑚𝑖(𝑡) ≤ 1
1 if 𝑚𝑖(𝑡) > 1

(3.2)

where 𝜏 = 10ms is the time constant of the cell and𝐺(𝑡) a gating signal allowing the entry of
an item in working memory. Each dlPFC cell receives only one connection from a PRh cell with
the weight𝑊 PRh

𝑖 = 1.0. As soon as the activity of a PRh cell exceeds 0.5, it is integrated in the
corresponding prefrontal cell, whose activity saturates to a maximum value of 1.0 thanks to
the transfer function and stays at this value even if the perirhinal stimulation ends. The gating
signal 𝐺(𝑡) is manually set to a value of 1.0 when objects have to be maintained in WM and
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to a value of 0.0 otherwise. The activity of the prefrontal cells is manually reset to zero at the
end of a trial.

3.2.4 Ventral-anterior thalamus

The portion of the ventral-anterior nucleus of the thalamus we consider here is represented by
eight cells that are reciprocally connected with PRh. Its 8 cells send and receive a connection
with only one perirhinal cell, forming segregated thalamocortical loops. In a more biologically
detailed model, we would have to take into account the difference in the number of cells be-
tween VA and PRh, as well the more diffuse pattern of connections from thalamus to cortex.
However, this simplification is justified by our previous detailed model of PRh, where we have
shown that a thalamic cell can activate a functional cluster of cells representing a single object
(Vitay and Hamker, 2008). The membrane potential and firing rate of these thalamic cells are
ruled by the following equations:

𝜏 ⋅ 𝑑𝑚𝑖(𝑡)
𝑑𝑡 + 𝑚𝑖(𝑡) = 𝑊 PRh

𝑖 ⋅ 𝑢PRh
𝑖 (𝑡) + 𝑊 SNr

𝑖 ⋅ 𝑢SNr
𝑖 (𝑡) + 𝑀 + 𝜖(𝑡)

𝑢VA
𝑖 (𝑡) = (𝑚𝑖(𝑡))+

(3.3)

where 𝜏 = 15 ms and 𝑀 = 0.8. In addition to the connection coming from one PRh cell with
a weight of 𝑊 PRh

𝑖 = 0.5, a thalamic cell also receives an inhibitory connection from one cell
of SNr with a weight of 𝑊 SNr

𝑖 = −0.7.

3.2.5 Caudate nucleus

The caudate nucleus of the striatum learns to represent the cortical information in PRh and
dlPFC in an efficient manner based on dopaminergic signaling of reward-related information in
SNc. Although some evidences suggest that the DA level can even influence the firing rate of
striatal cells (Nicola et al., 2000), we here exclusively focus on the effect of DA on the synaptic
learning of corticostriatal connections (Di Filippo et al., 2009). The striatum is mostly com-
posed of medium spiny neurons that integrate cortical information and directly inhibit several
structures such as the substantia nigra or the globus pallidus. These cells have also lateral
inhibitory connections, either directly or through fast-spiking interneurons (Tepper et al., 2008).
CN contains here 64 cells ruled by the following equations:

𝜏 ⋅ 𝑑𝑚𝑖(𝑡)
𝑑𝑡 + 𝑚𝑖(𝑡) = ∑

𝑗∈Cx

𝑊 Cx
𝑖,𝑗(𝑡) ⋅ 𝑢Cx

𝑗 (𝑡) + ∑
𝑗∈CN

𝑊 CN
𝑖,𝑗 ⋅ 𝑢CN

𝑗 (𝑡) + 𝑀 + 𝜖(𝑡)

𝑢CN
𝑖 (𝑡) = (𝑚𝑖(𝑡))+

(3.4)
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where 𝜏 = 10 ms and 𝑀 = 0.3. Each striatal cell receives inhibitory lateral connections
from the 63 other striatal cells with a weight of𝑊 CN

𝑖,𝑗 = −0.2. The corticostriatal connections
𝑊 Cx

𝑖,𝑗(𝑡) coming either from PRh or dlPFc are learned according to a homeostatic covariance
learning rule:

𝜂 ⋅ 𝑑𝑊 Cx
𝑖,𝑗(𝑡)
𝑑𝑡 = (DA(𝑡) − DA) ⋅ (𝑢CN

𝑖 (𝑡) − CN)+ ⋅ (𝑢Cx
𝑗 (𝑡) − Cx)

− 𝛼𝑖(𝑡) ⋅ ((𝑢CN
𝑖 (𝑡) − CN)+)2 ⋅ 𝑊 Cx

𝑖,𝑗(𝑡)

where 𝜂 = 100 is the rate of learning, DA(𝑡) represents the synaptic level of DA (considered
equal to the activity of the SNc cell), DA the baseline activity of the SNc cell,𝑢CN

𝑖 (𝑡) the firing rate
of the striatal cell, CN themean firing rate of theCNcells,𝑢Cx

𝑗 (𝑡) the firing rate of the cortical cell,
Cx themean firing rate of the considered cortical area and𝛼𝑖(𝑡) a cell-dependent regularization
factor. The weights are randomly initialized with a value between −0.1 and 0.1.

The first part of the right term of Equation 3.5 is a classical Hebbian learning rule (correlation
between the activities of the presynaptic and postsynaptic cells) modulated by the DA level.
The positive function applied to the striatal activity ensures that only the cells which are signif-
icantly activated compared to the rest of the population will update their selectivity for cortical
patterns. The exact influence of DA on corticostriatal learning is still a matter of debate and
depends on the type of dopaminergic receptor (D1 or D2) involved, the state of the membrane
potential of the striatal cell (“up” and “down” states) and on the cortical patterns (Calabresi et
al., 2007). We do not model in detail these mechanisms and consider that a phasic burst of DA
(transient activity of the SNc cell above its baseline) globally favorizes long-term potentiation
(LTP) of corticostriatal synapses, while DA depletion (activity below baseline) globally induces
long-term depression (LTD) of the same synapses (Reynolds and Wickens, 2000).

The second part of the right term of Equation 3.5 performs a homeostatic regularization of
the corticostriatal synapses. Its shape is similar to the classical Oja learning rule (Oja, 1982) to
avoid an infinite increase of the weight values, but the difference is that the regularization factor
𝛼𝑖(𝑡) is not fixed but varies with the activity of the cell (Vitay and Hamker, 2008). Homeostatic
plasticity allows cells to adapt their learning behavior to ensure stability (Turrigiano and Nelson,
2004). In our case, we want to avoid that the striatal cells fire too much in order to save energy,
by scaling down proportionally the weights of all the connections. 𝛼𝑖(𝑡) therefore becomes
positive when the firing rate of the cell exceeds a defined threshold 𝑢MAX:

𝜏 ⋅ 𝑑𝛼𝑖(𝑡)
𝑑𝑡 + 𝛼𝑖(𝑡) = (𝑢CN

𝑖 (𝑡) − 𝑢MAX)+

{eq-ficn:alphanacc}

with 𝜏 = 20 ms and 𝑢MAX = 1.0. In addition to dynamically and locally normalizing the
afferent connections to the cells, this homeostatic regularization term also allows to sharpen
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the selectivity of the cell. Homeostatic plasticity has been observed in the nucleus accumbens,
a part of the striatum (Ishikawa et al., 2009).

3.2.6 Substantia nigra pars compacta

The dopaminergic cells contained in SNc have the property to respond to the delivery of unex-
pected rewards by a phasic burst of activity above baseline (Mirenowicz and Schultz, 1994).
However, in conditioning tasks, the amplitude of this response to primary rewards gradually
decreases through learning and is transferred to the appearance of the conditioned stimulus
(Pan et al., 2005). In addition, when reward is omitted, these dopaminergic cells show a phasic
depletion of activity (below baseline) at the time reward was expected (Schultz et al., 1997).
Several theories have tried to explain this behavior related to reward expectation, including an
analogy with the error signal of the temporal difference (TD) algorithm of reinforcement learn-
ing (Suri and Schultz, 1999) or more biologically detailed models (Brown et al., 1999; O’Reilly
et al., 2007). The TD analogy considers that DA phasic activation or depletion at the time of
reward delivery or conditioned stimulus appearance are due to a uniquemechanism. Themore
biologically detailed approaches contrarily highlight the role of afferent structures in the differ-
ent components of this behavior: the phasic activation to primary rewards may be due to exci-
tatory connections coming from the pedunculopontine tegmental nucleus, and its amplitude is
gradually decreased by the learning of the reward expectation through inhibitory connections
coming from the striatum. In these models, the DA phasic activation for the appearance of
a conditioned stimuli is provoked by different mechanisms than for the delivery of primary re-
wards. The depletion in DA activity when reward is omitted is controlled by an external timing
mechanism, presumably computed by an intracellular calcium-dependent mechanism in stri-
atal cells (Brown et al., 1999) or by an external signal computed in the cerebellum (O’Reilly
et al., 2007). We followed the assumptions of these models, but did not model explicitly this
timing signal.

We used only one cell in SNc, which receives information about the received reward 𝑅(𝑡) and
learns to predict its association with striatal representations through learnable inhibitory con-
nections. The activity of this cell is ruled by the following equations:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑅(𝑡) + 𝑃(𝑡) ⋅ ∑

𝑗∈CN

𝑊 CN
𝑗 (𝑡) ⋅ 𝑢CN

𝑗 (𝑡) + DA

DA(𝑡) = (𝑚(𝑡))+
(3.5)

where 𝜏 = 10 ms, DA = 0.5. The reward 𝑅(𝑡) (set to 0.5 when received, 0.0 otherwise)
and the timing of its occurrence 𝑃(𝑡) (set to 1.0 when expected, 0.0 otherwise) are external to
the neuronal model. When reward is delivered, 𝑅(𝑡) will drive the activity of the cell above its
baseline but this effect will be reduced by the learning of the inhibitory connections between
the striatum and SNc. When reward is expected but not delivered, the striatal inhibition will
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force the cell to exhibit an activity below baseline. The connections between CN and SNc are
learned according to the following rule:

𝜂 ⋅ 𝑑𝑊 CN
𝑗 (𝑡)
𝑑𝑡 = −𝑓(DA(𝑡) − DA) ⋅ (𝑢CN

𝑗 (𝑡) − CN)+ (3.6)

𝑓(𝑥) = {𝑥 if 𝑥 > 0
5 ⋅ 𝑥 else.

(3.7)

where 𝜂 = 10000. The weights are initialized with a value of 0.0, so that striatal representa-
tions have initially no association to reward. When DA(𝑡) is above baseline (reward has been
delivered), the inhibitory connections are further decreased, which means that the striatal rep-
resentation increases its associative value. When DA(𝑡) is below baseline (reward has been
omitted), the same striatal representation decreases its association to reward. This dopamin-
ergic signal is used to modulate learning in CN and SNr.

3.2.7 Substantia nigra pars reticulata

The output nuclei of the BG (GPi and SNr) have the particularity to be tonically active (with an
elevated firing rate of 25 Hz at rest and pause in firing when inhibited by striatal activity). They
send inhibitory projections to ventral thalamic nuclei as well as various subcortical structures
such as the superior colliculi. The SNr cells are selective for particular motor programs and
can disinhibit various thalamocortical loops (Chevalier and Deniau, 1990). Their selectivity is
principally due to the inhibitory connections originating from the striatum and GPe, but they
also receive excitatory inputs from the subthalamic nucleus. However, the SNr cells also ton-
ically inhibit each other, with a particular connectivity pattern suggesting they may subserve
an important functional role (Mailly et al., 2003). When a SNr cell is inhibited by striatal acti-
vation, it stops inhibiting the other SNr cells, who consequently increase their firing rate and
inhibit more strongly their efferent thalamic cells. Inhibitory connections within SNr may there-
fore help focusing on the disinhibition of the desired thalamocortical loop by suppressing the
competing other loops (Gulley et al., 2002). Instead of considering the inhibitory effect of high
nigral activity, we modeled this competition between SNr cells by an excitatory effect of low ni-
gral activity, what is functionally equivalent. The 8 cells in SNr evolve according to the following
equations:
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𝜏 ⋅ 𝑑𝑚𝑖(𝑡)
𝑑𝑡 + 𝑚𝑖(𝑡) = ∑

𝑗∈CN

𝑊 CN
𝑖,𝑗(𝑡) ⋅ 𝑢CN

𝑗 (𝑡) + ∑
𝑗∈SNr

𝑊 SNr
𝑖,𝑗 (𝑡) ⋅ (𝑀 − 𝑢SNr

𝑗 (𝑡))+ + 𝑀 + 𝜖(𝑡)

𝑢SNr
𝑖 (𝑡) =

⎧{{
⎨{{⎩

0 if 𝑚𝑖(𝑡) < 0
𝑚𝑖(𝑡) if 0 ≤ 𝑚𝑖(𝑡) ≤ 𝑀

1
1 + 𝑒− 𝑚𝑖(𝑡)−𝑀

20
+ 0.5 if 𝑚𝑖(𝑡) > 𝑀

where 𝜏 = 10 ms, 𝑀 = 1.0 and 𝜖(𝑡) is an additional noise randomly picked between −0.3
and 0.3. The excitatory connections from neighboring SNr cells are active when their corre-
sponding activity is below baseline. The transfer function ensures that activities exceeding 𝑀
saturate to a value of 1.5 with a sigmoidal shape. The inhibitory connections originating in
CN are learned according to an equation similar to Equation 3.5. Even if little is known about
synaptic learning in SNr, the strong dopaminergic innervation of nigral cells (Ibañez-Sandoval
et al., 2006) makes it reasonable to hypothesize that DAmodulates the learning of striatonigral
connections in a way similar to the corticostriatal ones.

𝜂inh ⋅ 𝑑𝑊 CN
𝑖,𝑗(𝑡)
𝑑𝑡 = 𝑓(DA(𝑡) − DA) ⋅ 𝑔(SNr − 𝑢SNr

𝑖 (𝑡)) ⋅ (𝑢CN
𝑗 (𝑡) − CN)+

− 𝛼inh
𝑖 (𝑡) ⋅ ((SNr − 𝑢SNr

𝑖 (𝑡))+)2 ⋅ 𝑊 SNr
𝑖,𝑗 (𝑡)

(3.8)

𝑓(𝑥) = {𝑥 if 𝑥 > 0
10 ⋅ 𝑥 else.

(3.9)

𝑔(𝑥) = 1
1 + 𝑒− 𝑥

20
− 0.5 (3.10)

𝜏 inh
𝛼 ⋅ 𝑑𝛼inh

𝑖 (𝑡)
𝑑𝑡 + 𝛼inh

𝑖 (𝑡) = 𝐾 inh
𝛼 ⋅ (𝑚𝑖(𝑡))−

where 𝜂inh = 500, SNr is the mean activity of all the cells in SNr, 𝜏 inh
𝛼 = 10 ms, 𝐾 inh

𝛼 = 2.0
and ()− is the negative part of the membrane potential. The weights are randomly initialized
between −0.15 and −0.05 and later restricted to negative values. DA depletion (below base-
line) has been given a greater influence in the learning rule through the 𝑓() function, because
at the beginning of learning DA depletion has a much smaller amplitude than the DA bursts.
Contrary to the classical Hebbian learning rule, the postsynaptic activity influences here the
learning rule through a sigmoidal function 𝑔(), what makes it closer to the BCM learning rule
(Bienenstock et al., 1982). Similarly to BCM, there is a threshold (here the mean activity of the
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nuclei) on the postsynaptic activity that switches the learning rule from LTD to LTP. This learn-
ing rule is meant to increase the selectivity of each SNr cell regarding to its neighbors as well
as the signal-to-noise ratio in the population. Another way for the nigral cells to increase their
selectivity is competition through their lateral connections. There are two different learning
rules used depending on whether the DA level is above or below baseline. When DA is above
its baseline, the lateral connections are updated according to the following equation:

𝜂lat ⋅ 𝑑𝑊 SNr
𝑖,𝑗 (𝑡)
𝑑𝑡 = (DA(𝑡) − DA) ⋅ (SNr − 𝑢SNr

𝑖 (𝑡))+ ⋅ (SNr − 𝑢SNr
𝑗 (𝑡))+

− 𝛼lat
𝑖 (𝑡) ⋅ ((SNr − 𝑢SNr

𝑖 (𝑡))+)2 ⋅ 𝑊 SNr
𝑖,𝑗 (𝑡)

(3.11)

where 𝜂lat = 500. The weights are initially set to 0.0. This rule is similar to a classical anti-
Hebbian learning, as it favorizes the competition between two cells when they frequently have
simultaneously low firing rates. In the case of a DA depletion, an important feature of themodel
is that the symmetry of the lateral connections between two inhibited cells has to be broken.
DA depletion has then a punishing effect on the most inhibited cells, which will later receive
much more excitation from previously moderately inhibited cells:

𝜂lat ⋅ 𝑑𝑊 SNr
𝑖,𝑗 (𝑡)
𝑑𝑡 = (DA − DA(𝑡)) ⋅ √(SNr − 𝑢SNr

𝑖 (𝑡))+ ⋅ (SNr − 𝑢SNr
𝑗 (𝑡))+

− 𝛼lat
𝑖 (𝑡) ⋅ ((SNr − 𝑢SNr

𝑖 (𝑡))+)2 ⋅ 𝑊 SNr
𝑖,𝑗 (𝑡)

(3.12)

In both cases, two simultaneously inhibited cells will increase their reciprocal lateral connec-
tions. However, in the case of DA depletion, the square root function applied to the postsynaptic
activity breaks the symmetry of the learning rule and the most inhibited cell will see its affer-
ent lateral connections relatively more increased than the other cells. Thus, the inhibited cells
which won the competition through lateral connections but provoked a DA depletion will be
more likely to loose competition at the next trial. The effect of these asymmetric learning rules
will be presented in section Section 3.3.3, where we will show that they are able to eliminate
distractors. Both learning rules use the same equation for the updating of the regularization
factor:

𝜏 lat
𝛼 ⋅ 𝑑𝛼lat

𝑖 (𝑡)
𝑑𝑡 + 𝛼lat

𝑖 (𝑡) = 𝐾 lat
𝛼 ⋅ (𝑚𝑖(𝑡) − 𝑀)+ (3.13)

where 𝜏 lat
𝛼 = 10 ms and 𝐾 lat

𝛼 = 1.0.

3.2.8 Experiments

In order to test the ability of our model to perform visual WM tasks, we focused on three classi-
cal experimental paradigms: the delayedmatching-to-sample (DMS), the delayed nonmatching-
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to-sample (DNMS) and the delayed pair-association (DPA) tasks. These three tasks classically
consist in presenting to the subject a visual object (called the cue), followed after a certain de-
lay by an array of objects, including a target towards which a response should be made (either
a saccade or a pointing movement or a button press). In DMS, the target is the same object
as the cue; in DNMS, the target is the object that is different from the cue; in DPA, the target
is an object artificially but constantly associated to the cue. These three tasks are known to
involve differentially IT, MTL, PFC and BG (Chang et al., 2002; Elliott and Dolan, 1999; Sakai and
Miyashita, 1991).

Similarly to the mixed-delayed response (MDR) task of Gisiger and Kerszberg (2006), we want
our model to acquire knowledge about contextual information, allowing it to learn concurrently
these three tasks with the same cued visual objects. We therefore need to provide the network
with a symbol specifying which task has to be performed. The meaning of this symbol is how-
ever initially not known by the model and must be acquired through the interaction within the
tasks. The top part of Figure 3.1 b shows the time course of the visual inputs presented to the
network during a trial. Each trial is decomposed into periods of 150 ms. During the first period,
a cue is presented to the network, followed by a delay periodwithout visual stimulation. A visual
object representing which task to perform (DMS, DNMS or DPA) is then presented, followed by
the same delay period. During this presentation phase, the signal 𝐺(𝑡) in Equation 3.2 is set
to 1.0 to allow the sustained activation in dlPFC of these two objects.

In the choice period, two objects are simultaneously presented to the network: the target
(whose identity is defined by the cue and the task symbol) and a distractor chosen randomly
among the remaining cues. At the end of this period, the response of the network is con-
sidered to be performed, and reward is given accordingly through a probabilistic rule during
the following reward period. For the entire duration of this reward period, the signal 𝑅(𝑡) in
Equation 3.5 is set to 0.5 if reward is given and to 0.0 otherwise. 𝑃(𝑡) is set to 1.0, denoting
that reward is expected to occur. This reward period is followed by another delay period, the
activities in dlPFC being manually reset to their baseline, allowing the network to go back to its
resting state before performing a new trial.

In these experiments, we use four different cues (labelled A, B, C and D) and three task symbols
(DMS, DNMS and DPA) that stimulate each a different cell in PRh. The corresponding cells will
therefore be successively activated according to the timecourse of the trial described on the
top part of Figure 3.1 B. In the Results section, we will only consider subsets of combinations of
cues and tasks. For example, we defineDMS-DNMS_ABas a combination of four different trials:
A followed by DMS (A+DMS), A followed by DNMS (A+DNMS), B followed by DMS (B+DMS) and
B followed by DNMS (B+DNMS). These four different trials are randomly interleaved during the
learning period. In the DMS trials, the target of the task is the same as the cue, the distractor
being chosen in the remaining possible cues. In the DNMS trials, the target is the object that is
different from the cue. In the DPA task, the target is an object artificially associated to the cue.
In DMS-DPA_AB, the target of the trial A+DPA is C and the one of B+DPA is D.

Each PRh cell is stimulated by its corresponding visual object by setting the signal 𝑉𝑖(𝑡) in
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Equation 3.1 to a value of 1.0 during the whole period. In the choice period, 𝑉𝑖(𝑡) is limited
to 0.5 for both cells (to mimic competition in the lower areas). To determine the response
made by the system, we simply compare the activities of the two stimulated PRh cells at the
end of the choice period. If the activity of the cell representing the target is greater than for
the distractor, we hypothesize that this greater activation will feed back in the ventral stream
and generate an attentional effect that will guide a saccade toward the corresponding object
(Hamker, 2004a; Hamker, 2005b). We assume that this selection is noisy, what is modeled by
introducing a probabilistic rule for the delivery of reward that depends on the difference of PRh
activity for the two presented stimuli.

If we note 𝑢target the activity of the PRh cell representing the target at the end of the choice
period and𝑢dist the activity of the cell representing the distractor, the signal𝑅(𝑡) in Equation 3.5
has the following probability to be delivered during the reward period:

𝒫(𝑅) = 0.5 + 𝑢target − 𝑢dist (3.14)

This probability is of course limited to values between 0.0 and 1.0. When the activities of the
two cells are equal, reward is delivered randomly, as we consider that a saccade has been
performed randomly towards one of the two objects, as the feedback from PRh to the ventral
pathway is not sufficiently distinct to favorize one of the two targets. When the activity of
the target cell becomes relatively higher, the probability of executing the correct saccade and
receiving reward is linearly increased. When reward is delivered, the signal 𝑅(𝑡) has a value of
0.5 during the whole reward period, whereas it is set to 0.0 otherwise. We do not consider here
the influence of rewards with different amplitudes.

In delay conditioning, reward is delivered randomly with a fixed probability during the presen-
tation of a visual object (called X). The timecourse of this task is depicted on the bottom part
of Figure 3.1 B. This task is described in Section 3.3.5 to study the effect of the probability of
reward delivery on striatal representations and reward prediction in SNc.

In Section 3.3.4, we will study the influence of the number of cells in SNr on the performance of
the network. While this number is equal to 8 in the previous experiments, we vary it here from 6
to 16. When the number of cells in SNr exceeds 8, we simply added cells in SNr which receive
striatal inhibition and compete with the others, but which do not inhibit any thalamic cell. When
there is only 6 cells, we suppressed in SNr and VA the cells corresponding to the objects DPA
and X, which are not used in this experiment.
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Figure 3.2: Different success rates. (A) Mean value and standard deviation of the last incor-
rect trial during learning of 50 randomly initialized networks for different combina-
tions of cues and tasks: 1) DMS-DNMS_AB; 2) DMS-DPA_AB; 3) DMS-DNMS_ABC;
4) DMS_ABCD; 5) DNMS_ABCD; 6) DPA_ABCD. (B) Average success rate of 50 net-
works presented with DMS-DNMS_AB. (C) Success rate of a particular network
which learned DMS-DNMS_AB, but computed only on the trials composed of A as a
cue followed by DNMS as a task symbol.

3.3 Results

3.3.1 Concurrent learning of the different tasks

Figure 3.2 A shows the learning behavior of the model when different combinations of tasks
are presented. Each network was fed 1000 times with randomly alternated trials. The Y-axis
represents the rank of the last trial during the learning sequence where the network produced
a incorrect answer, which is a rather conservative measurement of behavior. After this last
mistake, the performance of all networks are stable, even when more than 1000 trials are pre-
sented as further tests have shown. We represent here the performance of different combina-
tions of tasks: DMS-DNMS_AB, DMS-DPA_AB, DMS-DNMS_ABC, DMS_ABCD, DNMS_ABCD and
DPA_ABCD. For each combination of tasks, we used fifty different networks that were initialized
randomly. One can notice that the different networks learn at very variable speeds, as shown by
the standard deviation. For example, for the DMS-DNMS_AB task, some networks converged
after 200 different trials whereas a few others needed 800 trials, what denotes the influence
of initialization as well as the one of noise. The only significant difference between the com-
binations of tasks is that DMS-DNMS_AB is learned faster than DMS-DNMS_ABC, DMS_ABCD,
DNMS_ABCD and DPA_ABCD (two-sample K–S test, 𝑃 < 0.05). However, this can be simply
explained by the fact that DMS-DNMS_ABC uses six different trials instead of four for DMS-
DNMS_AB (C+DMS and C+DNMS have to be learned at the same time), and that DMS_ABCD,
DNMS_ABCD and DPA_ABCD use a bigger set of possible distractors during the choice period.
We will investigate in Section 3.3.3 the influence of distractors on performance. The distribu-
tions of the numbers of trials needed to learn for each combination have no significant shape,
though a Gaussian fit can not be rejected (𝜒2-test, 0.2 ≤ 𝑃 ≤ 0.6).
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Figure 3.2 B shows the average success rate of 50 networks presentedwith the DMS-DNMS_AB
task. The success rate of a network is computed after each trial during learning as the percent-
age of rewarded trials for the last ten trials: if the last ten trials were rewarded, the success
rate is 100%, if only one trial was not rewarded, the success rate is 90% and so on. All networks
have reached the maximum success rate before the 800𝑡ℎ trial, but some only need 200 trials.
At the beginning of learning, the success rate is 50%, as the network does not really select a re-
sponse and reward is given randomly according to the probabilistic rule of reward we use. This
success rate quickly increases to a high value in around 300 trials, followed by amore flat phase
where the competition in SNr temporarily deteriorates the performance of the networks.

This flattening of the average success rate can be explained by observing Figure 3.2 C. We rep-
resent the success rate of a particular network which learned DMS-DNMS_AB, but this success
rate is plotted for analysis purpose only from trials composed of A as a cue followed by DNMS
as a task symbol. We see that the network performs this task accurately after only 40 trials
and stays at this maximum until it makes a mistake shortly before the 80𝑡ℎ trial. We will later
show that this temporary decrease in performance is due to the late involvement of selection
in SNr. To quantify this behavior, we examined the success rates of the 50 networks used in
Figure 3.2 B and decomposed them regarding to the four types of trials involved in the learning
phase (A followed by DMS and so on). We found that 32.5% of trial-specific networks showed
this type of behavior, by reaching success in at least ten successive trials before performing
again a mistake. In average, these trial-specific networks reach stable success after only 14
trials and stay successful for 17 trials before performing a mistake. They then need on aver-
age 47 other trials before reaching definitely 100% success (last mistake after the 78𝑡ℎ trial).
In comparison, the other trial-specific networks (67.5%) perform their last mistake at the 64𝑡ℎ

trial on average, which is significantly shorter (𝜒2-test, 𝑃 ≤ 0.05).

3.3.2 Temporal evolution of the activities after learning

Figure 3.3 shows the temporal evolution of some cells of a particular network that successfully
learned DMS-DNMS_AB. The learning phase consisted of 1000 randomly interleaved trials. At
the end of learning, the networkwas able to generate systematically correct responseswhich all
provoked the delivery of reward. The selectivity of CN cells developed to represent the different
combinations of cues and task symbols through clusters of cells (see Section 3.3.5). SNr cells
also became selective for some of these clusters and the learned competition between them
ensured that only one SNr cell can be active at the same time in this context. The temporal
evolution of the activity of the cells on Figure 3.3 was recorded during the course of a trial
using A as a cue and DNMS as a task symbol. However, this pattern is qualitatively observed
in every network that successfully learned the task and similar activation patterns occur for
different tasks. The cells which are not shown on this figure do not exhibit significant activity
after learning.

When the object A is presented as a cue in PRh (and simultaneously enters theworkingmemory
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Figure 3.3: Temporal evolution of the activity of several cells in a network which successfully
learned DMS-DNMS_AB. The activities are plotted with regard to time (in ms) during
a trial consisting of A as a cue, DNMS as a task symbol and B as a target. The first
row represents the activities of three cells in PRh which are respectively selective
for A (blue line), DNMS (red line) and B (green line). The second row shows the
activities of two cells in CN, one being selective for the pair A+DMS (blue line), the
other for the pair A+DNMS (green line). The third row represents the activities of
three cells in SNr which are respectively selective for A (blue line), DNMS (red line)
and B (green line). The fourth row represents the activities of three cells in VAwhich
are respectively selective for A (blue line), DNMS (red line) and B (green line).
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in dlPFC), it excites a cluster of cells in CNwhich, in this example, represents the couple A+DMS
(blue line). This cluster inhibits the cell representing A in SNr which in turn stops inhibiting
the corresponding cell in VA. The thalamocortical loop is then disinhibited and the two cells
representing A in PRh and VA excite each other. After 150 ms, the stimulation corresponding
to the cue ends and the activity of the cells representing A slowly decreases to their baseline.
At 300 ms, the object specifying the task (DNMS) stimulates a cell in PRh and enters WM in
dlPFC. This information biases processing in CN so that a new cluster representing A+DNMS
gets activated (green line) and disinhibits through SNr the cell in VA representing the object
B, which is the target of the task. At 600 ms, when both objects A (distractor) and B (target)
stimulates PRh, the perirhinal cell A only receives visual information, while the cell B receives
both visual and thalamic stimulation. Consequently, its activity is higher than the cell A and
will be considered as guiding a saccade toward the object B. The cell representing DNMS in
SNr never gets inhibited because it has never been the target of a task during learning. The
corresponding thalamic cell only shows a small increase during the presentation of the object
in PRh because of the corticothalamic connection. In the Discussion, we will come back on the
fact that, in this particular example, the system has learned to select B instead of avoiding A as
it should do in a DNMS task.

Three features are particularly interesting in this temporal evolution and have been observed
for every network used in Section 3.3.1. The first one is that the perirhinal and thalamic cells
corresponding to the object B are activated in advance to the presentation of the target and the
distractor. The network developed a predictive code by learning the input, context and target
association. For example, the behavior of the perirhinal cell correlates with the finding of pair-
recall activities in IT and PRh during DPA tasks: some cells visually selective for the associated
object have been shown to exhibit activation in advance to its presentation (Naya et al., 2003).
Similarly, the behavior of the thalamic cell can be compared to the delay period activity of MD
thalamic cells (part of the executive loop) during oculomotor WM tasks (Watanabe and Funa-
hashi, 2004). The second interesting observation is the sustained activation of the perirhinal
cell B after the disappearance of the target (between 750 and 900 ms on the figure) which is
solely provoked by thalamic stimulation (as theWM in dlPFC still excites CN), whereas classical
models of visual WM suggest that it is due a direct feedback from dlPFC (Ranganath, 2006).

The third interesting feature is the fact that the network, when only the cue was presented in
PRh and dlPFC, already started to disinhibit the corresponding thalamic cell, somehow antici-
pating to perform the DMS task. We tested the 50 networks used in Section 3.3.1 after learning
the DMS-DNMS_AB task and presented them with either A or B for 200 ms. By subsequently
recording the activity of the corresponding cells in SNr, we noticed that they all tended to per-
form DMS on the cue, i.e. disinhibiting the corresponding thalamic cell. This can be explained
by the fact that the representation of the cue in PRh is also the correct answer to the task when
DMS is required, and the projection from PRh to CN therefore favorizes the selection of the
striatal cluster representing A+DMS compared to A+DNMS. This can be interpreted such that
the “normal” role of the visual loop is to maintain the visually presented objects, but that this
behavior can be modified by additional prefrontal biasing (here the entry of DNMS into WM and
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its influence on striatal activation), as suggested by Miller and Cohen (2001).

3.3.3 Effect of the competition in SNr

Figure 3.4: Evolution of internal variables in SNr for trials surrounding the mistake performed
by the network on Figure 3.2 C. (A) Reward received at each trial. (B) Activity of
four SNr cells at the time reward is received or expected during the trial. These
cells are selective respectively for A (blue line), B (green line), C (red line) and D
(turquoise line). (C) Striatal inhibition received by these four cells. (D) Competition
term received by the same four cells.

We focus now on what happens around the late incorrect trial in Figure 3.2 C to show that the
first phase of learning corresponds to the selective learning of connections from cortex to CN
and fromCN to SNr, whereas the second one corresponds to the learning of lateral connections
within SNr to decorrelate the activities in the structure. Figure 3.4 shows the evolution of some
internal variables of SNr cells between the trials surrounding the mistake produced at the trial
number 77 of Figure 3.2 C. These trials are all composed of A as a cue, DNMS as a task symbol
and therefore B as a target. Figure 3.4 A shows that the preceding and following trials were
rewarded, but not the trial 77. Figure 3.4 B shows the activity of four SNr cells at the exact
time when reward is delivered or expected to be delivered (750 ms after the beginning of the
trial on Figure 3.3). These cells are selective respectively for A (blue line), B (green line), C
(red line) and D (turquoise line). The four remaining cells in SNr are not plotted for the sake of
readability, but they are not active anymore at this stage of learning. Figure 3.4 C represents the
inhibition received by these cells at the same time, whichmeans the weighted sum of inhibitory
connections coming from CN. Figure 3.4 C represents the competition term received by these
cells, which means the weighted sum of lateral connections in SNr (see Equation 3.8).

Through learning in the 76first trials consisting inA followedbyDNMS, the cells B andCbecame
strongly inhibited during the choice period. In the rest of the article, we will call “active” a cell
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which is strongly inhibited and has an activity close to 0.0. Both cells receive a strong inhibition
from the same CN cluster but they still do not compete enough with each other so that only
one remains active. As B is a target, this provokes the disinhibition of the thalamocortical loop
corresponding to B, so that the cell B in PRh is much more active than the cell A, leading to a
correct response and subsequent reward. The cell C is not involved in this particular task, so it
is just a distractor: its activation does not interfere with the current task. However, this cell may
be useful in other tasks, but the strong striatal inhibition it receives will make it harder to recruit
it for other tasks. At the trial 77, the cell C in SNr competes sufficiently with the cell B so that the
activity of the cell B becomes close to its baseline (around 0.7 on Figure 3.4 B). The difference
between the activities of cells A and B in PRh becomes small, leading to an omission of reward
on Figure 3.4 A according to the probabilistic rule we used. This omission has two effects
through the depletion of DA: first, it reduces the striatal inhibition received by the two active
cells, as seen on Figure 3.4 C; second, it increases the competition between the two active
cells, but in an asymmetrical manner (Figure 3.4 B). According to Equation 3.12, the excitatory
connection from the cell B to C will be much more increased than the one from the cell C to
the cell B, as the cell C is much more inhibited than the cell B. Consequently, at trial 78, the cell
C receives much more excitation from the cell B and its activity becomes above baseline. The
cell B is then strongly inhibited by the same cluster in CN and generates a correct rewarded
response. In the following trials, the cell B will further increase its selectivity for this cluster,
whereas the other cells in SNr (including the cell C) will totally lose theirs and can become
selective for other clusters.

What happened around this trial shows the selection of a unique cell in SNr, even when the
network already had a good performance. This selection relies on four different mechanisms.
First, the network should have selected a number of cells in SNrwhich produce a correct answer.
These cells include the target, but also distracting cells that are also selective for the same clus-
ter in CNbutwhich disinhibit irrelevant thalamocortical loops. Second, as the network produces
correct answers, the cluster in CN becomes associated to a high reward-prediction value in SNc.
The amplitude of phasic DA bursts is accordingly reduced. However, omission of reward will
generate a greater depletion of the DA signal, compared to the beginning of learning when CN
clusters had no association to reward and provoked no DA depletion. Third, omission of reward
reduces the striatal inhibition received by active cells in SNr. However, if this was the only “pun-
ishing” mechanism, all the active cells will lose their selectivity. In this particular example, the
cell B would gradually stop receiving inhibition from CN and all the preceding learning would be
lost. Fourth, the learning of lateral connections in SNr is asymmetric with respect to DA firing:
when a distractor progressively wins the competition until the response associated to the target
is attenuated, this distractor becomes disadvantaged in the competition with the target. This
is an indirect memory effect: as the cell corresponding to the target was previously activated
and provoked reward delivery, the cease of its activation (provoking reward omission) is trans-
mitted to the other cells in SNr through DA depletion, which “understand” that their activation
is irrelevant and “get out” of the competition.

It is important to note that this competition between cells in SNr stays completely local to
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the cells: there is no winner-take-all algorithm or supervising mechanism deciding which cell
should be punished. This competition emerges only through the interaction of the cells and
the learning of their reciprocal connections. As stated in Section 3.3.1, the scheme described
before occurs during learning in 32.5% of the networks we studied: the target cell in SNr tem-
porarily loses the competition before being reselected. However, in other cases the target di-
rectly wins the competition and the distractors fade: there is no degradation in performance,
what can explain the great variability in the number of trials needed to learn correctly all the
tasks on Figure 3.2 A.

Figure 3.5: Magnitude of weight changes during learning of DMS-DNMS_AB for two different
networks, plotted here only for A+DMS trials. The top line corresponds to global
weight changes in CN (projections from PRH and dlPFC), the middle one to the con-
nections from CN to SNr, the bottom one to lateral connections within SNr. (A)
Network showing a late competition mechanism in SNr selecting directly the cor-
rect target without provoking a mistake. (B) Network showing a late competition
mechanism in SNr that led to the performance of mistakes and to a long period of
instability. The amplitude of lateral weight changes has been thresholded during
this unstable phase (it reaches up to 5000) in order to allow a better comparison
with the first network.

In order to better describe these two schemes of learning, we show on Figure 3.5 themagnitude
of weight changes in CN and SNr during learning for two different networks. This magnitude
is computed for each trial in the learning session by summing the absolute values of the dis-
cretized variations of weight values (|𝑑𝑊𝑖,𝑗(𝑡)| in Equation 3.5, Equation 3.8, Equation 3.11
and Equation 3.12 for all neurons in the considered area and for all computational timesteps in
the entire trial (1050 in our design). These two networks have both learned the DMS-DNMS_AB
task, but we represent here only the magnitude of weight changes occurring during A+DMS
trials. The top row represents the magnitude of weight changes for striatal cells (Equation 3.5),
the middle row for the inhibitory connections from CN to SNr (Equation 3.8) and the bottom
one for lateral connections within SNr (both Equation 3.11 and Equation 3.12). The absolute
amplitude of these weight changes is meaningless, as it depends on the number of cells in
each areas and the number of afferent connections. On Figure 3.5 A, the network shows an
early learning phase in the first thirty trials where both striatal and pallidal cells show great
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variations in weight values, denoting that the network tries to find a correct answer to the task.
After this first period, the connections from CN to SNr cease to fluctuate, while the connections
from PRh and dlPFC to CN gradually stabilize (rather slowly, as the computed magnitude also
takes into account the regularization term in Eq. Equation 3.5, as the striatal cells always tend
to overshoot, and this magnitude only decays with the association to reward). However, after
the 50𝑡ℎ trial, the lateral connections within SNr show another peak of variation. This corre-
sponds to the simultaneous activation of two SNr cells, including the target. In this case, the
correct target wins the competition and eliminates the distractor without provoking a mistake.
The task has been correctly learned and the network slowly stabilizes its learning. Oppositely,
the network shown on Figure 3.5 B has the same early phase of learning, but the late increase
in magnitude of lateral weight changes is much higher and lasts for about 50 trials. This ineffi-
cient selection process might be due to interference with learning in other trials, but provokes
no mistake for the task. However, around the 120𝑡ℎ trial, this competition leads the network
to perform a mistake (as what happens in Figure 3.4), and the connections within the network
vary for a certain number of trials before finding the correct solution and stabilizing. The first
scheme of learning is the most frequently observed, while the second one corresponds roughly
to the 32.5% of networks found in Section 3.3.1. We observed a third infrequent scheme of
learning similar to the second one, but where only the connections from CN to SNr are mod-
ified in the second phase of learning, not the lateral ones. This can be explained by the fact
that the target and the distractor have already learned to compete with each other during the
learning of another type of trial.

3.3.4 Influence of the number of cells in SNr

Figure 3.6: Influence of the number of cells in SNr. (A) Mean value and standard deviation of
the last incorrect trial during learning of 50 randomly initialized networks learning
DMS-DNMS_AB, depending on the number of cells in SNr. (B) Rank of the first trial
during learning which got a success rate of 100% (computed on the ten preceding
trials), depending on the number of cells in SNr.

As the number of possible distractors in SNr may influence the number of trials needed to learn
the tasks, we investigated the influence of the number of cells in SNr (method described in
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Section 3.2.8). Figure 3.6 A shows the average number of trials needed to learn DMS-DNMS_AB
by fifty randomly initialized networks. One can observe that the mean number of trials needed
to learn increasesmonotonically with the number of cells in SNr, but in a quite flatmanner: from
360 trials with 6 cells to 510 trials with 16 cells (regression analysis 𝑦 = 15.16 ∗ 𝑥 + 271.9,
with 𝑥 the number of cells in SNr and 𝑦 the time needed to learn, 𝑟2 = 0.25). This rather
slow increase can be explained by the fact that the selection process in SNr through lateral
connections do not concern cells two-by-two as shown on Figure 3.4, but can eliminate several
distractors at the same time. In addition, the variability of these numbers of trials is rather high,
and some networks with 16 cells in SNr converge faster than some networks with only 6 cells
depending on initialization and noise.

As amatter of comparison, Figure 3.6 B shows for the same networks the rank of the first trial in
the learning sequence where the success rate was 100% (ten preceding trials were rewarded).
One can observe that this first successful trial occurs on average at the same time in the learn-
ing sequence (around 150 trials), independently of the number of cells in SNr. We estimated
the proportion of trial-specific networks that reached an early phase of success during at least
ten consecutive trials before performing amistake again. This proportion stays rather constant
with the number of cells in SNr, the minimum being 32.5% for 8 cells and the maximum 40% for
14 cells. Taken together, the result presented here confirm that there are globally two stages
of learning regarding SNr: a first stage of parallel search independent of the number of cells
in SNr, where the system selects through striatal inhibition an ensemble of cells in SNr able
to obtain rewards (including the target and several distractors) and a second stage of partially
sequential search that depends on the number of cells in SNr, where the system tries to elim-
inate the distractors through lateral competition, what needs more time when the number of
possible distractors increases.

3.3.5 Reward-related clustering in CN

Figure 3.7: Receptive fields of some CN cells after learning DMS-DNMS_AB. The X-axis repre-
sent the cells in PRh and dlPFC and the Y-axis the different cells in CN. A white color
represents a positive weight for the connection, grey represents a weight close to
zero and black a negative weight.

The CN cells learn to represent cortical information from PRh and PFC during the first stage of
learning, together with the parallel selection in SNr. As the competition between CN cells is not
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very strong, a cluster of a few CN cells gradually become selective for a particular pattern of
cortical activity which is rewarded. Each rewarded combination of cue and task symbols in the
cortical areas gets represented by 2 to 5 cells in CN, whose identity may change through learn-
ing depending on reward delivery. Figure 3.7 shows the receptive fields (connection pattern
with the cortical neurons) of several cells in CN after learning DMS-DNMS_AB. One can observe
that some cells developed a very sharp selectivity to the cue and task symbols in dlPFC, as well
as for the target in PRh. They have very strong positive connection weights to these cells, and
relatively strong negative connection weights to the others. For example, the four cells on the
top of the figure are selective for A and DNMS in dlPFC and B in PRh. After learning, this cluster
will selectively inhibit the cell B in SNr and generate a correct response towards B.

According to these receptive fields, when a cue (e.g. A) is presented at the beginning of a trial,
it will be represented in both PRh and dlPFC and therefore activate preferentially the cluster in
CN selective for A+DMS. This explains the activation pattern of CN cells on Figure 3.3: the pre-
sentation of the cue favorizes the DMS-related clusters. However, when DNMS or DPA appear,
they tend to inhibit these clusters so that the correct cluster can emerge from the competition.
This tendency of the network to perform the DMS task even when the task is not known may
have some advantages: a cue which is reliably associated to reward will see its representation
in PRh enhanced through disinhibition of its thalamocortical loop, comparedwith visual objects
which were never associated with rewards. This is coherent with the findings of Mogami and
Tanaka (2006) who showed that the representation of visual objects in PRh is modulated by
their association to reward.

Figure 3.8: (A) Sum of activities in CN depending the probability of reward associated to the
object X. (B) Association with reward of the cluster representing X in CN, depending
on the probability of reward delivery.

At the end of the learning phase, the clusters in CN are fully associated with reward, which
means that they totally cancel the phasic DA bursts and could generate a maximal depletion
of DA if reward was omitted. The question that arises is whether all rewarded objects get
represented equally in CN. In order to investigate this issue, we now use the trace conditioning
that we presented in Section 3.2.8. This task consists in presenting to the network a visual
object X which is randomly associated to reward with a fixed probability, whatever the response
of the system. This trace conditioning task is randomly intermixed with the learning of DMS-
DNMS_AB, for a total number of 1000 trials. Figure 3.8 A shows the sum of the activities of
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all CN cells at the time reward is given or expected, averaged over the last 50 conditioning
trials of the learning sequence. Even with a low probability of reward like 0.1, the object X gets
represented in CN by a sum of activity comprised between 3.0 and 5.0. This value must be
compared to the sum of activities in CN when reward is never given (1.1) and which solely
consists in weight initialization and noise. This sum of activities can represent a cluster of 3 to
6 cells depending on their activity.

Figure 3.8 B shows the association with reward associated of the object X at the time reward is
given or expected, averaged over the last 50 conditioning trials of the learning sequence. This
prediction of reward is computed as the absolute value of the weighted sum of connections
from CN to SNc. Contrary to the striatal representations, this association to reward strongly
depends on the probability of reward. It explains that even rarely rewarded objects can get
represented in CN: the received reward generates a DA burst of activity that increases the cor-
responding corticostriatal connections, but it never becomes sufficiently associated to reward
to generate a DA depletion that would decrease the same connections.

3.4 Discussion

We designed a computational model inspired by the functional anatomy of the visual loop con-
necting a high-level visual cortical area (PRh), some structures of BG (CN, SNc and SNr) and the
corresponding thalamic nuclei (VA). The functioning of this closed loop is biased by the sus-
tained activation of some prefrontal cells (dlPFC) which here artificially keep track of activity in
PRh. This model is able to learn a mixture of visual WM tasks like DMS, DNMS and DPA in the
context of reinforcement learning, where only a reward signal is delivered when the system an-
swers correctly. This reward signal drives the activity of a dopaminergic cell which modulates
Hebbian learning in the connections between the neurons of themodel. With the combinations
of tasks we tested, the network was able to learn perfectly the tasks after an average of 500 tri-
als. Even if this number of trials may seem huge in comparison to experimental data on human
adults, one has to consider that the system has absolutely no prior knowledge about the task:
the symbols representing the tasks to perform within a trial are initially meaningless and the
system only sees a couple of visual objects before being forced to make a choice in an array
of objects.

Even if the architecture of the visual BG loop has been simplified compared to the known liter-
ature (only the direct pathway is implemented) and some known mechanisms have not been
taken into account (like the modulation of the activity of striatal cells by DA firing), this model
is able to exhibit some interesting emergent behaviors which can be considered as predictions.
First, we have observed sustained activation of PRh cells which is only due to thalamic stimu-
lation. As we hypothesized in (Vitay and Hamker, 2008), the observed sustained activation in
PRh (and IT) may not only be the consequence of direct feedback from prefrontal areas to tem-
poral areas, but may also pass through the thalamus via the BG in order to gain more control on
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the relevance of this behavior during the reinforced learning phase. After this learning phase,
the fronto-temporal connections may replace the BG-thalamus system and directly provoke
the sustained activation. Second, the tendency of the model after learning to start performing
DMS right after the presentation of the cue (as the cue is represented both in PRh and dlPFC)
enhances the perirhinal representation of items that are reliably associated to reward, what is
in agreement with the findings of Mogami and Tanaka (2006). It suggests that the default role
of the visual loop of the BG is to favorize the representation of rewarded visual objects that are
present in the visual scene, and that the role of the connections from dlPFC to the visual loop
is to bias this behavior towards cognitively defined targets, as suggested by Miller and Cohen
(2001). Third, cells in PRh and VA corresponding to the target in the task are activated in ad-
vance of the presentation of the search array. Especially in DNMS and DPA where the target
differs from the cue, this behavior reminds the pair-recall activities found in IT and PRh (Naya
et al., 2003), as well as the presaccadic activities in the medio-dorsal nucleus (MD) of the tha-
lamus (Watanabe and Funahashi, 2004). We have not found similar results concerning the VA
nucleus of the thalamus, but we predict that VA cells responsive for paired target of a DPA task
will exhibit pair-recall activity.

There are three different stages of learning in the model. The first stage consists in the rep-
resentation of cortical information by the striatal cells based on the delivered reward. This
striatal representation combines the content of the WM (a representation of the cue and the
task in dlPFC) with the perirhinal representation of the target through the activation of a cluster
of cells. These clusters are composed of a limited number of cells due to competition among
striatal cells. The second stage of learning consists in the selective inhibition of a group of SNr
cells by these clusters of striatal cells. This selective inhibition is strongly modulated by reward
delivery, so that the inhibited SNr cells are able to disinhibit the perirhinal representation of the
target but not the distractor. This phase is performed in a parallel manner which does not de-
pend on the number of cells in SNr. The third stage of learning is the enhanced competition
between SNr cells to decorrelate their activities. This phase is sometimes characterized by a
temporary degradation of the performance of the network until the target cell gets selected
by the competitive mechanism, what makes this phase sequential with regard to the number
of cells in SNr. This phase strongly relies on the learned reward-association value of striatal
clusters in SNc, so that omission of reward can generate a depletion of DA. However, this dis-
tinction into three different stages is made a posteriori, as all cells learn all the time through the
experiments without any change of parameters in the learning rules.

The role of the learned competition in SNr is to ensure that only the useful thalamocortical
loop is disinhibited according to task requirements. Without this competition, several SNr cells
would be inhibited by the same striatal cluster because the initialization of the connections
between CN and SNr is randomly distributed. This could provoke parasitic disinhibition of tha-
lamocortical loops, leading to involuntary movements or visual hallucinations. Without an addi-
tional self-organization of thalamocortical connections the search for the target cell requires in
the progressive elimination of those distractors that strongly compete with the target, eventu-
ally leading toDAdepletion to resolve the ambiguity. For large real-world networks one potential
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way to keep the sequential search in a reasonable boundwould be to consider the topographical
projections from cortex to striatum as well as from striatum to SNr. In our model, these projec-
tions are all-to-all and only becomeselective for particular patterns through learning. Zheng and
Wilson (2002) showed that adjacent cells in striatum have very little common input, leading to
a sparse representation of cortical information. Similarly, projections from striatum to GPi and
SNr also have a sparse connectivity (Bar-Gad et al., 2003), although some GPi cells have been
shown to receive input from functionally different striatal regions (Flaherty and Graybiel, 1994).
Wickens and Oorshcot (2000) observed that striatal cells are organized into small assemblies
of neurons that have mutually inhibitory connections. The number of such compartments is
remarkably similar to the number of GPi neurons, what could suggest a topographical pattern
of convergence from cortex to SNr through striatum that could allow to limit this competition
in SNr to limited sets of functionally related cells instead of the whole population. This would
in agreement with the found pattern of lateral connections between SNr cells belonging to the
same or adjacent functional subdivision (Mailly et al., 2003).

To our knowledge, this model is the first to address the issue of learning at the level of SNr,
either from striatum to SNr or within SNr. The late selection of the useful-only SNr cells may
allow the prediction that the mean activity of the SNr population will be lower during learning
than after, in the sense that more SNr cells will be inhibited in the first stages of learning than
when the competition takes place. In addition, one may observe that the performance of the
subject could temporarily be degraded after a certain number of successful trials, due to the
late involvement of competition in SNr. From a computational point of view, our model assigns
a new functional role to SNr (and GPi) in the general framework of BG functioning and may
guide to the development of a new class of BG models.

The model currently solves the DNMS task by learning to select the target, not by learning to
avoid the cue. If a novel target were presented together with the cue after the learning phase,
the system would not respond systematically towards it. In this respect, what is learned by the
model when DNMS is required ismore a version of DPA that associates cues together than truly
DNMS. In order to learn DNMS, we would have to close the thalamocortical loop correspond-
ing to the cue even more strongly than when SNr cells are at their baseline level. That could
be achieved by exciting strongly the SNr cell corresponding to the cue, therefore inhibiting the
neighboring cells in SNr which can then let other thalamocortical loops become active. The in-
direct pathway of BG is a possible candidate to truly learn DNMS: the additional inhibitory relay
through GPe allows striatal activation to indirectly excite the output nuclei GPi/SNr (Albin et al.,
1989; DeLong, 1990). This indirect pathway is also particularly involved in the processing of DA
depletion, as the striatal cells participating in this pathway have mainly D2-type DA receptors
and are globally inhibited by DA release. Dopamine depletion could then favorize this pathway
and signal precisely to the output nuclei the omission of the expected reward. Incorporating
this indirect pathway could allow us to truly learn DNMS and might also allow to simplify the
learning rules in SNr which treat differentially over- and below- baseline DA activities. The bal-
ance between the direct and indirect pathway may signal more elegantly these two different
situations, without modifying the principal results presented here.
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On top of this possible influence of the indirect pathway on learning DNMS, Elliott and Dolan
(1999) showed that DMS and DNMS involve differentially cortical or subcortical structures, the
MD nuclei of the thalamus (part of the executive loop) being for example more implicated in
DNMS than DMS. This raises the issue of the involvement of the executive loop in solving these
rewarded visual WM tasks. In the current model, only the connections originating from dlPFC
(which simply stores perirhinal information) bias representations in CN to perform the tasks.
The purpose of this model is only to show that it is possible to retrieve object-related informa-
tion in high-level visual areas like IT or PRh through behaviorally-relevant BG gating. The role
of the executive loop in rewarded visual WM tasks is obviously much more complex than just
maintaining perirhinal representations: gating the entry of items in WM (if a distractor is sys-
tematically presented during the task but has no behavioral relevance, it should not enter WM),
manipulating them (abstracting sensory information and applying rules) and eventually actively
suppressing items from WM (at the end of a trial or when a new item makes it obsolete). Gat-
ing and suppression of items are manually performed in our current dlPFC model but can be
learned through the loop linking dlPFC with the corresponding BG structures modulated by DA
firing (O’Reilly and Frank, 2006). Manipulating and abstracting representations is a harder issue
that involves specifically the prefrontal cortex, but some computational models have already
started to address this problem (Rougier et al., 2005). It would be also interesting not only to
learn to represent specific combinations of cues and task symbols, but also to abstract the rule
behind the task: if a new cue is presented, the system has to learn again this specific combi-
nation. This generalization to novel cues may be the role of the executive loop which may bias
the visual loop in a more abstract manner than just storing cues and task symbols. This view is
supported by the findings of Parker et al. (1997) which showed that MD (thalamic nuclei part
of the executive loop) is crucial for learning DMS when the set of cues is big, but not when the
set is small (what could be learned solely in the visual loop).

An extension of our model that would be able to fully learn the DMS, DNMS and DPA (with gen-
eralization to novel cues for all tasks and avoidance of the cue instead of selection of the target
for DNMS) would therefore be composed of the visual and executive loops of the BG, both in-
corporating at least the indirect pathway. The role of the visual loop would be to retrieve the
visual information associated to rewarded objects in the temporal lobe, acting by default on vi-
sually presented objects. The role of the executive loop would be to bias this processing, either
by forbidding the visual loop to perform its automatic behavior (as in DNMS) or by guiding this
behavior towards objects retrieved from memory (as in DPA). The executive loop would also
be responsible for managing the task in time (gating and updating the entry of items into WM)
in order to solve the temporal credit assignment problem, which is hard-coded in the current
model. It would also manage the generalization of the learned task to bigger sets of cues and
ultimately abstract the underlying rule. The interaction between the executive and visual loops
will still rely on overlapping projection fields from PRh and dlPFC on the caudate nucleus, but
their synchronized learningwill necessit to explore the spiraling pattern of connections between
dopaminergic cells in SNc and the striatum discovered by Haber (2003), suggesting a hierarchi-
cal organization of BG loops in guiding behavior. However, we expect the principal results of
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the current model to remain true in this extended version: the sustained activation of the target
is only due to the classical disinhibition mechanism of the BG; the anticipatory activities in the
thalamus are due to the maintenance of cues and task symbols in the executive loop; and the
split of learning in two phases at the level of SNr should not affected by the incorporation of
the indirect pathway, whose role would be rather a simplification of the treatment of dopamine
depletion than a modification of the competition mechanism.

The way we modeled the dopaminergic firing in SNc is rather simple from a computational
point of view. It receives information about the delivery of reward and learns to associate it
with striatal representations. This reward association progressively cancels through learning
the amplitude of the phasic DA bursts and provokes DA depletion at the time reward is expected
(through an external timing signal) but not delivered. This behavior is consistent with the ob-
servations of Schultz et al. (1997) about DA firing at the time of reward in conditioning tasks.
It does not reproduce the observed phasic burst that appears after learning at the presentation
of the conditioned stimuli (or cue in our case). However, contrary to the classical approach
comparing DA firing with the error signal of the temporal difference (TD) algorithm (Suri and
Schultz, 1999), we consider that this pattern of activation is computed by a separate mecha-
nism, presumably by the selective entry in WM of the cue in the executive loop, as suggested by
Brown et al. (1999) and O’Reilly and Frank (2006). This entry of the cue in the executive loopwill
provide a timing signal which, combined with the reward association of the corresponding CN
representation, is able to gradually provoke a DA phasic burst at the appearance of a cue which
is reliably associated to reward. From a conceptual point of view, our current implementation
of the DA firing considers that DA firing only enables the learning of the link between a context
(here the content of WM), an action (the response made by the system) and the consequences
of this action (here the delivery of reward), as suggested by Redgrave and Gurney (2006).

The DA phasic burst generated by the executive loop could allow to signal the behavioral rel-
evance of a stimulus instead of its association to reward. In the trace conditioning that we
performed, even rarely rewarded stimuli get represented in CN, although they do not acquire a
strong association to reward. By signaling that these stimuli may be rewarded but do not have
a great importance for behavior, this cue-related DA firingmay allow to reduce or even suppress
their representation in CN so that the corresponding cells can focus on more important events.
This DA-mediated behavioral relevance may act on the learning of corticostriatal connections
(as we implemented it) or through the modulation of the membrane potential of striatal cells
through the activation of D1 or D2 receptors (Calabresi et al., 2007). Linking striatal represen-
tations to behavioral relevance instead of just reward-association may allow a more efficient
and selective encoding of external events that can occur in natural scenes.

A few computational models have addressed the issue of memory retrieval in the context of de-
layed visual WM tasks (Gisiger and Kerszberg, 2006; Mongillo et al., 2003; Morita and Suemitsu,
2002). These models are mainly attractor networks which focus on the interplay between infer-
otemporal and prefrontal cortices, but do not consider the influence of BG on learning through
reinforcement. The model by Gisiger and Kerszberg (2006) learns concurrently DMS and DPA
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with a paradigm similar to the one we used. It is composed of three interconnected cortical
structures performing respectively visual representation, working memory and planning, and is
able to reproduce electrophysiological data on IT and PFC functioning. However, it only learns
to associate visual representations together, without learning to schedule the tasks. For exam-
ple, the execution in time of DPA compared to DMS is controlled by manually computed gating
signals, whereas, in our model, the only external gating signals concern the entry of visual rep-
resentations into WM, independently of the particular task. Even if our model does not either
solve the temporal credit assignment problem, we consider that the BG loops are an impor-
tant site where the temporal execution of a task is learned, and that this functioning in time
has important consequences on the content of cortical processing itself, such as anticipatory
activities.

A comparison with other BG models is more difficult as we apply our model to a different
paradigm. Some models deal with the influence of BG on reinforcement learning, particularly
in classical or operant conditioning. The model of Suri and Schultz (1999) principally focuses
on the computational aspects of DA firing which is considered similar to the error signal of the
TD algorithm and which biases a direct mapping between stimuli and actions, within an actor-
critic architecture. Themodel of Brown et al. (1999) is more biologically detailed and proposes
a distinction between the different sources of information reaching SNc. The rest of the ar-
chitecture of the BG is nonetheless kept simple and learning occurs only at the corticostriatal
level. Other models focus more on the executive loop, especially with regard to WM gating and
maintenance. Similarly to our approach, the model of O’Reilly and Frank (2006) uses the BG as
a gating device for specific thalamocortical loops. It is successfully applied to complex WM
tasks such as 1-2-AX, where it learns to generate a binary motor response depending on the
content of WM. It is also applied to the store ignore recall (SIR) task, where it is presented with
successions of visual objects, together with task symbols like “store” (where it should copy
the object into WM) or ignore (where it should not copy). When the “recall” signal is presented
alone, the system should respond towards the object that is currently stored in WM, whereas
ordinarily it should just respond towards what is visually available. This task is similar to how
we simulated DMS (PRh represents the visual input except when thalamic stimulation tells the
opposite), but their model has the great additional ability to ignore intervening distractors by
selectively updating the content of WM depending on task requirements. The main differences
with our model is that the output of their model is segregated from the input and that cues and
task symbols have to be presented simultaneously. Adding an efficient executive loop to our
model may allow us to better compare with this model. The model of Ashby et al. (2005) also
focuses on working memory maintenance (although in the spatial modality) through selective
disinhibition of thalamocortical loops by the direct pathway only and considers elegantly the
role of the feedback connections between PFC and posterior cortices. A very functionally dif-
ferent model was proposed by Gurney et al. (2001b), who place the subthalamic nucleus (STN)
at a very central place in the functioning of the BG. They claim that STN mediates the interplay
between the selection pathway (similar to the direct pathway in other models) and the control
pathway which biases processing in the selection pathway instead of acting in the opposite
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direction as suggested in the classical direct/indirect (or Go/NoGo) dichotomy. Although DA
has there only a tonic effect, the concepts introduced in this model allow to reconsider the
functional connectivity between BG structures.

Our proposed model is coherent with most cortical functional models of visual WM, such as
Ranganath (2006). It considers that relevant visual objects are actively maintained in dlPFC
and fed back in high-level visual areas. These visual areas themselves modulate visual pro-
cessing in the ventral pathway through feedback connections, in order to create object-based
attention that helps selecting the correct target in space (Hamker, 2005a). However, we pro-
pose that in the first phase of learning, BG learns to associate prefrontal representations with
visual representations through reinforced trial-and-error learning in order to acquire the correct
behavior. In parallel, but more slowly, the top-down connections from PFC to IT or PRh learns
the same task in a supervised manner, BG acting as the teacher. After this second stage of
learning, this prefrontal feedback on high-level visual areas can become the unique source of
memory retrieval, as suggested by the results of Tomita et al. (1999).
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4 Working memory and response selection: A
computational account of interactions among
cortico-basal ganglio-thalamic loops

Abstract

Cortico-basal ganglio-thalamic loops are involved in both cognitive processes and motor con-
trol. We present a biologically meaningful computational model of how these loops contribute
to the organization of working memory and the development of response behavior. Via re-
inforcement learning in basal ganglia, the model develops flexible control of working mem-
ory within prefrontal loops and achieves selection of appropriate responses based on work-
ing memory content and visual stimulation within a motor loop. We show that both working
memory control and response selection can evolve within parallel and interacting cortico-basal
ganglio-thalamic loops by Hebbian and three-factor learning rules. Furthermore, the model
gives a coherent explanation for how complex strategies of working memory control and re-
sponse selection can derive from basic cognitive operations that can be learned via trial and
error.

4.1 Introduction

Working memory (WM) is a key prerequisite for planning and executing responses. In a promi-
nent notion (Repovs and Baddeley, 2006), WM consists of the capability to maintain informa-
tion over limited periods of time and the ability to manipulate that information. By maintaining
information in WM, an organism can detach its responses from its immediate sensory envi-
ronment and exert deliberate control over its actions. Healthy human adults demonstrate an
enormous flexibility in WM control in that WM is eligible for a tremendous multitude of stimuli,
each of which can be maintained over adjustable periods of time and manipulated in various
ways. However, that flexibility has to be acquired meticulously over many years of childhood
and adolescence. In the early years of childhood, evenWM tasks as simple as a Delayed-Match-
to-Sample task pose a serious challenge (Luciana and Nelson, 1998).

While several brain structures have been shown to contribute toWMand response selection (cf.
Bird and Burgess, 2008; Bunge et al., 2002; Jonides et al., 1998; McNab and Klingberg, 2008;
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Rowe et al., 2000), we here focus on the role of basal ganglia (BG) as part of a looped cortico-
BG-thalamic architecture: closed cortico-BG-thalamic loops, connecting a particular area of
cortex to itself, can be anatomically distinguished from open loops, linking in an ascending
manner areas involved in motivation, cognition and motor execution (Haber, 2003; Voorn et
al., 2004). This architecture of parallel and hierarchically interconnected loops provides a po-
tential anatomic substrate for both WM processes and response selection: closed loops allow
maintaining information for extended periods of time and flexibly updating it (i.e. two major
WM processes); open loops allow information that is maintained in hierarchically superior WM
loops to bias response selection within hierarchically inferior motor loops (cf. Haber, 2003).

With regard to plasticity, BG are assumed to take part in visual and motor category learning
(Seger, 2008) and in establishing associations between stimuli and responses (Packard and
Knowlton, 2002). Probably most eminently, they are believed to have an important role in rein-
forcement learning: BG receive dopaminergic afferents from substantia nigra pars compacta
(SNc), a nucleus of the midbrain, that provides them with an error signal of reward prediction
(Hollerman and Schultz, 1998; Schultz et al., 1997): Relative to a tonic baseline dopamine
emission of nigral neurons, dopamine bursts result from unexpected rewards and from reward-
predicting stimuli while dopamine depletions follow omissions of expected rewards. Dopamine
levels have been shown to modulate long-term synaptic plasticity within BG, especially in its
major input structure, the striatum (Reynolds et al., 2001; Shen et al., 2008).

In recent years, several computational models of BG functions have been developed, pin-
pointing their role in WM and motor control (Ashby et al., 2007; Brown et al., 2004; Gurney
et al., 2001a; O’Reilly and Frank, 2006; Vitay and Hamker, 2010). It has been shown that
reinforcement learning mechanisms within biologically inspired cortico-BG-thalamic loops
can solve conditional Delayed-Match-to-Sample and Delayed-Paired-Association tasks (Vitay
and Hamker, 2010) and the 1-2-AX task of WM (O’Reilly and Frank, 2006). Moreover, it has
been proven that shaping (i.e. a procedure of teaching a task via successively more complex
approximations, Skinner, 1938) can provide computational models with benefits to learn
demanding WM tasks (Krueger and Dayan, 2009): notably, shaping can speed up the learning
process and provide sub-strategies to an agent that can later be used to cope with similar
problems. In animal training and human education, shaping is a standard procedure to
guarantee learning of complex behaviors: conditional WM tasks like the 1-2-AX task would not
be trainable to animals or infant humans without such a procedure.

Given the huge variety of functions that BG contribute to and the multitude of brain areas that
they interact with, a fundamental question in BG research is how different BG loops coher-
ently interact. Here we follow a model-driven approach to gain insight into how dopamine-
modulated learning in BG controls a combined WM-response selection system acting within
different cortico-BG-thalamic loops. We propose a single set of Hebbian and three-factor learn-
ing rules for two different levels of the cortico-BG-thalamic hierarchy: prefrontal loops learn
to flexibly switch between WM update and WM maintenance and a hierarchically inferior mo-
tor loop learns selection of rewarded responses based on WM content and visual stimulation.
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Our model’s functional abilities are demonstrated on delayed response (DR) tasks, a delayed
alternation (DA) task and on the 1-2-AX task of WM (O’Reilly and Frank, 2006), the latter being
trained in a three-step shaping procedure. We provide interpretations of the roles of BG path-
ways in WM control and response selection and propose a mechanism of how task monitoring
for unexpected errors instigates learning processes. The purpose of our approach is to show
how reinforcement learning processes within separate but interconnected cortico-BG-thalamic
loops can in parallel establish WM control and response selection.

4.2 Material and methods

4.2.1 Architecture of the model

BG loops can be classified according to their contributions to different functional domains
(Alexander et al., 1986): loops traversing the caudate nucleus and lateral prefrontal cortex con-
tribute to the executive domain. They are involved in goal-directed learning, action-outcome
associations andWM (Redgrave et al., 2010); loops traversing the putamen aswell as premotor
and sensorimotor cortices contribute to the motor domain and are involved in action selection,
stimulus-response associations and habitual control (Horvitz, 2009). Different types of loops
interact through various kinds of fibers (Haber, 2003). Among these fibers, cortico-striatal con-
nections allow for a convergence of inputs from distinct frontal cortical areas onto key striatal
regions (Calzavara et al., 2007; Takada et al., 1998). Thereby, these fibers create a hierarchy
of information flow from the executive/prefrontal domain to the sensorimotor domain and pro-
vide a potential substrate for how cognitive processes guide motor processes (Calzavara et
al., 2007). Figure 4.1 shows the general layout of our model which is consistent with cortico-
BG-thalamic circuitry (Braak and Del Tredici, 2008; DeLong and Wichmann, 2007; Haber, 2003).
Themodel consists of parallel and hierarchically interconnected cortico-BG-thalamic loops that
all have the same general architecture and obey the same learning rules. Prefrontal cortico-BG-
thalamic loops (as shown on the left of Figure 4.1) control WM by flexibly switching between
maintenance and updating of information. They bias a motor loop (shown on the right of Fig.
Figure 4.1) to decide between a set of possible responses. As previously motivated by others
(e.g. Krueger and Dayan, 2009; O’Reilly and Frank, 2006), our model contains multiple inde-
pendent prefrontal loops. While there is no upper limit to the number of loops that can be
incorporated, we kept it as small as possible to minimize computational costs: two prefrontal
loops are sufficient to have the model learn the tasks analyzed in this paper. Differential re-
cruitment of these loops is controlled by the pedunculopontine nucleus (PPN) as detailed in
the corresponding subsection below.

The general functional framework of our model is straightforward. During stimulus presenta-
tion, visual input is externally fed into inferior temporal cortex (ITC). Stimulus-related activity
can then spread through the model and bias processing within prefrontal andmotor loops. Mo-
tor responses are read out of primary motor cortex (MI) activity and rewarded if correct. When
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Figure 4.1: Architecture of the proposed model: prefrontal cortico-BG-thalamic loops flexibly
control WM and guide a motor loop to choose between a set of possible responses.
While the general layout of prefrontal and motor loops is the same, the motor loop
is simplified as explained in the main text. Boxes represent the different layers of
the model, arrows the connections between them. ‘Double’ boxes represent dual
prefrontal circuits. Solid arrows denote hard-coded connections between or within
layers, dashed arrows learnable ones. Pointed arrows symbolize excitatory con-
nections, rounded arrows inhibitory ones. The solid gray arrows deriving from SNc
represent a modulatory ‘dopaminergic’ influence on learning within BG synapses.
The dotted gray arrow from PPN to SNc denotes a ‘cholinergic’ recruitment of SNc
neurons through PPN. Explanations are given in the main text. GPe: globus pallidus
external segment; GPi: globus pallidus internal segment; lPFC: lateral prefrontal cor-
tex; MI: primary motor cortex; ITC: inferior temporal cortex; PPN: pedunculopontine
nucleus; SNc: substantia nigra pars compacta; STN: subthalamic nucleus.
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a reward is given, reward information is fed into SNc where an error signal of reward prediction
is computed. From this error signal, BG learn to self-organize in such a way that the model’s
responses maximize rewards.

The cortico-BG-thalamic loops’ functional architecture works as follows. Activation of cortex
excites striatal and subthalamic neurons. Striatum then inhibits tonically active neurons of
the internal segment of globus pallidus (GPi) via striato-pallidal connections that are usually
referred to as the direct BG pathway. Decreases of GPi firing in turn disinhibit thalamic neurons
that excitatorily connect back to cortex. In global terms, the direct pathway serves to establish
WMmaintenance within prefrontal loops bymapping cortical representations onto themselves.
Within the motor loop, it links WM content to appropriate responses by mapping prefrontal-
loop representations onto specific motor-loop representations. In contrast, activation of the
subthalamic nucleus (STN) causes a strong and global excitation of GPi via subthalamo-pallidal
fibers that are usually referred to as the hyperdirect pathway. As activity is spreading from STN
to the external segment of globus pallidus (GPe), inhibitory GPe-GPi connections cancel the
excitatory effects of STN on GPi. The hyperdirect pathway (which is modeled only in prefrontal
loops) thus gives a brief and global reset pulse to GPi, allowing the respective loop to update.
The interplay of the various layers will in detail be analyzed in Section 4.3.2.

In constructing the model, we included only those nuclei and pathways that were necessary
to have the model perform response selection, WM maintenance and updating of WM. These
functions are required by a set of prominent WM tasks (described in Section 4.2.2). As de-
tailed later in this section as well as in Section 4.3.2, we assume response selection to be
subserved by the direct pathway of the motor loop, WM maintenance by the direct pathway
of prefrontal loops and WM updating by the hyperdirect pathway of prefrontal loops. We did
not model the hyperdirect pathway of the motor loop and the ‘indirect’ striato-GPe-GPi pathway
(within neither loop). As detailed in Section 4.4, empirical evidence implicates these pathways
in functions other than the ones targeted in this paper. To keep the motor loop simple, pallido-
pallidal, cortico-thalamic and thalamo-cortical connections were rendered hard-coded instead
of learnable. Importantly: wherever a nucleus is present in both types of loops, activities are
computed via the same equations. And: wherever a connection is learnable in both types of
loops, the learning rules are the same.

Themathematical implementation of our model is inspired by a previousmodel from our group
(Vitay and Hamker, 2010) that consists of a single-loop BG architecture without the ability to
learn WM control: each of the modeled layers consists of dynamic, firing rate-coded neurons
(exact numbers are reported in Table ?? of the Appendix B). For each neuron, a membrane
potential is determined via a differential equation, discretized according to the Euler method
(first-order) with a time step of 1ms; a cell-specific transfer function turnsmembrane potentials
into firing rates. The differential equations are evaluated asynchronously to allow for stochastic
interactions between functional units. As a general template, membrane potentials 𝑚post

𝑖 (𝑡)
are computed by the following differential equation:
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𝜏 ⋅ 𝑑𝑚post
𝑖 (𝑡)
𝑑𝑡 + 𝑚post

𝑖 (𝑡) = ∑
𝑗∈pre

𝑤pre-post
𝑖,𝑗 (𝑡) ⋅ 𝑢pre𝑗(𝑡) + 𝑀 + 𝜖𝑖(𝑡) (4.1)

where 𝜏 is the time constant of postsynaptic cell $i,uprej(t) the firing rate of presynaptic cell
$j,wpre-posti,j(t) the weight between these cells, MM a baseline parameter and 𝜖𝑖(𝑡) a random
noise term. The noise termsupports exploration ofWMcontrol and action selection by introduc-
ing independent random fluctuations to the membrane potentials of different cells. Firing rates
𝑢post

𝑖 (𝑡) are computed from membrane potentials via cell-specific transfer functions 𝑓𝑢(𝑥):

𝑢post
𝑖 (𝑡) = 𝑓𝑢(𝑚post

𝑖 (𝑡)) (4.2)

As defined in Appendix A, 𝑓𝑢(𝑥) defines negative values to be set to zero and for some layers
additionally specifies sigmoid functions.

Loops are not predetermined to represent particular stimuli: each prefrontal loop receives the
same visual input and only by accumulating knowledge about its environment will it learn to
encode certain stimuli and ignore others. Figure 4.1 depicts all learnable connections of the
model by dashed arrows. As explained in detail in the next paragraphs, thalamo-cortical and
cortico-thalamic learning is Hebbian-like whereas learning in BG relies on three-factor rules,
involving a reward-related dopaminergic term (Reynolds and Wickens, 2002). Dopamine levels
are controlled by SNc firing rates and encode an error signal of reward prediction.

Dopaminergic learning poses an obvious challenge on modeling: as stimuli are typically pre-
sented (and responses performed) some time before reward delivery, there will be a delay be-
tween concurrent activity of pre- and postsynaptic cells and the dopamine levels resulting from
that activity. The brain’s probable solution to this problem are synapse-specific calcium eligi-
bility traces: concurrent pre- and postsynaptic activities lead to a sudden rise in input-specific
postsynaptic calcium concentrations (𝐶𝑎post

𝑖,𝑗 (𝑡)) that decrease only slowly when concurrent
activity ends.

𝜂Ca ⋅
𝑑𝐶𝑎post

𝑖,𝑗 (𝑡)
𝑑𝑡 + 𝐶𝑎post

𝑖,𝑗 (𝑡) = 𝑓post(𝑢post
𝑖 (𝑡) − post(𝑡) − 𝛾post) ⋅ 𝑓pre(𝑢pre

𝑗 (𝑡) − pre(𝑡) − 𝛾pre)
(4.3)

𝜂Ca = {𝜂inc if 𝑑𝐶𝑎post
𝑖,𝑗 (𝑡) > 0

𝜂dec else.
(4.4)

𝜂Ca is the time constant of the calcium trace, pre(𝑡) the mean firing rate of afferent layer pre
at time 𝑡, post(𝑡) the mean firing rate of postsynaptic layer post at time 𝑡, 𝜂inc a parameter
controlling the speed of calcium level increase and 𝜂dec a parameter controlling the speed of
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calcium level decline. 𝛾pre and 𝛾post allow to adjust thresholds for pre- and post-synaptic ac-
tivities that separate between increases and decreases of calcium traces. Functions 𝑓pre(𝑥)
and 𝑓post(𝑥) can restrict pre- and post-synaptic terms to positive values or introduce sigmoid
functions as detailed in Appendix A. 𝑑𝐶𝑎post

𝑖,𝑗 (𝑡) gives a positive value when at the same point
in time, both presynaptic cell 𝑗 and postsynaptic cell 𝑖 fire more than the adjusted mean activ-
ities of their respective layers. As 𝜂Ca is set to the relatively small value of 𝜂inc in that case,
the corresponding calcium level increases rapidly. In contrast, 𝑑𝐶𝑎post

𝑖,𝑗 (𝑡) becomes negative
when concurrent activity ceases. As 𝜂Ca is set to a relatively large value (𝜂dec) in that case,
the calcium level does not directly drop to zero but declines rather smoothly. Calcium eligibility
traces are inspired by findings that calcium levels stay heightened for some interval longer than
actual pre- and postsynaptic activities (Kötter, 1994) and that postsynaptic calcium is required
for striatal dopamine-mediated learning (Cepeda et al., 1998; Suzuki et al., 2001).

To determine changes in BG-related weights (𝑤pre-post
𝑖,𝑗 (𝑡)), a three-factor learning rule is used,

comprising the calcium trace described above (which contains the two factors pre- and post-
synaptic activity) and a dopaminergic term (DA(𝑡)) linked to reward delivery:

𝜂 ⋅
𝑑𝑤pre-post

𝑖,𝑗 (𝑡)
𝑑𝑡 = 𝑓DA(DA(𝑡) − DAbase) ⋅ 𝐶𝑎post

𝑖,𝑗 (𝑡) − 𝛼𝑖(𝑡) ⋅ (𝑢post
𝑖 (𝑡) − post(𝑡))2 ⋅ 𝑤pre-post

𝑖,𝑗 (𝑡)
(4.5)

𝜏 ⋅ 𝑑𝛼𝑖(𝑡)
𝑑𝑡 + 𝛼𝑖(𝑡) = 𝐾𝛼 ⋅ (𝑢post

𝑖 (𝑡) − 𝑢MAX)+ (4.6)

𝑓DA(𝑥) = {𝑥 if 𝑥 > 0
𝜑 ⋅ 𝑥 else.

(4.7)

DA(𝑡) is the dopamine level of the respective loop at time 𝑡, DAbase the baseline dopamine level
of 0.5, 𝛼𝑖(𝑡) a regularization factor, 𝑢MAX the maximal desired firing rate of cell i, 𝜑 a constant
regulating the strength of long-term depression (LTD) relative to the strength of long-term po-
tentiation (LTP) and𝐾𝛼 a constant that determines the speed of increases of𝛼𝑖(𝑡). In case of
a dopamine burst (i.e. when dopamine levels rise above baseline), all weights are increased in
proportion to the strengths of their calcium traces; dopamine depletions (i.e. dopamine levels
below baseline) decrease recently active synapses accordingly. The subtractive term of the
equation ensures that weights do not increase infinitely: when connections are strong enough
to push firing of a postsynaptic cell above a threshold defined by 𝑢MAX, 𝛼𝑖 increases and all
weights to that postsynaptic cell are decreased. This ensures homeostatic synaptic plasticity,
i.e. it provides negative feedback to level excessive neuronal excitation (cf. Pozo and Goda,
2010 for a biological review on the phenomenon). Technically, the homeostatic term is derived
from Oja’s rule (Oja, 1982), but 𝛼𝑖 is made dependent upon postsynaptic activity to avoid arbi-
trary parameter values. Biologically, homeostatic synaptic plasticity has been shown to arise
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from alterations in the composition and abundance of postsynaptic AMPA receptors (Pozo and
Goda, 2010). Increases of 𝛼𝑖 can be fast or slow depending on the value of 𝐾𝛼.

By applying a single set of learning principles to all loops, we show their flexibility to subserve
two highly different functions, namely to establish flexible control of WM and to link distinct
cortical representations in a stimulus-response manner, thereby linking WM to motor control.
While the general learning rules for prefrontal and motor loops are the same, the parameter
values regulating LTD in the case of dopamine depletion differ. In particular, LTD in prefrontal
loops is assumed to be slower than in the motor loop. Functionally, this ensures that after a
sudden change in reward contingencies (resulting in dopamine depletions), re-learning in the
motor loop is faster than re-learning in prefrontal loops: attempts tomap priorly relevant stimuli
onto different responses will thus be undertaken faster than gating previously irrelevant stimuli
into WM.

The following paragraphs will focus on the different functional parts of the model and more
thoroughly explain the supposed architecture.

Cortex

The model contains the cortical structures of lateral prefrontal cortex (lPFC) and MI. lPFC is
assumed to take part in WM control (Owen et al., 1999); MI integrates cortical and subcorti-
cal inputs to send an emerging motor command to the motoneurons of the spinal cord. As
a simplification, we assume each visual stimulus and motor command to be represented by a
single computational unit within cortex. All cortical cells receive excitatory thalamic input; lPFC
additionally receives cortico-cortical afferents from ITCwhich is involved in visual object recog-
nition. In the mammal brain, prefrontal cortex is innervated by dopaminergic fibers. Prefrontal
dopamine has been shown to modulate WM processes (Seamans and Yang, 2004; Vijayragha-
van et al., 2007). However, these dopamine signals appear to last for several minutes (Feenstra
et al., 2000; Feenstra and Botterblom, 1996; van der Meulen et al., 2007; Yoshioka et al., 1996)
and are therefore not well suited to reinforce particular stimulus-response associations in a
timely precise manner. Within the model, learning of thalamo-cortical weights is therefore as-
sumed to be Hebbian-like (i.e. to not be modulated by dopamine). As our model is essentially
an account of how learning in BG guides the organization of cortico-BG-thalamic loops, we do
not model prefrontal dopamine signals.

Thalamus

Thalamus is assumed to relay information to cortical areas (Guillery and Sherman, 2002) and to
control cortical activation and deactivation (Hirata and Castro-Alamancos, 2010). Consistent
with this, maintenance of a representation in WM and selection of a response require thalamic
disinhibition through GPi in the model. Thalamic cells receive inhibitory pallidal and excitatory
cortical input (cf. Figure 4.1). As with prefrontal cortex, there is evidence for dopaminergic
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innervation of the thalamus (Melchitzky and Lewis, 2001; Sánchez-González et al., 2005). The
nature of the dopamine signals provided, however, has not yet been clearly elucidated. Conser-
vatively, we thus assume cortico-thalamic learning to be Hebbian-like (i.e. not to be modulated
by dopamine).

Striatum

There are two input structures to the BG: striatum and STN. Both receive glutamatergic cortical
afferents and both are organized topographically (Ebrahimi et al., 1992; Miyachi et al., 2006).
Striatum can be subdivided into putamen, receiving mostly motor-cortical afferents, and cau-
date nucleus, innervated by lPFC (Alexander et al., 1986). Next to excitatory cortical afferents,
striatal cells receive inhibitory input from a network of GABAergic interneurons (Suzuki et al.,
2001). In the model, these are hard-coded for means of simplicity and serve to downsize the
number of striatal cells that become associated to each cortical representation. Activity of
caudate nucleus has been shown to be negatively correlated with progress in reward-related
learning (Delgado et al., 2005). Lesioning dorsolateral parts of the striatum leads to disabilities
in stimulus-response learning (Featherstone and McDonald, 2004). Within the model, striatum
learns to efficiently represent single or converging cortical afferents in clusters of simultane-
ously activated cells as previously shown by Vitay and Hamker (2010). Striatum gives rise to
the direct BG pathway, that connects striatal cell clusters to single GPi cells. Thereby, it is vital
both for WM maintenance and stimulus-response mapping.

Subthalamic nucleus

STN is considered part of the hyperdirect BG pathway that links cortex with GPi via two ex-
citatory connections (Nambu et al., 2002). Also, STN excitatorily innervates GPe (Parent and
Hazrati, 1995a). Recently, STN has become a key target for deep brain stimulation (DBS) in
Parkinsonian patients in order to alleviate dyskinesia (Kleiner-Fisman et al., 2006) and to im-
prove mental flexibility (Alegret et al., 2001; Witt et al., 2004). STN DBS has been reported to
cause WM deficits in spatial delayed response tasks (Hershey et al., 2008) and nn-back tasks
(Alberts et al., 2008), thereby further underlining its contribution to cognitive processing. Elec-
trical stimulation of STN in monkeys yields a short-latency, short-duration excitation of GPi,
followed by a strong inhibition, the latter being mediated by GPe (Kita et al., 2005). Based on
these findings, we assumeSTNwithin prefrontal loops to give a global (learned) excitatory reset
signal to GPi that is canceled by STN-GPe-GPi fibers shortly after.

Globus pallidus external segment

The role of GPe in BG functioning is still rather elusive. Historically, GPe has been considered
a relay station on a striato-GPe-subthalamo-GPi pathway, often referred to as the indirect BG
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pathway (DeLong, 1990). More recently, such a simple notion has been challenged and GPe
has been hypothesized to have amore prominent processing function in BG (Obeso et al., 2006).
Our model contains a reduced set of GPe connections, accounting for afferents from STN and
efferents to GPi only. Thereby, GPe is modeled only in its potential contribution to the hyperdi-
rect (and not the indirect) pathway.

Globus pallidus internal segment

The internal segment of globus pallidus is a major BG output structure receiving and integrat-
ing subthalamic, external pallidal and striatal input (DeLong and Wichmann, 2007). GPi has a
high baseline firing rate by which it tonically inhibits thalamic neurons (Chevalier and Deniau,
1990). Striatal and GPe inputs inhibit GPi cells below this baseline, thus disinhibiting thalamic
neurons and opening a gate for mutually excitatory cortico-thalamic loops (DeLong and Wich-
mann, 2007). Subthalamic input in contrast excitesGPi, thus further inhibiting thalamic neurons
and preventing cortico-thalamic loops from firing (Nambu et al., 2002). The interplay of affer-
ents to GPi which is critical for the model’s functioning, will be studied in detail in Section 4.3.2
of this paper.

Lateral competition in GPi ensures that each striatal cell cluster connects to a single pallidal cell
only. While this is of course a simplification, it reasonably reflects the much smaller number
of pallidal cells relative to striatal ones (Lange et al., 1976). As shown in Eq. (A.23) of the
Appendix A, lateral weights evolve according to an Anti-Hebbian learning rule.

Substantia nigra pars compacta

Inspired by the findings of Schultz and co-workers (Hollerman and Schultz, 1998; Schultz et
al., 1997) and in line with other computational accounts of reinforcement learning O’Reilly and
Frank (2006), we assume SNc neurons to compute an error signal of reward prediction. This
signal is then relayed to BG to modulate learning of afferent connections. A detailed account
of the underlying rationale can be found in Vitay and Hamker (2010). Briefly, SNc neurons
compute a difference signal between actual and expected rewards and add the resulting value
to a medium baseline firing rate of 0.5. Thereby, unexpected rewards lead to activities above
this baselinewhile omissions of expected rewards result in decreases in SNc firing. Information
about actual rewards is set as an external input while stimulus-specific reward expectations are
encoded in learnable striato-nigral afferents.

Each prefrontal and motor loop is connected to a separate SNc neuron. This is based upon
reports showing SNc to have a topographical organization and reciprocal connections with
striatum (Haber, 2003; Joel and Weiner, 2000). Inspired by evidence showing SNc neurons
to broadly innervate striatal subregions (Matsuda et al., 2009), we assume a single dopamine
neuron to innervate all BG cells of a corresponding loop.
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Pedunculopontine nucleus

As outlined above, the model contains multiple prefrontal loops. Following an idea by Krueger
and Dayan (2009), recruitment of these loops is dependent upon error detection after prior suc-
cessful task performance. The framework of our model allows us to develop a biologically
plausible mechanism of error detection: highly unexpected errors (i.e. errors after prior suc-
cessful task performance) lead to relatively large dips in SNc firing. These dips can be used as
a signal to recruit additional SNc neurons, thereby enabling learning within additional prefrontal
loops.

A potential anatomic substrate for subserving such a recruitment is a part of the brainstem
named pedunculopontine nucleus (PPN). PPN has been associated to the phenomena of at-
tention, arousal, reward-based learning and locomotion (Winn, 2006); activation of cholinergic
fibers from PPN to SNc has been shown to recruit quiescent dopamine neurons (Di Giovanni
and Shi, 2009). As PPN is innervated by many BG structures (Mena-Segovia et al., 2004), it
presumably also receives information about reward prediction. In our model, PPN constantly
receives input from the SNc. Whenever the most recently recruited prefrontal-loop SNc neuron
fires below a fixed threshold of 0.05 because of a highly unexpected error, PPN sends an activa-
tion signal back to the SNc to recruit an additional SNc neuron. Through this simple operation,
PPN subserves a basic form of taskmonitoring, reactingwhenever unexpected omissions of re-
ward occur. In employing this mechanism, we do not artificially decrease learning rates within
those prefrontal loops that previously recruited SNc neurons belong to. This contrasts with the
model of Krueger and Dayan (2009).

Of course, the mechanism we propose may be largely simplified: other brain areas than the
PPN have been linked to error detection as well, in particular the anterior cingulate (Holroyd and
Coles, 2002). Further, PPNoutput is not restricted to SNcbut also reaches other BGnuclei, most
notably STN (Winn, 2006). Thus, PPN will neither be the only brain structure involved in error
detection nor will recruitment of dopamine neurons be the only way it assists in modulating
learning in cortico-BG-thalamic loops.

4.2.2 Experimental setups

We demonstrate the model’s learning capabilities on DR tasks as well as on the 1-2-AX condi-
tional WM task.

Delayed response and delayed alternation tasks

We trained the model on an unconditional DR task, a conditional DR task and a DA task. In
all three tasks, the model is exposed to a continuous array of trials. Within each trial, it has to
choose between two responses and is rewarded if it picks the correct one. When a network has
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performed correctly for 100 trials in a row, we assume it to have learned the task successfully.
A failure is admitted if a network does not reach this criterion within 10,000 trials.

In the unconditional DR task (cf. Figure 4.2 (A)), one of two stimuli (i.e. either stimulus A or
stimulus B) is presented for 400 ms at the beginning of each trial. After a delay period of 200
ms, the model’s response is evaluated. For stimulus A, the left button has to be selected while
stimulus B requires a right-button press. The model has no prior knowledge about associa-
tions between stimuli and buttons. The conditional DR task (cf. Figure 4.2 (B)) differs from
the unconditional DR task in that two stimuli are displayed and that both of them have to be
considered to achieve a correct response: if stimuli A and X (or B and Y) have been shown, a
left-button press is required while presentation of stimuli A and Y (or B and X) requires a right-
button press. In the DA task (cf. Figure 4.2 (C)), the model is supposed to alternate between
left- and right-button presses every 1200 ms. Reward is given whenever it chooses the button
that it did not choose in the previous trial. For the DA task, we make the additional assumption
that the model visually perceives the response that it decides for. Each response is thus fed
into the model as a stimulus.

Figure 4.2: Delayed response tasks and delayed alternation task: In each task, themodel is con-
fronted with a successive array of trials. Within each trial, it has to choose between
a left- and a right-button press. Circles indicate correct responses. Depending on
the task, stimuli may or may not be presented. Detailed explanations are given in
the main text. (A) Unconditional DR task. (B) Conditional DR task. (C) DA task. DR:
delayed response; DA: delayed alternation; le: left button; ri: right button.
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1-2-AX task

Within each trial of this task, one of a set of eight possible stimuli (1, 2, A, B, C, X, Y and Z) is
shown and the model is required to decide for one of two buttons (cf. Figure 4.3). Only and
exactly one of these buttons will lead to reward when pressed. The task has a complex inner-
outer loop structure that is not known to the model: numbers (1 and 2) represent context cues
and constitute the outer loop. To correctly perform the task, the last outer-loop stimulus has to
be kept in WM at any time. Whenever the last outer-loop stimulus has been a 1, presentation
of an X requires a right-button press when it has been directly preceded by an A; if the last
outer-loop stimulus has been a 2, a Y that directly follows a B requires a right-button response.
In all other cases, a left-button press has to be performed. The model has to decide for a
response within each trial. There are several versions of this task regarding the sequence of
stimuli. We will here use the version employed by O’Reilly and Frank (2006): First, an outer-loop
stimulus (i.e. 1 or 2) is randomly chosen. Then, with equal probabilities, one to four inner loops
are generated. With a probability of 0.5, an inner loop consists of a potential target sequence
(i.e. A-X or B-Y); otherwise, any of the inner-loop stimuli (i.e. A,B or C) is followed by any of X,Y
or Z, all probabilities being equal.

Figure 4.3: The 1-2-AX conditional WM task and the shaping procedure proposed to train the
model. In each trial, a stimulus is presented and themodel has to choose between a
left- and a right-button press. Circles indicate correct responses. Please refer to the
main text for detailed explanations. (A) Full 1-2-AX task. (B) Step 1 of the shaping
procedure involving only the outer-loop stimuli 1 and 2. (C) Step 2 of the shaping
procedure involving outer-loop stimuli (1 and 2) plus inner-loop stimuli (A,B and C).
le: left button; ri: right button.

Teaching this task to the model requires a three-step shaping procedure as depicted in Fig-
ure 4.3. In a first step, only the outer-loop stimuli 1 and 2 are presented, probabilities being
equal. Each 1 requires a right-button press, each 2 a left-button press. When the model has
reliably acquired this task (which is conservatively assumed to be the case after 100 correct
responses in a row), the inner-loop stimuli A,B and C are added to the sequence. An outer-loop
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stimulus can be followed by one or two inner-loop stimuli, all probabilities again being equal.
A right-button press is required when an A comes up and the last number has been a 1 and
when a B comes up and the last number has been a 2. In all other cases, a left-button press is
required. Finally, when the second step is securely coped with, the full task is presented. After
150 correct responses in a row, themodel is classified as having solved the task; if this criterion
is not reached within 10,000 trials, we admit that the model has failed. In the first two steps of
shaping, stimulus presentation (lasting for 400 ms) is separated from response requirement
by a 400 ms delay period. This is to ensure that the model learns to make use of WM, prevent-
ing it from solving the task by simply associating visual ITC representations to responses. By
employing the latter strategy, the model would not develop the ability to maintain the stimuli in
WM as is required to successfully master the subsequent steps of shaping. For the full task,
responses are required while visual stimulation is still on as proposed by O’Reilly and Frank
(2006). Each stimulus is presented for 800 ms. 400 ms after each stimulus onset, the model’s
response is evaluated.

4.3 Results

4.3.1 Task performance

Delayed response and delayed alternation tasks

Fig. Figure 4.4 (A) shows the model’s performance in learning the DR/DA tasks. For each of
the three versions of the task, 50 randomly initialized networks were run. For each task, box
plots show the number of trials needed until the last error occurs.

Figure 4.4: The model’s performance in learning several WM tasks. (A) Performance on the
DR/DA tasks. (B) Performance on the 1-2-AX task, separately for each step of shap-
ing. (C) Performance on the generalization test described in Section 4.3.2. For each
of the tasks, 50 randomly initialized networks were run. Box plots show the number
of trials needed until the last error occurs. The boxes’ upper and lower borders rep-
resent upper and lower quartiles, respectively; the median value is shown as a line
crossing each box. Whiskers extend to a maximal length of 1.5 times interquartile
range, outliers are represented by asterisks.
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One network failed to learn to criterion. Two-sided Mood’s median tests provide difference
statistics for the number of trials needed until the last error occurs. Thanks to the stability of
these non-parametric tests in the presence of outliers, we kept the failing network for statistical
analyses, charging themaximum number of 10,000 trials: the unconditional DR task (Mdn=111,
IQR=33) requires significantly less trials than the conditional DR task (Mdn=443.5, IQR=221),
𝜒2(1) = 92.16, p < 0.001. Clearly, this is because of its simpler rules. The DA task (Mdn=70.5,
IQR=22) takes significantly less trials than both the unconditional DR task, 𝜒2(1) = 51.84, p <
0.001, and the conditional DR task, 𝜒2(1) = 84.64, p < 0.001.

1-2-AX task

Figure 4.4 (B) shows the performance of 50 randomly initialized networks learning the 1-2-AX
task. For each step of the shaping procedure, box plots show the number of trials needed until
the last error occurs.

All networks learned the task to criterion. Two-sided Wilcoxon signed-rank tests provide differ-
ence statistics for the number of trials needed to cope with the different steps: the second step
of shaping (Mdn=365, IQR=78) takes significantly longer than the first step (Mdn=130, IQR=23),
z=6.15, p<0.001, as can be explained by the more complex set of rules to learn and the higher
number of additional WM representations to develop. The third step (Mdn=352.5, IQR=402)
requires significantly more trials than the first step, z=5.49, p<0.001, but does not differ signifi-
cantly from the second step, z=0.50, p=0.62. In the third step, a highly complex set of rules has
to be learned while no additional WM representations have to be developed.

4.3.2 Analysis of the model’s behavior

Re-learning and generalization

To demonstrate the model’s abilities to profit from previous experiences, we evaluated its per-
formance both in re-learning a task that has previously been learned and in generalizing from
previous experiences to a new but structurally similar task. To this end, we trained 100 ran-
domly initialized networks on the first two steps of the shaping procedure designed for the
1-2-AX task. Once the second step was learned to criterion, we again changed the rules: for
50 networks, we went back to the first step of shaping to evaluate re-learning. Note that learn-
ing the second step could have overwritten the knowledge acquired in the first step. For the
50 remaining networks, we changed the meanings of the two outer-loop stimuli to evaluate
generalization. Previously, a right-button press had been required for an AA if the most recent
number had been a 1 and for a BB if it had been a 2. Now it was required for an AAwhen the last
number had been a 2 and for a BB when it had been a 1. Note that in this test for generalization
the stimuli stay the same while responses have to be adapted.
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Figure 4.4 (C) shows the model’s performance on these tests of re-learning and generaliza-
tion. All networks learned to criterion. Difference statistics are based on two-sided Wilcoxon
signed-rank tests. Re-learning the first step of shaping (Mdn=7.5, IQR=7) is significantly faster
than the initial process of learning it (Mdn=129, IQR=25), z=6.15, p<0.001. Learning the gener-
alization task (Mdn=19.5,IQR=11) takes significantly less trials than learning the first plus the
second step of shaping (Mdn=493.5, IQR=112), z=6.15, p<0.001. Thus, the generalization task
is learned a lot faster than the equally complex task that is learned during the first two steps of
shaping. In fact, the generalization task is even learned significantly faster than both the first
step of shaping by itself (Mdn=127.5, IQR=35), z=6.14, p<0.001, and than the second step of
shaping by itself (Mdn=360.5, IQR=88), z=6.15, p<0.001. Thereby, it is clearly shown that the
model profits from previous experiences: themore it has already learned about its environment,
the better become its abilities to solve further problems.

Spread of activity within cortico-BG-thalamic loops

When a stimulus is presented to the model, it can either become maintained in WM or it fades
away as visual stimulation ends. Figure 4.5 illustrates how a target stimulus-once associated
to reward-is actively maintained in WM: when the target comes up in ITC, target-related activity
(black line) is relayed to lPFC. lPFC then activates associated striatal and subthalamic cells.
Subthalamic activity rises fast leading to a global increase in GPi firing via all-to-all excitatory
connections. This breaks the circle of reverberating activity in the respective prefrontal loop,
erasing any previously maintained stimulus (see gray lines) from WM. In the meantime, GPe
activity rises through subthalamic excitation. By all-to-all inhibitory connections to GPi, GPe
counterbalances the excitatory effect of STN on GPi and thereby-with a brief delay-brings WM
reset to an end. As the previously maintained stimulus is erased from WM, target-related lPFC
activity can activate striatal target-coding cells. Via inhibitory connections, these striatal cells
then decrease firing of a GPi neuron that is associated to the target. This neuron in turn disin-
hibits a corresponding thalamic cell. Thalamus then excites cortex so that target-associated
activity can reverberate in the prefrontal loop.

Figure 4.6 depicts the effects of target presentation on the motor loop: the target-coding cells
within lPFC and ITC excite striatal cells of the motor loop. These cells then inhibit an associ-
ated GPi cell that in turn disinhibits a corresponding thalamic cell. Thalamus then excites the
particular MI cell that codes the response that the target stimulus has been mapped on.

4.3.2.1 Development of WM control

Figure 4.7 shows the development of WM control. Firing rates are taken from a randomly ini-
tialized network learning the unconditional DR task. Infero-temporal, lateral prefrontal, striatal,
subthalamic and pallidal activities of the prefrontal loop are shown for four periods along the
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Figure 4.5: Prefrontal-loop effects of presenting a task-relevant stimulus (target) to the model
when another stimulus is currently kept in working memory. For various layers of a
prefrontal loop, subplots present firing rates of selected cells within a 500 ms time
period covering target presentation onset (denoted by arrows). Firing rates of cells
coding the target are shown as black lines while gray lines correspond to the pre-
viously maintained stimulus. All firing rates are taken from a randomly initialized
network successfully coping with an unconditional DR task. Explanations are given
in the main text. GPe: globus pallidus external segment; GPi: globus pallidus in-
ternal segment; ITC: inferior temporal cortex; lPFC: lateral prefrontal cortex; STN:
subthalamic nucleus; Str: Striatum; Thal: thalamus.

Figure 4.6: Motor-loop effects of presenting a task-relevant stimulus (target) to themodel when
another stimulus is currently kept in working memory. For various layers of the mo-
tor loop, subplots present firing rates of selected cells within a 500 ms time period
covering target presentation onset (denoted by arrows). Firing rates of cells associ-
ated to the target and its associated response are shown as black lines, gray lines
correspond to the previously maintained stimulus and its associated response. All
firing rates are taken from a randomly initialized network successfully coping with
an unconditional delayed response task. Explanations are given in the main text.
GPi: globus pallidus internal segment; ITC: inferior temporal cortex; lPFC: lateral
prefrontal cortex; MI: primary motor cortex; Str: Striatum; Thal: thalamus.
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process of learning (trials 1-5, 52-56, 91-95 and 129-133). The unconditional DR task we em-
ployed contains two stimuli, AA and BB. Black lines show firing rates of cells that can a pos-
teriori be identified as having learned to code stimulus AA, gray lines correspond to stimulus
BB.

Figure 4.7: Development of WM control in the prefrontal loop that is directly subject to learning
during an unconditional delayed response task. Subplots show firing rates of var-
ious prefrontal-loop layers for 5000 ms periods at different stages of the learning
process (trials 1-5, 52-56, 91-95 and 129-133). Black lines depict firing rates of cells
coding stimulus AA while gray lines correspond to stimulus (BB). Explanations are
given in the main text. GPi: globus pallidus internal segment; ITC: inferior temporal
cortex; lPFC: lateral prefrontal cortex; STN: subthalamic nucleus; Str: striatum.

The leftmost column (trials 1-5) shows prefrontal-loop activities soon after the model is ex-
posed to the task: lPFC task-related activities begin to emerge through the development of
Hebbian connections from ITC. The corresponding lPFC cells have, however, not yet learned
to activate striatal or subthalamic cells so that all representations fade away from WM when
visual stimulation ends. Somedecades of trials later (trials 52-56), cortico-subthalamic connec-
tions have largely developed as evidenced by the existence of task-related subthalamic activity
upon stimulus presentation. Further, cortico-striatal connections have begun to emerge, result-

106



4.3 Results

ing in some striatal activity upon stimulus presentation. Pallidal representations have not yet
clearly developed as evidenced by the more or less uniform firing of GPi across trials. Thus,
stimulus-associated activity cannot reverberate within cortico-BG-thalamic loops and lPFC rep-
resentations still fade away when visual stimulation ends. Another four decades of trials later
(trials 91-95), pallidal representations have started to evolve: stimulus BB (gray lines) shows
clear task-related GPi activity (i.e. decreases of firing rates contingent upon stimulus presen-
tation). This stimulus is now maintained in the loop independent of visual stimulation (which
can be seen by ongoing activity after visual input ends). It can be concluded that a closed loop
of connections that subserve the observed maintenance has been developed for this stimulus.
Stimulus AA (black lines) however is still not clearly represented in the layers and mostly fades
away when visual input ceases. The rightmost column shows the network when it has fully
learned the DR task (trials 129-133): all brain areas show clear task-related activities. Both
stimuli are maintained throughout the delay periods. Notice that when a stimulus is presented
twice in a row, WM is not reset in between.

Recruitment of prefrontal loops

As outlined in Section 4.2.1, in cases of unexpected changes of reward contingencies, PPN
triggers the activation of quiescent SNc neurons through dips in dopamine levels. This behavior
can be well observed in networks learning the 1-2-AX task (Figure 4.8).

In the first step of shaping, two SNc neurons are active: the one neuron associated to the
motor loop and one of the two neurons associated to prefrontal loops; the third SNc neuron
is fixed to the baseline firing rate of 0.5 and awaits its activation by PPN. As the model learns
the first step of shaping and becomes successful in predicting reward, firing rates of all active
SNc neurons asymptotically approach baseline level (which can be seen around trial 200). As
soon as the model has performed correctly for 100 trials in a row, the second step of shaping
begins. Thereby, the rules of the task switch and the model cannot predict rewards accurately
anymore. As it, however, still expects to be able to, SNc firing rates dip much below baseline.
This activates the SNc neuron of the second prefrontal loop (as can be seen around trial 260).
Around trial 700, the model has learned to cope with the second step of shaping and dopamine
levels approach baseline again. After 100 correct responses in a row, the rules of the task
switch again and SNc firing dips. This would now activate an SNc neuron of a third prefrontal
loop (which, however, we did not include to save computational time as the tasks presented
can be learned without it).

How shaping helps

To support the model in learning the 1-2-AX task, we train it using a three-step shaping protocol
as described in Section 4.2.2. This protocol breaks down the inner-outer-loop structure of the
task to assist the model in learning it. Figure 4.9 shows mean cortical activities for a network
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Figure 4.8: Activity of SNc neurons over the course of trials, taken from a randomly initialized
network learning the 1-2-AX task. Subplots show firing rates for each of the three
SNc neurons involved in the task. Arrows indicate where a switch of rules takes
place. Explanations are given in the main text. SNc motor: substantia nigra pars
compacta (SNc) cell of the motor loop; SNc prefrontal I: SNc cell of the prefrontal
loop that is directly subject to dopaminergic modulation; SNc prefrontal II: SNc cell
of the prefrontal loop that becomes modulated by dopamine when activated by the
pedunculopontine nucleus.
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that successfully copes with the full 1-2-AX task. Firing rates of cells that belong to ITC and
both parts of lPFC are each averaged over 100 consecutive trials.

Figure 4.9: WM control strategies of prefrontal cortex. For a network that successfully copes
with the 1-2-AX task, subplots show mean activities within inferior temporal cortex
and both parts of lateral prefrontal cortex: For each cortical cell, mean firing rates
are depicted as averaged over 100 trials. ITC: inferior temporal cortex; lPFC I: part
of lateral prefrontal cortex that belongs to the prefrontal loop that is directly subject
to dopaminergic modulation; lPFC II: part of lateral prefrontal cortex that belongs to
the loop that becomes modulated by dopamine when activated by the pedunculo-
pontine nucleus.

As described in Section 4.2.1, visual input is directly fed into ITC. Obviously therefore, ITC shows
above-zero activities for all of the task’s stimuli. The different mean firing rates reflect the stim-
uli’s different probabilities of appearance as defined by the task. In particular, stimuli A,B,XA,B,X
and YY are presented most often. lPFC activities are shown separately for the two prefrontal
loops. Within the prefrontal loop which is subject to dopaminergic modulation directly, lPFC
shows non-zero activities for stimuli 1 and 2. This indicates that this loop alternates between
maintenance of the two outer-loop stimuli, ignoring all other stimuli. It thereby follows precisely
the strategy of WM control that it has learned during the first step of shaping. The part of lPFC
that belongs to the prefrontal loop which is recruited by PPN later shows strong activities for
stimuli 1, 2, A,BA,B and CC. Clearly, these are the stimuli presented during the second step
of shaping. This loop thereby maintains the last inner-loop stimulus that has been presented.
From a global viewpoint, the model therefore maintains both the last outer-loop stimulus and
the last inner-loop stimulus inWMat all times. In addition, ITC represents the stimulus presently
shown. Via connections from ITC and lPFC to putamen, themotor loop is thus equippedwith all
the necessary information to choose its responses correctly: it receives information about the
last outer-loop stimulus, the last inner-loop stimulus and the currently presented stimulus.
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4.4 Discussion

We have shown how interactions among hierarchically interconnected cortico-BG-thalamic
loops allow for flexible control of WM and for adaptive stimulus-response mappings. We
thereby find that the anatomically well-defined cortico-BG-thalamic architecture is flexible
enough to subserve both WM control and response selection. This implies that the same BG
nuclei and pathways can subserve different functions on different levels of the system’s hierar-
chy. The striatum and its associated direct pathway allows for WM maintenance in prefrontal
loops and for stimulus-response associations in motor loops. Within the cortico-BG-thalamic
architecture, we show how complex strategies of WM control and response selection can be
learned by methods of successive approximations and that these methods allow to generalize
previously learned behaviors to new situations.

The need for shaping in complex WM tasks

As outlined above, the model relies on a three-step shaping procedure to solve the 1-2-AX task.
To understand why shaping is vital to solve a complex task like that, it is necessary to under-
stand its structure: in the 1-2-AX task, different stimuli have to bemaintained inWM for differing
periods of time. Moreover, they have to be updated independently depending on WM content
and visual input. Specifically, outer-loop stimuli have to be deleted fromWMonly when the next
outer-loop stimulus appears, while inner-loop stimuli have to bemaintained for one trial only; all
other stimuli should not be maintained at all. To make the task even more difficult, the model
further has to learn how to correctly respond based on WM content. Decisions about rewards
are based upon the final response only, not upon WM control. This poses the need of inferring
both correct WM control and response behavior from a binary and thus relatively unspecific
reward signal. One way to enable an agent to find out complex strategies of WM control and
response behavior is to have it randomly permute the space of potential solutions (i.e. to try out
each possible configuration of WM content and responses). O’Reilly and Frank (2006) employ
such an approach. In their model, the maintenance of representations in WM is not subject to
learning, only the gating of stimuli into WM. In order to learn correct WM control and stimulus-
response associations, these stimuli must first be gated into WM, otherwise their information
is lost before anything can be learned. To get the learning going, their model randomly gates
stimuli into WM in an early phase of learning. Sooner or later, this will lead to finding the cor-
rect solution. However, such an approach is quite a computational effort and soon becomes
practically infeasible as the number of potential stimuli and reactions increases. This is re-
flected in the much higher number of trials the PBWM model requires to learn the 1-2-AX task
(being in the order of 30,000 compared to approximately 1000-1500 for our model, taking our
definition of a trial). In contrast, our model allows each stimulus to enter lPFC and then learns
WM maintenance and stimulus-response associations via calcium trace learning. As a conse-
quence of this approach, ourmodel does not learn the 1-2-AX task without a shaping procedure.
While this might appear as a disadvantage at first sight, we consider it to be advantageous in
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terms of biological plausibility and flexibility: a human subject who is supposed to learn the
1-2-AX task without being told about its rules (and who has to find them find out through trial
and error) will have a pretty hard time. Infant humans who cannot access a similarly broad
range of previous experiences surely will not learn it without a shaping procedure. At the begin-
ning of learning, our model does not have any knowledge, either (making infant learning a fair
comparison). However, as outlined by Krueger and Dayan (2009), shaping allows an agent to
develop sub-strategies for solving complex tasks. These can be kept in memory and be reac-
tivated when an agent faces new but similar problems. Our model develops one sub-strategy
within each step of shaping. When facing new tasks, it will use prior strategies in parallel with
developing new ones and thus constantly enlarges its knowledge about its environment (cf.
Section 4.3.2). By quickly re-learning previous WM-motor strategies and by generalizing from
previous strategies (cf. Section 4.3.2), our model’s dependency on shaping for solving com-
plex tasks gradually decreases. It thereby gives an explanation of how high-level cognitions
can develop from basic cognitive operations.

Limitations of the model

The model employs a considerable number of simplifications: it does not contain the indirect
BG pathway. This pathway and its predominantly D2-type dopamine receptors appear to be
prominently engaged in learning to reverse dominant behaviors (Izquierdo et al., 2006; Lee et
al., 2007; Tanimura et al., 2011). Also, the hyperdirect pathway of the motor loop has been
omitted. Empirically, it appears to provide (relatively global) stop signals to prevent execution
of responses (Aron and Poldrack, 2006; Eagle et al., 2008). This paper is restricted to the func-
tions of response selection, WMmaintenance andWM updating as required bymost basic WM
tasks. Therefore, we do not model these additional pathways. As a further simplification, we
do not consider exact timing of responses: as stated in Section 4.2.2, the motor responses
of the model are read out at predefined time-steps. Each decision about reward delivery thus
depends upon the dominant response at only one particular time-step—and therefore neither
upon the latency nor the duration of the response. Moreover, as the focus of this paper is on
the contribution of BG reinforcement learning processes to the establishment of WM control
and response selection, we do not provide an interpretation on the contribution of prefrontal
dopamine signals to WM processes.

Comparison to other computational models of reinforcement learning in BG

A prominent account of the role of BG inWM is the PBWMmodel proposed by O’Reilly and Frank
(2006). They provide a model of prefrontal cortico-BG-thalamic loop functioning, not including
any explicit motor loop. This model requires BG for gating stimuli into prefrontal cortex while
maintenance of information is subserved by locally self-excitatory prefrontal cortical loops; the
direct and indirect BG pathways provide Go and NoGo signals for WM update, respectively.
These assumptions contrast with our suppositions, implicating the whole cortico-BG-thalamic
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4 Working memory and response selection

loop, via the direct BG pathway, in learning to maintain information (however, we agree that
in well-learned tasks cortico-cortical connections might progressively take over control and
supercede BG participation). Existing empirical evidence does not clearly favor one or the other
assumption as several types of task-related activity seem to exist in striatal neurons. Cromwell
and Schultz (2003) for instance found five such types in a spatial DR task. Consistent with
our approach, one of these types showed sustained activity for the whole delay period. The
relatively small number of cells in GPi (Lange et al., 1976) might at first sight argue against
our hypothesis that WM maintenance is learned via cortico-BG-thalamic loops. But note that
other types of connections (e.g. cortico-cortical ones) might develop as WMmaintenance of a
particular stimulus has been reliably learned, and release GPi to learn something new.

Ashby et al. (2007) propose a single-loop model of perceptual category learning (SPEED) that
does not account for WM. They use a three-factor learning rule, much like ours, to map cortical
representations onto striatal cells. However, BG learning is restricted to cortico-striatal con-
nections, thus rendering their model less powerful in stimulus-response mapping. In particular,
it will have severe problems mapping stimuli onto responses when relevant information lies
within stimulus compounds instead of single stimuli. By allowing cortico-cortical connections
to shortcut BG in case of well-learned, automatic behavior, however, their model provides an
interesting concept beyond the scope of our model.

Brown et al. (2004) present an account of how learning within a single cortico-BG-thalamic
loop assists in deciding between reactive and planned behaviors. Their TELOS model man-
ages to learn several saccadic tasks and offers much anatomical detail. The authors assume
cortico-cortical learning to be subject to the same phasic dopamine modulation as learning
between cortex and BG. As explained above, this assumption is somewhat challenged by the
long-lasting nature of prefrontal dopamine signals. WM is modeled as a hard-coded entity that
is anatomically restricted to PFC: visual representations are predetermined to be gated in when
PFC activity surmounts a certain threshold and to be deleted from it when the next sufficiently
strong input appears.

Vitay and Hamker (2010) propose a computational account on how learning in BG guides visual
attention in Delayed-Match-to-Sample and Delayed-Paired-Association tasks. The model con-
tains only one cortico-BG-thalamic loop which is connected to infero-temporal cortex. It does
not have the abilities to learn WM control. BG connectivity is restricted to the direct pathway.
We here adapt and extend their account to model WM and motor control. To that end, we kept
the general procedure of computing membrane potentials and firing rates. We also kept the
concept of three-factor learning rules within BG—but sophisticated them to contain calcium
eligibility traces. We newly devised an architecture of parallel cortico-BG-thalamic loops and
allowed for interactions among these loops. We included additional BG nuclei and pathways
and made the lateral inhibition in GPi independent of dopaminergic modulation to improve the
model’s performance and to be in better accord with empirical data.
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Predictions

Our model provides falsifiable predictions with regard to both behavioral and electrophysiolog-
ical data. It predicts that re-organization of overt responses (i.e. within motor loops) is faster
than a re-organization of WM control (i.e. within prefrontal loops). In particular, tasks that can
be learned by utilizing a previously valid strategy of WM control (i.e. tasks in which only re-
sponses have to be adapted)will be learned significantly faster than tasks forwhich no previous
strategy of WM control is available (cf. Section 4.3.2). Experimentally, this can be investigated
by training animals or infant humans on the unconditional DR task described in Section 4.2.2
and by then changing the rules without announcement. In one condition, the same stimuli as in
the original DR task will be used, but responses will have to be reversed to obtain reward. In the
other condition, two new stimuli will be introduced, each of which has to be associated to one
of the two responses. Our model predicts that the first condition will be learned significantly
faster than the second one. The experimenter should use stimuli that the animal or infant has
never seen before.

As we designed our shaping procedure to optimally suit the learning algorithms of our model,
experimental evidence about the procedure’s adequacy tells about the biological plausibility of
our algorithms. For the 1-2-AX task, we propose that in a first step of shaping, only the outer-
loop stimuli 1 and 2 should be presented while in a second step, the outer-loop stimuli plus
the inner-loop stimuli A,BA,B and CC should be shown. The efficiency of this procedure can for
instance be compared to the protocol that Krueger and Dayan (2009) propose to train an LSTM
network (Hochreiter and Schmidhuber, 1997). Showing our procedure to establish the desired
behavior faster andmore reliably will be a piece of evidence for the biological plausibility of our
approach.

Neurophysiologically, our model makes clear predictions about the functions of BG nuclei: STN
(via the hyperdirect pathway) is assumed to provide reset signals for WM update in prefrontal
loops. STN lesions that are confined to prefrontal loops should thus result in severe difficul-
ties to flexibly update WM. We predict that those lesions will cause failures to delete previously
maintained stimuli from WM in delayed match to sample tasks. This will show up as perse-
verative errors, i.e. subjects will continue to base their answers on stimuli that were relevant
in previous trials. The caudate nucleus (via the direct pathway) is supposed to support WM
maintenance. Lesions should result in impairments to learn maintenance of stimuli in WM. In a
delayed match to sample task, this will show up as an increase in ‘random’ (i.e. unsystematic)
errors. Putamen is supposed to establish associations between WM content and appropriate
responses. Lesions will cause severe impairments in learning stimulus-response associations.
The impact on well-learned behavior, however, is less clear due to a potential buildup of cortico-
cortical connectivity. Another physiological prediction is the increase in the number of active
SNc neurons when a highly expected reward does not occur (i.e. after reward contingencies
change in an unpredictable way). PPN lesions should attenuate SNc recruitment. Heightened
SNc activity is supposed to correspond with an increase in alertness and concentration.
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Conclusion

We propose an anatomically detailed computational model of how reinforcement learning con-
tributes to the organization ofWMand overt response behavior. To our knowledge, ourmodel is
the first to prove the functional flexibility of cortico-BG-thalamic loops: we show that both WM
control and response selection can develop in parallel within separate but interacting loops.
Within this framework, we show how complex cognitive operations can develop from basic
strategies of WM control and response selection.
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Appendix A. Full list of equations

We here give a full overview on the model’s equations that will allow to reproduce the model.
To facilitate reading and allow for an easy comparison, all parameters are shown in Table ??
and Table ??. Equation 4.4, Equation 4.6 and Equation 4.7 of the main text identically apply to
all learning rules unless a deviation is specified.

Cortex

Membrane potentials (𝑚Cx
𝑖 (𝑡)) and firing rates (𝑢Cx

𝑖 (𝑡)) of prefrontal and motor cortical cells
are given by

𝜏 ⋅ 𝑑𝑚Cx
𝑖 (𝑡)
𝑑𝑡 + 𝑚Cx

𝑖 (𝑡) = 𝑤Cx–Cx
𝑖,𝑖 ⋅ 𝑢ITC

𝑖 (𝑡) + ∑
𝑗∈Thal

𝑤Thal–Cx
𝑖,𝑗 (𝑡) ⋅ 𝑢Thal

𝑗 (𝑡) + 𝑀 + 𝜖𝑖(𝑡)

𝑢Cx
𝑖 (𝑡) =

⎧{{
⎨{{⎩

0 if 𝑚Cx
𝑖 (𝑡) < 0

𝑚Cx
𝑖 (𝑡) if 0 ≤ 𝑚Cx

𝑖 (𝑡) ≤ 0.7
0.2 + 1

1+exp
0.7−𝑚Cx

𝑖 (𝑡)
2

if 𝑚Cx
𝑖 (𝑡) > 0.7

(4.8)

ITC simply reproduces sensory input. As motivated by Vitay and Hamker (2010), the transfer
function of Equation 4.8 ensures that a broad range of membrane potentials above the value
of 0.75 results in a relatively constant firing rate. This guarantees more stability in maintaining
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eligibleWM representations in prefrontal loopswhen visual stimulation ends. Thalamo-cortical
weights (𝑤Thal-Cx

𝑖,𝑗 (𝑡)) are updated according to

𝜂⋅𝑑𝑤Thal-Cx
𝑖,𝑗 (𝑡)
𝑑𝑡 = (𝑢Thal

𝑗 (𝑡)−Thal(𝑡))⋅(𝑢Cx
𝑖 (𝑡)−Cx(𝑡)−𝛾)−𝛼𝑖(𝑡)⋅(𝑢Cx

𝑖 (𝑡)−Cx(𝑡))2⋅𝑤Thal-Cx
𝑖,𝑗 (𝑡)

The threshold parameter 𝛾 ensures that only those prefrontal cells become associated to tha-
lamic neurons that are activated by visual stimulation (i.e. not just by random noise). Weights
are impeded to decrease below zero. Cortico-cortical weights from ITC to lPFC (𝑤Cx-Cx

𝑖,𝑗 (𝑡)) are
updated according to:

𝜂 ⋅ 𝑑𝑤Cx-Cx
𝑖,𝑗 (𝑡)
𝑑𝑡 = (𝑢CxITC

𝑗 (𝑡) − CxITC(𝑡))+ ⋅ (𝑢CxPFC
𝑖 (𝑡) − CxPFC(𝑡))

− 𝛼𝑖(𝑡) ⋅ (𝑢CxITC
𝑗 (𝑡) − CxITC(𝑡)) ⋅ ((𝑢CxPFC

𝑖 (𝑡) − CxPFC(𝑡)) ⋅ 𝑤Cx-Cx
𝑖,𝑗 (𝑡)

Weights are not allowed to decrease below zero.

Thalamus

Membrane potentials (𝑚Thal
𝑖 (𝑡)) and firing rates (𝑢Thal

𝑖 (𝑡)) of thalamic neurons are governed
by

𝜏 ⋅ 𝑑𝑚Thal
𝑖 (𝑡)
𝑑𝑡 + 𝑚Thal

𝑖 (𝑡) = 𝑤GPi–Thal
𝑖,𝑖 ⋅ 𝑢GPi

𝑖 (𝑡) + ∑
𝑗∈Cx

𝑤Cx-Thal
𝑖,𝑗 (𝑡) ⋅ 𝑢Cx

𝑗 (𝑡) + 𝑀 + 𝜖𝑖(𝑡)

𝑢Thal
𝑖 (𝑡) = (𝑚Thal

𝑖 (𝑡))+

Cortico-thalamic weights (𝑤Cx–Thal
𝑖,𝑗 (𝑡)) are updated according to

𝜂⋅𝑑𝑤Cx–Thal
𝑖,𝑗 (𝑡)

𝑑𝑡 = (𝑢Cx
𝑗 (𝑡)−Cx(𝑡))+⋅(𝑢Thal

𝑖 (𝑡)−Thal(𝑡)−𝛾)−𝛼𝑖(𝑡)⋅(𝑢Thal
𝑖 (𝑡)−Thal(𝑡))2⋅𝑤Cx–Thal

𝑖,𝑗 (𝑡)

Weights are impeded to decrease below zero.
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Striatum

Membrane potentials (𝑚Str
𝑖 (𝑡)) and firing rates (𝑢Str

𝑖 (𝑡))) of striatal cells are governed by

𝜏 ⋅ 𝑑𝑢Str
𝑖 (𝑡)
𝑑𝑡 + 𝑢Str

𝑖 (𝑡) = ∑
𝑗∈Cx

𝑤Cx–Str
𝑖,𝑗 (𝑡) ⋅ 𝑢Cx

𝑗 (𝑡) + ∑
𝑗∈Str,𝑗≠𝑖

𝑤Str–Str
𝑖,𝑗 ⋅ 𝑢Str

𝑗 (𝑡) + 𝑀 + 𝜖𝑖(𝑡)

𝑢Str
𝑖 (𝑡) = (𝑚Str

𝑖 (𝑡))+

Cortico-striatal weights (𝑤Cx-Str
𝑖,𝑗 (𝑡)) are updated by the following calcium trace dependent three-

factor learning rule:

𝜂Ca ⋅ 𝑑CaStr𝑖,𝑗(𝑡)
𝑑𝑡 + CaStr𝑖,𝑗(𝑡) = (𝑢Cx

𝑗 (𝑡) − Cx(𝑡) − 𝛾)(𝑢Str
𝑖 (𝑡)Str(𝑡))+

𝜂 ⋅ 𝑑𝑤Cx-Str
𝑖,𝑗 (𝑡)
𝑑𝑡 = 𝑓DA(DA(𝑡) − DAbase) ⋅ CaStr𝑖,𝑗(𝑡) − 𝛼𝑖(𝑡) ⋅ (𝑢Str

𝑖 (𝑡) − Str(𝑡))2 ⋅ 𝑤Cx-Str
𝑖,𝑗 (𝑡)

𝛾 encourages weights to become negative, thereby instigating different inputs to connect to
non-overlapping clusters of striatal representations.

Subthalamic nucleus

Membrane potentials (𝑚STN
𝑖 (𝑡)) and firing rates (𝑢STN

𝑖 (𝑡))) of STN cells are governed by

𝜏 ⋅ 𝑑𝑢STN
𝑖 (𝑡)
𝑑𝑡 + 𝑢STN

𝑖 (𝑡) = 𝑤Cx-STN
𝑖,𝑖 (𝑡) ⋅ 𝑢Cx

𝑖 (𝑡) + 𝑀 + 𝜖𝑖(𝑡)

𝑢STN
𝑖 (𝑡) =

⎧{{
⎨{{⎩

0 if 𝑚STN
𝑖 (𝑡) < 0

𝑚STN
𝑖 (𝑡) if 0 ≤ 𝑚STN

𝑖 (𝑡) ≤ 1
0.5 + 1

1+exp
1−𝑚STN

𝑖 (𝑡)
2

if 𝑚STN
𝑖 (𝑡) > 1

Cortico-subthalamic weights (𝑤Cx-STN
𝑖,𝑗 (𝑡)) are updated according to

𝜂Ca ⋅ 𝑑CaSTN𝑖,𝑖 (𝑡)
𝑑𝑡 + CaSTN𝑖,𝑖 (𝑡) = (𝑢Cx

𝑖 (𝑡) − Cx(𝑡))+ ⋅ (𝑢STN
𝑖 (𝑡) − STN(𝑡) − 𝛾)+
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𝜂 ⋅ 𝑑𝑤Cx-STN
𝑖,𝑖 (𝑡)
𝑑𝑡 = 𝑓DA(DA(𝑡) −DAbase) ⋅CaSTN𝑖,𝑖 (𝑡) − 𝛼𝑖(𝑡)(𝑢STN

𝑖 (𝑡) − STN(𝑡))2 ⋅ 𝑤Cx-STN
𝑖,𝑖 (𝑡)

𝛾 again ensures that only those prefrontal cells become associated to subthalamic neurons
that receive visual stimulation. Weights are restricted to not decrease below zero.

Globus pallidus external segment

Membrane potentials (𝑚GPe
𝑖 (𝑡)) and firing rates (𝑢GPe

𝑖 (𝑡)) of GPe cells are given by

𝜏 ⋅ 𝑑𝑢GPe
𝑖 (𝑡)
𝑑𝑡 + 𝑢GPe

𝑖 (𝑡) = 𝑤STN-GPe
𝑖,𝑖 ⋅ 𝑢STN

𝑖 (𝑡) + 𝑀 + 𝜖𝑖(𝑡)

𝑢GPe
𝑖 (𝑡) = (𝑚GPe

𝑖 (𝑡))+

Globus pallidus internal segment

GPi membrane potentials (𝑚GPi
𝑖 (𝑡)) and firing rates (𝑢GPi

𝑖 (𝑡)) are ruled by

𝜏 ⋅ 𝑑𝑚GPi
𝑖 (𝑡)
𝑑𝑡 + 𝑚GPi

𝑖 (𝑡) = ∑
𝑗∈Str

𝑤Str-GPi
𝑖,𝑗 (𝑡) ⋅ 𝑢Str

𝑗 (𝑡) + ∑
𝑗∈GPi,𝑗≠𝑖

𝑤GPi-GPi
𝑖,𝑗 ⋅ (𝑀 − 𝑢GPi

𝑗 (𝑡))+

+ ∑
𝑗∈STN

𝑤STN-GPi
𝑖,𝑗 ⋅ 𝑢𝑆𝑇 𝑁

𝑗 (𝑡) + ∑
𝑗∈GPe

𝑤GPe-GPi
𝑖,𝑗 ⋅ 𝑢𝐺𝑃𝑒

𝑗 (𝑡) + 𝑀 + 𝜖𝑖(𝑡)

GPi has a high baseline firing rate; low GPi firing rates denote high activity in a functional sense.
Lateral afferents therefore have the presynaptic term (𝑀 − 𝑢GPi

𝑗 (𝑡))+: the lower the firing
rate of a GPi cell, the higher its impact on other cells. The transfer function of Equation 4.9
ensures a slow increase of firing rates when membrane potentials rise above the value of 1.0.
Striatal afferents are learnable while subthalamic and external pallidal inputs are assumed to
be hard-coded for simplicity. Striato-pallidal inhibitory weights (𝑤Str-GPi

𝑖,𝑗 (𝑡)) evolve according
to

𝜂Ca ⋅ 𝑑CaGPi𝑖,𝑗(𝑡)
𝑑𝑡 + CaGPi𝑖,𝑗(𝑡) = (𝑢Str

𝑗 (𝑡) − Str(𝑡))+ ⋅ 𝑔(GPi(𝑡) − 𝑢GPi
𝑖 (𝑡))

𝑔(𝑥) = 1
1 + exp−2𝑥 − 0.6 (4.9)
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𝜂⋅ 𝑑𝑤Str-GPi
𝑖,𝑗 (𝑡)
𝑑𝑡 = −𝑓DA(DA(𝑡)−DAbase)⋅CaGPi𝑖,𝑗(𝑡)−𝛽⋅𝛼𝑖(𝑡)⋅(GPi(𝑡)−𝑢GPi

𝑖 (𝑡))2 ⋅𝑤Str-GPi
𝑖,𝑗 (𝑡)

𝜏𝛼 ⋅ 𝑑𝛼𝑖(𝑡)
𝑑𝑡 + 𝛼𝑖(𝑡) = (−𝑚GPi

𝑖 (𝑡) − 1.0)+

The constant𝛽 attenuates the strength of the regularization term. The sigmoidal function 𝑔(𝑥)
guarantees selectivity of striato-pallidal mappings by ensuring a clear separation between GPi
firing rates that favor an increase of striato-pallidal weights and those that favor a decrease of
weights. 𝛼𝑖(𝑡) increases when (−𝑚GPi

𝑖 (𝑡) − 1.0) becomes positive. Weights are restricted
to not become larger than zero. Lateral weights (𝑤GPi-GPi

𝑖,𝑗 (𝑡)) evolve according to

𝜂⋅𝑑𝑤GPi-GPi
𝑖,𝑗 (𝑡)
𝑑𝑡 = (GPi(𝑡)−𝑢GPi

𝑗 (𝑡))+⋅(GPi(𝑡)−𝑢GPi
𝑖 (𝑡))+−𝛽⋅𝛼𝑖(𝑡)⋅(GPi(𝑡)−𝑢GPi

𝑖 (𝑡))2⋅𝑤GPi-GPi
𝑖,𝑗 (𝑡)

Weights are restricted to not become smaller than zero.

Substantia nigra pars compacta

Membrane potentials (𝑚DA
𝑖 (𝑡)) and firing rates (𝑢DA

𝑖 (𝑡)) of SNc cells are given by

𝜏 ⋅ 𝑑𝑚DA
𝑖 (𝑡)
𝑑𝑡 + 𝑚DA

𝑖 (𝑡) = 𝑅(𝑡) + 𝑃(𝑡) ⋅ ∑
𝑗∈Str

𝑤Str-SNc
𝑖,𝑗 (𝑡) ⋅ 𝑢Str

𝑗 (𝑡) + DAbase

DA𝑖(𝑡) = (𝑚DA
𝑖 (𝑡))+

Reward 𝑅(𝑡) is set to 0.5 when received and to 0.0 otherwise; when above zero, 𝑅(𝑡) de-
creases by one-thousandth of its value at each time step. The timing factor of reward predic-
tion 𝑃(𝑡) is set to 1.0 when reward is expected and to 0.0 else. For the time constant 𝜏 we
chose a relatively small value of 10 ms to set only a small temporal delay between reward-
related events (i.e. rewards and their omissions) and changes in SNc firing (that then cause
phasic changes in dopamine levels). Thereby, we ensure that the time period where reward-
related events (i.e. via dopamine) are associated to neuronal eligibility traces (𝑑Capost𝑖,𝑗 (𝑡)) is
temporally close to when these events take place. Larger values of 𝜏 would result in eligibil-
ity traces decaying further before dopamine levels rise. This would result in smaller weight
changes per trial and would thereby slow down learning of WM control and response selection.
Furthermore, much larger values of 𝜏 could be problematic in case of short inter-trial-intervals
since reward-related events could then be associated to future (instead of previous) eligibility
traces.

Learnable, negatively weighted striato-nigral afferents encode reward prediction. Depending
on the balance between actual reward and reward prediction, firing rates above or below the
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baseline level (DAbase) of 0.5 can result. Striato-nigral weights (𝑤Str-SNc
𝑖,𝑗 (𝑡)) encoding reward

prediction are learned via

𝜂 ⋅ 𝑑𝑤Str-SNc
𝑖,𝑗 (𝑡)
𝑑𝑡 = −(𝑢Str

𝑗 (𝑡) − Str(𝑡)) + 𝑓DA(DA𝑖(𝑡) − DAbase)

The postsynaptic and the dopaminergic term are identical in this equation, resulting in a two-
factor “Hebbian” learning rule.

Relationship between motor activity and overt responses

To account for imprecision in the motor command system, response selection is assumed to
be based upon brain activity in a probabilistic way: The higher the activity of a particular MI cell,
the greater the probability of the associated response. In case of equal activity among motor
cells, the probability of each response is the inverse of the number of possible alternatives. The
probability of response 𝑅𝑖 is therefore given by

𝑃(𝑅𝑖) = 0.5 + 𝑢𝑖 − 𝑢𝑗

where 𝑢𝑖 is the firing rate of the cell associated to the response 𝑅𝑖 and 𝑢𝑗 the firing rate of the
respective other MI cell. Probability values are reasonably restricted to the interval [0, 1].

Appendix B. Number of simulated cells

Table 4.1 presents the numbers of cells in each of the model’s layers. The two prefrontal loops
each contain eight cells within lPFC, STN, GPe and GPi so that each of the 1-2-AX task’s stimuli
can in principle become represented within at least one cell. MI contains two cells: one for
each response. The number of striatal cells has to be considerably larger since clusters of
striatal cells become receptive to various combinations of cortical afferents. The motor part
of striatum exceeds the prefrontal part in size as cells from all cortical areas have to converge
there.

Table 4.1: Numbers of cells within the model’s layers. GPe: globus pallidus external segment;
GPi: globus pallidus internal segment; SNc: substantia nigra pars compacta; STN:
subthalamic nucleus.

Cell type Prefrontal loop Motor loop Visual

Cortex 8 2 8
Striatum 25 49 0
STN 8 0 0
GPe 8 0 0
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Cell type Prefrontal loop Motor loop Visual

GPi 8 2 0
Thalamus 8 2 0
SNc 1 1 0

Appendix C. Overview of model parameters

To allow for an easy overview and comparison of the model’s parameters, these are system-
atically listed in Table 4.2 and Table 4.3. Table 4.2 contains the parameters for computing
membrane potentials and firing rates, Table 4.3 the parameters for computing weights.

Table 4.2: Parameters for computations of membrane potentials and firing rates. The table
shows time constants (𝜏 ), feedforward weights (𝑤ff), lateral weights (𝑤lat), baseline
membrane parameters (𝑀 ) and random noise terms (𝜖) for each of the model’s lay-
ers. All learnable weights (denoted by 𝑙) are randomly initialized with values between
0.05 and 0.10, except for connections from inferior temporal to lateral prefrontal cor-
tex (𝑤Cx-Cx

𝑖,𝑖 ) which are uniformly initialized with 0.1. Cx: cortex; GPe: globus pallidus
external segment; GPi: globus pallidus internal segment; SNc: substantia nigra pars
compacta; STN: subthalamic nucleus; Str: striatum; Thal: thalamus. 𝑎: Weights are
of this value for the motor loop only while they are learnable in prefrontal loops.

Cell
type

𝜏
(ms) 𝑤ff 𝑤ff 𝑤ff 𝑤lat 𝑀 𝜖

Cx 5 𝑤Thal-Cx: 1.0𝑎 𝑤Cx-Cx: 0.0𝑎 - - 0.0 [-0.05;
0.05]

Str 10 𝑤Cx-Str: l - - 𝑤Str-Str: -0.3 0.3 [-0.1;
0.1]

STN 10 𝑤Cx-STN: l - - - 0.0 [-0.01;
0.01]

GPe 50 𝑤STN-GPe: 1.0 - - - 0.0 [-0.1;
0.1]

GPi 10 𝑤Str-GPi: l 𝑤STN-GPi: 8.0 𝑤GPe-GPi:
-8.0

𝑤GPi-GPi: 1.0𝑎 0.8 [-0.75;
0.75]

Thal 5 𝑤Cx-Thal: 0.5𝑎 𝑤GPi-Thal:-1.0 - - 0.7 [-0.1;
0.1]

SNc 10 𝑤Str-SNc: l - - - 0.5 0.0
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Table 4.3: Parameters for computations of weights. The table shows time constants (𝜂 and
𝜏𝛼), threshold parameters (𝛾), parameters controlling the relative strength of long-
term depression (𝜑), parameters controlling the speed of calcium increase (𝜂inc) and
decline (𝜂dec), parameters controlling the maximal desired firing rates for cells with
learnable inputs (𝑢MAX), homeostatic regularization factors (𝛽) and parameters con-
trolling the speed of increases of 𝛼𝑖 (𝐾𝛼) for each of the model’s connection types;
when two values are given, the first corresponds to the motor loop and the second to
prefrontal loops. Cx: cortex; GPi: globus pallidus internal segment; SNc: substantia
nigra pars compacta; STN: subthalamic nucleus; Str: striatum; Thal: thalamus.

Connection
type

𝜂
(ms) 𝜏𝛼 (ms) 𝛾 𝜑 𝜂inc (ms) 𝜂dec (ms) 𝑢MAX 𝛽 𝐾𝛼

𝑤Cx-Cx 800 20 0.0 - - - 1.0 - 10
𝑤Thal-Cx 450 20 0.25 - - - 1.0 - 10
𝑤Cx-Str 250 20 0.55;

0.4
0.5;
0.1

1 500 1.0 - 10

𝑤Cx-STN 250 20 - 0.2 1 500 1.0 - 1
𝑤Str-GPi 500 2 - 10.0;

0.2
1 250 - 0.03;

1.0
-

𝑤GPi-GPi 100 2 - - 1 250 1.0 0.06 1
𝑤Cx-Thal 700 20 0.1 - - - 0.8 - 10
𝑤Str-SNc 10000 - - 5.0 - - - - -
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5 Timing and expectation of reward: a
neuro-computational model of the afferents
to the ventral tegmental area

Abstract

Neural activity in dopaminergic areas such as the ventral tegmental area is influenced by timing
processes, in particular by the temporal expectation of rewards during Pavlovian conditioning.
Receipt of a reward at the expected time allows to compute reward-prediction errors which can
drive learning in motor or cognitive structures. Reciprocally, dopamine plays an important role
in the timing of external events. Several models of the dopaminergic system exist, but the sub-
strate of temporal learning is rather unclear. In this article, we propose a neuro-computational
model of the afferent network to the ventral tegmental area, including the lateral hypothalamus,
the pedunculopontine nucleus, the amygdala, the ventromedial prefrontal cortex, the ventral
basal ganglia (including the nucleus accumbens and the ventral pallidum), as well as the lat-
eral habenula and the rostromedial tegmental nucleus. Based on a plausible connectivity and
realistic learning rules, this neuro-computational model reproduces several experimental ob-
servations, such as the progressive cancellation of dopaminergic bursts at reward delivery, the
appearance of bursts at the onset of reward-predicting cues or the influence of reward magni-
tude on activity in the amygdala and ventral tegmental area. While associative learning occurs
primarily in the amygdala, learning of the temporal relationship between the cue and the asso-
ciated reward is implemented as a dopamine-modulated coincidence detection mechanism in
the nucleus accumbens.

5.1 Introduction

Dopamine (DA) is a key neuromodulator influencing processing and learning in many brain ar-
eas, such as the basal ganglia (Bolam et al., 2000; Haber et al., 2000), the prefrontal cortex
(Goldman-Rakic et al., 1992; Seamans and Yang, 2004) or the amygdala (Bissière et al., 2003;
Pape and Pare, 2010). Dopaminergic neurons in the ventral tegmental area (VTA) and substan-
tia nigra pars compacta (SNc) are phasically activated by unexpected rewards, aversive, salient
or novel stimuli (Horvitz, 2000; Mirenowicz and Schultz, 1994; Redgrave et al., 2008; Schultz et
al., 1993). During classical conditioning with appetitive rewards (unconditioned stimulus US),
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cells in VTA gradually show the same phasic activation at the onset of a reward-predicting cue
(conditioned stimulus CS), but stop responding to the USwhen it is fully predicted (Ljungberg et
al., 1992; Pan and Hyland, 2005; Schultz et al., 1997). If the reward is expected but omitted, VTA
cells show a complete and long-lasting pause (or dip) in firing shortly after the time when the
US was expected; if the reward is delivered earlier than expected, VTA cells respond phasically
as if it were not predicted, but do not show a dip at the expected time (Hollerman and Schultz,
1998).

This phasic behavior linked to temporal expectation of reward (cancellation of US-related bursts
after sufficient training, pause in firing after reward omission, normal bursts if the reward is
delivered earlier) indicates that timing mechanisms play an important role in dopaminergic ac-
tivation. Conversely, DA is well known to influence other timing processes, such as interval
timing and duration estimation (Coull et al., 2011; Kirkpatrick, 2013). Reward magnitudes can
alter the estimation of time in peak-interval procedures (where the consumatory response rate
in anticipation of an expected reward usually peaks at the learned time), either leftward (the
temporal estimation is earlier than what it really is) or rightward (later), the same effect being
observed with elevated or reduced DA activity in SNc/VTA (Galtress and Kirkpatrick, 2009). Un-
derstanding the interaction between the reward/motivational systems and timing processes is
therefore of critical importance (Galtress et al., 2012; Kirkpatrick, 2013). The objective of this
article is to propose a neuro-computational model incorporating the afferent structures to the
dopaminergic system which are involved in appetitive conditioning and to better describe the
neural mechanisms leading to the observed temporal behaviour of dopaminergic neurons.

The temporal difference (TD) algorithm originally proposed by (Sutton and Barto, 1981) has
become an influential model linking DA activity to timing mechanisms (Montague et al., 1996;
Schultz et al., 1997). TD is a unitary mechanism describing DA activity as a reward-prediction
error: the difference between the reward expectation in a given state and the actually received
reward. Early implementations of TD have used serial-compound representations to represent
the presence of a stimulus over time, allowing to reproduce some aspects of DA firing during
classical conditioning by chaining backwards in time the association between the CS and the
US (Suri and Schultz, 1999, 2001). This would predict a progressive backward shift of the US-
related burst during learning, what is experimentally not the case, as the CS- and US-related
bursts gradually increase and decrease with learning, respectively. Different temporal repre-
sentations of the stimuli can overcome this issue. Using long eligibility traces (TD(𝜆), (Sutton
and Barto, 1998)), the algorithm can be turned into a more advanced associative learning rule
to better fit the experimental data (Pan and Hyland, 2005). Using a series of internal microstim-
uli growing weaker and more diffuse over time also allows to overcome this problem as well
as to better capture DA activity when a reward is delivered earlier as predicted (Ludvig et al.,
2008). An adequate temporal representation of stimuli can even be learned in an unsupervised
manner through the use of long short-termmemory (LSTM) networks (Rivest et al., 2010; Rivest
et al., 2013). Overall, TD-based algorithms are an important model of DA activity, both because
of their mathematical elegance and predictive power, and are widely used for explaining exper-
imental data in decision-making (for example Daw et al. (2005; Rao, 2010; Samejima and Doya,
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2007)) and in neurorobotical systems (for example (Krichmar, 2013; Sporns and Alexander;
2002)).

Other models have been proposed to better explain the experimental data while improving the
biological plausibility. One important class of models are the dual-pathway models, which hy-
pothesize that the different components of DA activation are computed in segregated brain ar-
eas projecting onto the SNc/VTA (Brown et al., 1999; Hazy et al., 2010; O’Reilly et al., 2007; Tan
and Bullock, 2008). These models share some common assumptions about the mechanisms,
although the putative brain areas may differ: reward delivery provokes DA bursts through glu-
tamatergic projections from the pedunculopontine nucleus (PPTN); the conditioning strength
of the CS is first acquired in the amygdala or the ventral striatum and then transferred to the
DA cells either directly or through PPTN; the cancellation of predicted US bursts and the dips at
reward omission originate from the striosomes of the dorsal or ventral striatum which project
inhibitorily to VTA/SNC. The origin of the latter signals, which have a strong temporal compo-
nent, differ however between these models. The models by Brown et al. (1999) and Tan and
Bullock (2008) consider that cells in the striosomes of the dorsal and ventral striatum imple-
ment an intracellular spectral timingmechanism (Grossberg and Schmajuk, 1989), where each
cell in these populations has an internal calcium variable peaking at a given time after the CS
onset and emits delayed spikes. The cell being active at reward delivery (signaled by the DA
burst) becomes representative of the elapsed duration. The models by O’Reilly et al. (2007)
and Hazy et al. (2010) more abstractly consider a ramping function peaking at the estimated
reward delivery time, and originating from the cerebellum. How this timing signal from the
cerebellum is adapted to different CS-US intervals is not explicitely modeled.

Spectral timing mechanisms have been observed in the cerebellum (Fiala et al., 1996) but not
in the striatum. The cerebellum is critically involved in aversive conditioning such as the rabbit
eye-blink conditioning (Christian and Thompson, 2003; Thompson and Steinmetz, 2009), but
its involvement in appetitive conditioning is still unknown (see Martin-Soelch et al. (2007)).
Moreover, the intracellular mechanisms necessary for spectral timing may not efficiently apply
to the supra-second range used in most appetitive conditioning experiments (Coull et al., 2011;
Matell and Meck, 2004). The neural substrate of temporal learning in dual-pathway models of
the dopaminergic system needs further investigation.

The goal of the the present article is to investigate how far dual-pathway models of reward
prediction can be adapted to take into account the recent wealth of experiments investigating
timing processes in the brain (Coull et al., 2011; Kirkpatrick, 2013). Although most of them
focus on operant conditioning, they point at a critical role of the striatum in learning supra-
second durations. One of the most biologically plausible model of interval timing to date is
the Striatal-Beat Frequencymodel (Lustig et al., 2005; Matell and Meck, 2000; Matell and Meck,
2004), which proposes that striatal neurons act as coincidence detectors, reacting maximally
when a series of cortical oscillators, synchronized at CS onset, is in a particular configuration.
We propose that a similar mechanism is used to control the temporal behavior of dopaminergic
cells during appetitive conditioning.
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We present a neuro-computational model incorporating many areas involved in appetitive con-
ditioning and reward processing, including the amygdala, the ventral basal ganglia and various
forebrain nuclei projecting to VTA/SNc. It focuses on the phasic components of dopaminergic
activation and reproduces the behavior of VTA cells during conditioning, especially with respect
to different reward magnitudes, reward omission or earlier delivery. However, it is not designed
to address the tonic component of DA activation, nor the observed dependency of VTA firing
on reward probability (Fiorillo et al., 2003). From the computational point of view, it provides a
robust and autonomous mechanism to learn CS-US associations with variable durations.

5.2 Material & methods

5.2.1 Neurobiological assumptions

Appetitive delay conditioning

The proposed model of dopaminergic activation during conditioning is restricted in its current
form to appetitive conditioning, where the US is a physical reward such as food. Aversive con-
ditioning, where the US is a painful stimulation or a frightening stimulus, engages similar struc-
tures - in particular, the amygdala, the ventral striatum and the dopaminergic system (Delgado
et al., 2008; LeDoux, 2000; Matsumoto and Hikosaka, 2009) - but the model does not aim at
reproducing these effects. The cerebellum plays a much more important role in aversive than
in appetitive conditioning (Thompson and Steinmetz, 2009). There is still a debate on whether
the same DA cells are activated by appetitive and aversive rewards or if two segregated popu-
lations exist (Lammel et al., 2012).

The model is also limited to delay conditioning, where the CS is still physically present (visually
or auditorily) when the US arrives. Trace conditioning introduces a temporal gap between the
CS and the US. In this case, even small intervals can impair the learned association strength
(Raybuck and Lattal, 2013). The medial prefrontal cortex and hippocampus are necessary for
trace conditioning to take place, but not delay conditioning (Ito et al., 2006; Walker and Stein-
metz, 2008; Wu et al., 2013). This indicates that working memory processes (either through
sustained activation or synaptic traces) are involved in trace conditioning, what is not covered
by this model. Some TD-based implementations are able to learn both delay and trace condi-
tioning tasks: the model of Ludvig et al. (2008) uses a series of temporal basis functions to
represent the trace of the stimuli, what allows the TD algorithm to associate reward delivery
to the correct timing. The model of Rivest et al. (2010; Rivest et al., 2013) learns an adequate
temporal representation for both CS and US using a long short-term memory (LSTM) network
(Hochreiter and Schmidhuber, 1997) which is able to fill an eventual gap between the CS and
the US.

Dual-pathway models focus mainly on delay conditioning: Brown et al. (1999) propose that a
bistable representation of CS information, mimicking the sustained activation in the prefrontal
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cortex during working memory processes (Funahashi et al., 1993), could bridge the temporal
gap between the CS and the US, while O’Reilly et al. (2007) couple their model of DA activity
with a neuro-computational model of working memory involving the prefrontal cortex and the
basal ganglia in order to address trace conditioning (O’Reilly and Frank, 2006).

In the experiments shown in this article, the CS is an individual visual stimulus that activates
specific clusters of cells in the inferotemporal cortex (IT). Object-level representations in IT
allow to provide the prefrontal cortex, the amygdala and the basal ganglia with rich detailed
representations of visual objects (Tanaka, 2000). However, inputs to the model could be easily
adapted to auditory inputs. The US is a food reward, activating the lateral hypothalamus (LH).
Neurons in LH are activated by the specific taste components of a single reward, proportionally
to their magnitude (Nakamura and Ono, 1986). Rewards are therefore represented by a combi-
nation of tastes (for example fat, sugar, salt, umami, as in the MOTIVATOR model of Dranias et
al. (2008)) allowing to distinguish different rewards from each other by their nature instead of
only their relative magnitude.

Role of VTA and forebrain structures

Themidbrain dopaminergic system is predominantly composed of the SNc and VTA. VTA plays
a specific role in the facilitation of approach behaviors and incentive learning (Fields et al.,
2007), while SNc is more involved in motor and cognitive processes, although this functional
distinction is more based on anatomical considerations than direct observations (Haber, 2003).
The proposed model focuses on VTA activation during conditioning because of its central role
in the reward circuitry (Sesack and Grace, 2010), but it is not excluded that a similar behaviour
is observed in SNc because of the spiraling structure of striato-nigro-striatal pathways (Haber
et al., 2000).

Dopaminergic neurons in VTA exhibit a relatively low tonic activity (around 5Hz), but react pha-
sically with a short-latency (< 100ms), short-duration (< 200ms) burst of high activity in re-
sponse to unpredicted rewards, aversive, salient or novel stimuli (Horvitz, 2000; Mirenowicz
and Schultz, 1994; Redgrave et al., 2008; Schultz et al., 1993). After appetitive conditioning,
the same cells also react phasically to reward-predicting stimuli (Schultz et al., 1997). These
phasic bursts of activity for both unpredicted rewards and reward-predicting cues are depen-
dent on glutamatergic activation by PPTN (Dormont et al., 1998; Lokwan et al., 1999; Pan et
al., 2005), which is itself driven by inputs from LH and the central nucleus of the amygdala (CE)
(Semba and Fibiger, 1992). Excitatory inputs from the prefrontal cortex (PFC) to VTA, PPTN
and LH exert a regulatory role on this bursting behavior (Fields et al., 2007; Geisler and Wise,
2008) and regulate plasticity in VTA (Wolf et al., 2004).

The mechanisms underlying inhibitory control of VTA are less clear. VTA receives predomi-
nantly GABAergic synapses from the ventral basal ganglia (BG), especially from the ventrome-
dial shell of the nucleus accumbens (NAcc) and the ventral pallidum (VP) (Usuda et al., 1998;
Zahm and Heimer, 1990). These inhibitory projections are known to control the number of DA
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neurons in VTA able to switch from an hyperpolarized state to an irregular spontaneous firing
rate around 5Hz. There is also a large number of GABAergic neurons in VTA (around 30%) but
they predominantly project outside VTA (Carr and Sesack, 2000). A recently labeled area pos-
terior to the VTA, the rostromedial tegmental nucleus (RMTg), has been shown to provide a
strong GABAergic inhibition on dopaminergic VTA cells, able to produce the dip observed at re-
ward omission (Bourdy and Barrot, 2012; Jhou et al., 2009; Lavezzi and Zahm, 2011). Neurons
in RMTg are excited by aversive events and reward omission, and this activation is provoked
by excitatory projections from the lateral habenula (LHb) which is activated in the same condi-
tions (Balcita-Pedicino et al., 2011; Bromberg-Martin and Hikosaka, 2011; Hikosaka et al., 2008;
Hong et al., 2011).

Role of the amygdala

The amygdala is long known for its involvement in acquiring and expressing auditory fear con-
ditioning (LeDoux, 2000). Neurons in the basolateral amygdala (BLA), the major input structure
of the amygdala, learn to associate CS and US representation, based either on thalamic or corti-
cal information (Doyère et al., 2003), with long-term potentiation being modulated by dopamin-
ergic innervation from VTA (Bissière et al., 2003). The output structure of the amygdala, the
central nucleus of the amygdala (CE) is critical for expressing fear conditioning (conditioned
responses), through its projections on various brainstem nuclei (Koo et al., 2004).

However, the amygdala is now recognized to be also involved in appetitive conditioning and
reward processing (Baxter and Murray, 2002; Murray, 2007). The amygdala and LH both react
to the palability of rewards, suggesting either common afferences in the brainstem, a direct
projection from LH to BLA (Sah et al., 2003) or an indirect one through the gustatory thalamus,
as lesions of the gustatory brainstem nuclei abolish food-elicited responses in both LH and the
amygdala (Nishijo et al., 2000). In this model, we assume a direct projection from LH to BLA,
but how the amygdala gets access to the value of a food reward is still not clear.

BLA neurons have been shown to respond proportionally to reward magnitude (Bermudez and
Schultz, 2010). They also respond to both reward-predicting cues and the associated rewards,
with a sustained activation during the delay (Nishijo et al., 2008; Ono et al., 1995). This places
the BLA at a central position for learning CS-US associations, or more precisely associating
the value of the US to the sensory representation of the CS. This information is transferred to
CE, which is able to activate VTA, either through direct projections (Fudge and Haber, 2000) -
although they are quite weak and have only been observed in primates -, or more likely indirectly
through excitation of PPTN (Lee et al., 2011; Semba and Fibiger, 1992).

Role of the ventral basal ganglia

The ventral BG plays a critical role in learning goal-oriented behaviors and is considered as
an interface between the limbic and motor systems, as it receives converging inputs from the
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amygdala, hippocampus and prefrontal cortex (Humphries and Prescott, 2010; Nicola, 2007).
Its major input structure, the ventral striatum, is mostly composed of the nucleus accumbens
(NAcc), itself decomposed into core and shell territories, but also extends without a clear de-
markation into the caudate nucleus and the putamen, accounting for around 20% of the whole
striatum (Haber and Knutson, 2010). It is primarily composed of GABAergic medium-spiny pro-
jection neurons (MSN, 90%), as well as tonically-active cholinergic neurons (TAN) and GABAer-
gic interneurons. MSN neurons project on the ventral pallidum (VP), VTA, SNc, LH and PPTN.
They receive inputs from VP, VTA, LH, BLA and the subiculum (part of the hippocampal forma-
tion) (Humphries and Prescott, 2010; Sesack and Grace, 2010).

NAcc is involved in learning the incentive motivational value of rewards (Galtress and Kirk-
patrick, 2010; Nicola, 2007; Robbins and Everitt, 1996). Excitatory inputs from the BLA have
been shown necessary to promote reward-seeking behaviors and enable the cue-evoked exci-
tation of NAcc during operant conditioning. NAcc is also involved in Pavlovian reward learning,
with single neurons being phasically activated by both CS and US after sufficient training (Day
and Carelli, 2007). Learning in NAcc has been shown to depend strongly on dopaminergic in-
nervation from VTA (Eyny and Horvitz, 2003).

VP, the output structure of the ventral BG, is also strongly involved in reward processing and
reward expectation (Smith et al., 2009; Tachibana and Hikosaka, 2012). It receives GABAergic
projections fromNAcc, excitatory projections from PPTN, and projects to SNc/VTA, LHb, RMTg
and the mediodorsal nucleus of the thalamus (MD) (Haber and Knutson, 2010; Hallanger and
Wainer, 1988; Jhou et al., 2009). During classical conditioning, VP cells are excited by reward-
predicting cues and the associated reward when the reward is large, but inhibited by small
rewards (Tindell et al., 2004). The NAcc → VP pathway is therefore considered a major route
for disinhibiting efferent structures at CS onset and reward delivery and guide reward-orienting
behaviors (Sesack and Grace, 2010).

Regarding the involvement of the ventral BG in timing, the current evidence is rather contro-
versial. Two lesion studies showed no involvement of NAcc in the timing of instrumental re-
sponding (Galtress and Kirkpatrick, 2010; Meck, 2006), but Singh et al. (2011) showed that le-
sions of NAcc induce a deficit in learning the timing of Pavlovian responses. The NAcc and the
medial caudate nucleus robustly activate during reward anticipation (Deadwyler et al., 2004),
while the rostroventral putamen most reliably deactivates in response to nonreward delivery
(McClure et al., 2003; O’Doherty et al., 2003). Lesions of NAcc have recently been shown to
disrupt reinforcement-omission effects (Judice-Daher and Bueno, 2013). However, no cellular
recordings have yet shown that NAcc cells react specifically to reward omission.

In this model, we form the hypothesis that a subset of NAcc cells learns the precise time when
a reward is expected and gets activated when it is omitted. Recent advances in the neurobiol-
ogy of interval timing show that a similar mechanism is likely to occur in the dorsal striatum
during peak-interval tasks (Coull et al., 2011; Matell and Meck, 2004). The Striatal-Beat Fre-
quency model (Lustig et al., 2005; Matell and Meck, 2000) has proposed that striatal cells act
as coincidence detectors, learning to react to a particular configuration of cortical inputs when
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a DA burst occurs and to signal the temporal expectation of reward. In this framework, corti-
cal inputs oscillate at various frequencies in the alpha range (8-13Hz) and are synchronized at
cue-onset. This provides an unique population code for the time elapsed since cue onset, so
striatal cells can learn to react to a specific duration through dopamine-modulated long-term
potentiation (LTP) or depression (LTD) (Calabresi et al., 2007; Shen et al., 2008). We consider
a similar mechanism here for learning CS-US interval durations in NAcc.

Synaptic plasticity at corticostriatal synapses depends on the polarization of themembrane po-
tential: in the hyperpolarized state (-90mV, called the down-state), striatal cells exhibit mostly
LTD at active synapses; in the depolarized state (-60mV, the up-state), these cells exhibit LTP
or LTD depending on the extracellular dopamine level (Calabresi et al., 2007; Shen et al., 2008).
Neurons in NAcc exhibit these up- and down-states (O’Donnell and Grace, 1995), and the transi-
tion from the down-state to the up-state depends either on phasic DA release from VTA (Goto
andGrace, 2005; Gruber et al., 2003), afferent input from the ventral subiculumof the hippocam-
pus (O’Donnell and Grace, 1995) or a conjunction of medial prefrontal cortex and amygdala in-
puts (McGinty and Grace, 2009). This mechanism is thought to help restricting striatal firing to
the exact time when reward is expected: NAcc cells are brought in the up-state by DA bursts at
reward delivery, allowing the to learn the precise cortical pattern. After learning the same cell
could be brought in the up-state only by this cortical pattern (in conjunction with BLA inputs),
even if VTA is not bursting (Matell and Meck, 2004).

5.2.2 The proposed model

Overview

In this section, we will explain the major flows of information and learning in the model before
describing more precisely the details of the model, depicted on Figure 5.1. Most experiments
in this article will concern the concurrent learning of three different CS-US associations, each
using different visual and gustatory representations, and with different CS-US intervals (see
Section 5.2.2.1). The first phase of learning represents sensitization to the rewards, by present-
ing each reward individually ten times. The US representation activates a set of cells in LH,
depending of the basic tastes composing it, what in turn activates the US-selective population
of PPTN, provoking a phasic DA burst in VTA which gates learning in BLA. After sufficient expo-
sure to each reward, BLA has self-organized to represent them individually by the activation of
a single cell. Meanwhile, BLA progressively learns to activate CE, which in turn activates the CS-
selective population of PPTN (Figure 5.1). However, when reward is delivered, the preceding
activation of the US-selective population inhibits activation in the CS-selective one. During the
sensitization phase, a similar self-organizatory mechanism occurs in NAcc: individual rewards
become represented by different single neurons.

The second phase of learning concerns conditioning per se with distinct trials for each CS-
US association: an initially neutral visual stimulus (CS) activates a distributed representation
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Figure 5.1: Functional description of the model. Pointed arrows represent excitatory connec-
tions, rounded arrows represent inhibitory projections. Dashed lines represent learn-
able connections, while solid represent fixed connections. LH signals US delivery
to BLA (Sah et al., 2003) and PPTN (Semba and Fibiger, 1992). IT encode a vi-
sual representation of the CS, which activates BLA (Cheng et al., 1997) and vmPFC
(Carmichael and Price, 1995). BLA learns to associates the CS and US representa-
tions under themodulatory influence of theDA released by VTA (Bissière et al., 2003)
and projects on CE (LeDoux, 2000) which excites PPTN (Semba and Fibiger, 1992).
The excitatory projection from PPTN to VTA is able to provoke phasic DA bursts
(Lokwan et al., 1999). NAcc MSN neurons receives excitatory projections from BLA
(Ambroggi et al., 2008) and vmPFC (Haber, 2003) and learning is modulated by DA
release from VTA (Robbins and Everitt, 1996). They inhibit VTA dopaminergic neu-
rons (Usuda et al., 1998) and VP (Zahm and Heimer, 1990). VP also receives excita-
tory projections from PPTN (Hallanger and Wainer, 1988) and inhibits both LHb and
RMTg (Haber and Knutson, 2010). LHb excites RMTg (Balcita-Pedicino et al., 2011)
which in turn inhibits VTA (Jhou et al., 2009). Abbreviations: LH lateral hypothala-
mus; IT inferotemporal cortex; BLA basolateral nucleus of the amygdala; CE central
nucleus of the amygdala; vmPFC ventromedial prefrontal cortex; PPTN pedunculo-
pontine nucleus; VTA ventral tegmental area; NAcc nucleus accumbens; VP ventral
pallidum; LHb lateral habenula; RMTg rostromedial tegmental nucleus.
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in IT, which lasts for a fixed duration before the US is delivered. This visual representation
projects onto BLA, and, through DA-modulated learning in BLA at reward-delivery, becomes
able through repetitive pairing to activate the same BLA cell that would be activated by the US
alone. Homeostatic regulation in BLA ensures that the BLA activity at CS onset has the same
amplitude as the reward-related activity. CS-related activation in BLA becomes able to activate
CE, which becomes able to provoke VTA bursts through excitation of PPTN. This mechanism
is sufficient to explain the progressive phasic DA bursts in VTA at CS onset during learning.

In parallel, CS onset activates a bank of oscillators in the ventromedial prefrontal cortex
(vmPFC) at different frequencies. During conditioning, the phasic DA burst at US delivery
brings the corresponding NAcc cell into the up-state, allowing it to become selective to the
precise configuration of cortical oscillators corresponding to the elapsed duration since CS
onset. This progressive activation at US delivery diminishes the amplitude of the US-related
VTA burst through the direct NAcc → VTA inhibitory projection. Meanwhile, NAcc learns to
inhibit VP at reward delivery, what could potentially lead to the disinhibition of LHb, provoking
a dip of activity in VTA through RMTg. However, reward delivery activates the US-selective
population of PPTN, which excites VP: the inhibitory influence of NAcc is counterbalanced by
PPTN, what leaves VP above its baseline level and avoid unwanted inhibition of VTA.

After a sufficient number of conditioning trials, we investigate reward omission, where the CS
is presented for the usual duration, but not the US. In this case, one NAcc cell goes into the up-
state when the reward is expected because of its strong vmPFC input at this time and inhibits
VP. This inhibition is then not counterbalanced anymore by US-related PPTN activation, so this
disinhibits LHb, activates RMTg and finally provokes a strong inhibition of VTA, bringing it below
baseline for a certain duration (the dip).

Computational principles

Each area in the proposedmodel is composed of a given number of computational units, where
each unit computes the mean activity of a population of neurons. The dynamics of each unit
is described by the evolution of its time-dependent firing rate (Dayan and Abbott, 2001). The
firing rate 𝑟(𝑡) of an unit is a positive scalar describing the instantaneous number of spikes per
second emitted by neurons in the corresponding population. In this model, it is taken to be the
positive part of the so-called membrane potential 𝑚(𝑡) of the unit, which follows a first order
differential equation depending on the firing rate of other units. In this model, the absolute
value of the firing rate is usually restricted to the range [0, 1] through homeostatic regulation
of learning (see for example Equation 5.12), where 1 represents the maximal instantaneous
firing rate that the considered type of cell can have. Typical units in the model are governed by
Equation 5.1 and Equation 5.2:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑔exc(𝑡) − 𝑔inh(𝑡) + 𝐵 + 𝜂(𝑡) (5.1)
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𝑟(𝑡) = (𝑚(𝑡))+ (5.2)

where 𝜏 is the time constant of the cell (expressed in milliseconds), 𝐵 is its baseline activity,
𝜂(𝑡) an additive noise term chosen randomly at each time step from an uniform distribution
between -0.1 and 0.1, 𝑔exc(𝑡) and 𝑔inh(𝑡) being the weighted sum of excitatory and inhibitory
afferent firing rates, respectively. ()+ is the positive function, which only keeps the positive
part of the operand and outputs 0 when it is negative. In the rest of this article, we will only
describe how the membrane potential 𝑚(𝑡) of each unit evolves, the corresponding firing rate
being always the positive part.

Units in this model can differentially integrate their inputs depending on their assigned type
(here exc, inh, mod and dopa). This type corresponds either to the neurotransmitter type (exc
and mod represent glutamergic synapses, inh GABAergic ones and dopa represents dopamin-
ergic receptors) or the region of origin (exc andmod connections have both an excitatory effect
but arise from different areas and are integrated differently).

For a given type of synapses, the weighted sum of of inputs is defined by Equation 5.3:

𝑔type(𝑡) =
type

∑
𝑖

𝑤𝑖(𝑡) ⋅ 𝑟𝑖(𝑡) (5.3)

where 𝑖 is the index of a synapse of this type, 𝑟𝑖(𝑡) the firing rate of the presynaptic neuron at
time 𝑡 and 𝑤𝑖(𝑡) the weight of the connection (or synaptic efficiency).

Some computational principles in thismodel rely on the conversion of the onset of a tonic input
𝑥(𝑡) (reward delivery, CS presentation) into a short-term phasic component. For convenience,
we define here a functionΦ𝜏,𝐾(𝑥) allowing this transformation according to Equation 5.4 and
Equation 5.5:

𝜏 ⋅ 𝑑 ̄𝑥(𝑡)
𝑑𝑡 + ̄𝑥(𝑡) = 𝑥(𝑡) (5.4)

Φ𝜏,𝑘(𝑥(𝑡)) = (𝑥(𝑡) − 𝑘 ⋅ ̄𝑥(𝑡))+ (5.5)

̄𝑥(𝑡) integrates the input 𝑥(𝑡) with a time constant 𝜏 , while Φ𝜏(𝑥(𝑡)) represents the positive
part of the difference between 𝑥(𝑡) and ̄𝑥(𝑡). 𝑘 is a parameter controlling which proportion of
the input will be kept on the long-term (if 𝑘 = 0 the tonic component is preserved, if 𝑘 = 1
𝜙𝜏,𝑘(𝑥(𝑡))will converge towards zero). If𝑥(𝑡) is for example anHeaviside function (switching
from 0 to 1 at 𝑡 = 0), Φ𝜏,0(𝑥(𝑡)) will display a localized bump of activation with a maximum
at 𝑡 = 𝜏 , as depicted on Figure 5.2.

133



5 Timing and expectation of reward

Figure 5.2: Temporal profile of the phasic function Φ𝜏,𝑘(𝑥) defined by Equation 5.5}. At 𝑡 =
0, the Heaviside input 𝑥(𝑡) goes from 0 to 1. The temporal profile of five phasic
functionsΦ𝜏,𝑘(𝑥)with 𝜏 = 50ms and𝑘 ranging from 0 to 1 is displayed. If𝑘 = 0,
the phasifunction is a simple leaky integrator with time constant 𝜏 . If 𝑘 = 1, the
output of the filter is a localized bump peaking at 𝑡 = 𝜏 and converging towards 0.

Another useful function is the threshold function, which outputs 1 when the input exceeds a
threshold Γ, 0 otherwise (Equation 5.6):

ΔΓ(𝑥) = {0 if 𝑥 < Γ
1 otherwise.

(5.6)

The learning rules used in the model derive from the Hebbian learning rule. The simplest vari-
ant of this learning rule in the model is a thresholded version described in Equation 5.7. The
evolution over time of the weight 𝑤𝑖,𝑗(𝑡) of a synapse between the neuron 𝑖 in population pre
(presynaptic neuron) and the neuron 𝑗 of population post (postsynaptic neuron) is governed
by:

𝜖 ⋅ 𝑑𝑤𝑖,𝑗(𝑡)
𝑑𝑡 = (𝑟𝑖

pre(𝑡) − 𝜃pre)+ ⋅ (𝑟𝑗
post(𝑡) − 𝜃post)+ (5.7)

where 𝑟𝑖
pre(𝑡) and 𝑟𝑗

post(𝑡) are the pre- and post-synaptic firing rates, 𝜃pre and 𝜃post are fixed
thresholds, and 𝜖 is the learning rate. The thresholds can be adjusted to take baseline firing
rates into account and restrict learning to significant deviations from this baseline. Weight
values are restricted to the range [𝑤min, 𝑤max], where 𝑤min is usually 0.

Another learning rule used in the model derives from the covariance learning rule (Dayan and
Abbott, 2001; Schroll et al., 2012; Vitay and Hamker, 2010). In this framework, only those cells
whose firing rate is significantly above the mean firing rate in their respective population can
participate to learning. The evolution over time of the weights is described by Equation 5.8:
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𝜖 ⋅ 𝑑𝑤𝑖,𝑗(𝑡)
𝑑𝑡 = (𝑟𝑖

pre(𝑡) − ̄𝑟pre(𝑡))+ ⋅ (𝑟𝑗
post(𝑡) − ̄𝑟post(𝑡))+ (5.8)

where ̄𝑟pre(𝑡) and ̄𝑟post(𝑡) are the average firing rate in the pre- and post-synaptic populations,
respectively. This mean activity allows to adapt more dynamically the learning behavior be-
tween two populations. Dopamine-modulated learning rules will be described in the rest of
the text, together with the corresponding populations (BLA and NAcc). The parameters of all
learning rules are described in Table 5.2.

All equations in the model are solved using the forward Euler method, with a time step of 1 ms.
Themodel is implemented in the neurosimulator ANNarchy (Artificial Neural Network architect),
which combines a Python interface to a high-performance parallel simulation kernel in C++.

5.2.2.1 Representation of inputs

The network is presented with two kinds of inputs: the visual representation of the CS and
the gustatory representation of the US. In this article, we will concurrently learn three CS-US
associations (CS1+US1, CS2+US2, CS3+US3), with different parameters (magnitude and time
interval) in order to show the robustness of the model. Other combinations of magnitude and
duration provoke similar results of the model.

The CS are represented by a three-dimensional binary vector, where each element represents
the presence (resp. absence) of the corresponding CS with a value of 1 (resp. 0). The US are
represented by a four-dimensional vector, where each element represents a single taste compo-
nent (for example salt, sugar, fat and umami as in (Dranias et al., 2008)). As shown in Table 5.1,
there is an overlap between the different tastes of the US, rendering harder the task to distin-
guish them. Moreover, each US representation is multiplied by a magnitude, representing the
quantity of food delivered. In this article, this magnitude is the same for all tastes composing
the US.

Table 5.1: Definition of the inputs to themodel. Each CS-US association is defined by unique CS
andUS vectors. During conditioning, rewards are presentedwith a certainmagnitude,
and after a certain delay after CS onset.

Number CS US Magnitude Interval (s)

1 [1, 0, 0] [1, 1, 0, 0] 0.8 2
2 [0, 1, 0] [1, 0, 1, 0] 0.5 3
3 [0, 0, 1] [1, 0, 1, 1] 1.0 4

A conditioning trial is composed of a first reset interval of 1 second where no input is given to
the network (all elements of the CS and US representations are set to 0). At time 𝑡 = 1𝑠, the CS
representation is set to the corresponding vector. This input is maintained for a given duration,
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whose value depend on the CS-US association (2 seconds for CS1-US1, 3 seconds for CS2-
US2, 4 for CS3-US3). These different interval durations are chosen to show that the network
can indeed learn different CS-US intervals without any modification, but different combinations
would lead to similar results.

Once the delay is elapsed, the US representation is set for 1 second, with the CS representation
maintained. In extinction trials, the US representation is not set. After this duration of one
second, all elements of the CS and US representations are reset to 0, and the network can settle
for one more second, so the duration of one trial is equal to the interval plus 3 seconds.

The visual input to the model is represented by the population IT, composed of 9 units. The
CS representations activate different neurons in IT with a specific one-to-many pattern: one
element of the CS vector activates exactly 3 units in IT (called a cluster), without overlap. This
activation is excitatory, with a fixed weight value of 1.0 (see Table 5.2 for the weight value of all
projections.). Each neuron in IT has a membrane potential governed by Equation 5.9, with the
firing rate being its positive part (Equation 5.2):

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑔exc(𝑡) + 𝜂(𝑡) (5.9)

with 𝜏 = 10 ms, 𝜂(𝑡) randomly chosen at each time step in [−0.1, 0.1] and 𝑔exc(𝑡) the input
from the CS representation. The gustatory inputs are similarly represented by LH, with a one-
to-one projection (one neuron in LH represents one element of the US representation). Thus,
neurons in LH are also governed by Equation 5.9, with 𝜏 = 10 ms.

Table 5.2: Parameters of the projections in the model. Pre and Post describe the pre- and
post-synaptic populations, respectively. Type denotes the type of the synapses in
the projection, as they are differentially integrated by the postsynaptic neurons (exc,
inh, mod, dopa). Pattern denotes the projection pattern between the pre- and post-
synaptic populations: all-to-all means that all post-synaptic neurons receive connec-
tions from all presynaptic neurons; one-to-onemeans that each postsynaptic neuron
receives exactly one connection from the pre-synaptic population, without overlap.
one-to-many and many-to-many refer to specific projection patterns for the clusters
in IT, please refer to Section 5.2.2.1 for a description. Eq represents the number of
the equation governing plasticity in the projection. Weight describe the initial value
for the weight of each synapse (non-learnable connections keep this value through
the simulation). 𝑤min is the minimal value that a learnable weight can take during
learning, while 𝑤max is the maximal value (if any). The other parameters correspond
to the respective equations of the learning rules, please refer to them for details.

Pre PostTypePatternEq. Weight[𝑤𝑒𝑥𝑡𝑚𝑖𝑛, 𝑤max]𝜖 𝜃pre 𝜃post 𝐾 𝜏dopa 𝑘 𝜏𝛼

VIS IT exc one-
to-
many

- 1.0 - - - - - - - -
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Pre PostTypePatternEq. Weight[𝑤𝑒𝑥𝑡𝑚𝑖𝑛, 𝑤max]𝜖 𝜃pre 𝜃post 𝐾 𝜏dopa 𝑘 𝜏𝛼

GUSLH exc one-
to-
one

- 1.0 - - - - - - - -

LH BLAexc all-
to-
all

Equation 5.110.3±
0.2

[0, −] 100 - - 10 100 1 1

IT BLAmodall-
to-
all

Equation 5.130.0 - 300 - - - - - -

BLABLA inh all-
to-
all

Equation 5.80.5 [0, 3] 100 - - - - - -

BLACE exc all-
to-
all

- 1.0 - - - - - - - -

CE PPTNexc all-
to-
one

- 1.5 - - - - - - - -

LH PPTNexc all-
to-
one

- 0.75 - - - - - - - -

PPTNPPTNinh all-
to-
all

- 2 - - - - - - - -

PPTNVTAexc all-
to-
all

- 1.5 - - - - - - - -

PPTNVP exc all-
to-
all

- 0.5 - - - - - - - -

VP RMTginh all-
to-
all

- 1 - - - - - - - -

VP LHb inh all-
to-
all

- 3 - - - - - - - -

LHbRMTgexc all-
to-
all

- 1.5 - - - - - - - -
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Pre PostTypePatternEq. Weight[𝑤𝑒𝑥𝑡𝑚𝑖𝑛, 𝑤max]𝜖 𝜃pre 𝜃post 𝐾 𝜏dopa 𝑘 𝜏𝛼

RMTgVTAinh all-
to-
all

- 1.0 - - - - - - - -

IT vmPFCexc many-
to-
many

- 0.3 - - - - - - - -

vmPFCNAccmodall-
to-
all

Equation 5.110 [−0.2, −] 50 - - 5 10 1 10

BLANAccexc one-
to-
one

- 0.3 - - - - - - - -

VTANAccdopaall-
to-
all

- 0.5 - - - - - - - -

NAccNAccinh all-
to-
all

Equation 5.80.5 [0, 1] 1000 - - - - - -

NAccVP inh all-
to-
all

Equation 5.70 [0, 2] 100 0 0.5 - - - -

NAccVTAinh all-
to-
all

Equation 5.70 [0, 2] 500 0 0 - - - -

Amygdala

The amygdala is decomposed into its input structure, BLA, and its output structure, CE. BLA
receives visual information from IT, gustatory information from LH and dopaminergic innerva-
tion from VTA. Its role is to learn to associate the CS and US representations: a BLA cell which
was previously activated by the food reward alone, proportionally to its magnitude (Bermudez
and Schultz, 2010), should become activated with the same firing rate at CS onset, indicating
a transfer of the value of the US to the CS.

As depicted on Figure 5.3, the BLA is composed of 36 units, reciprocally connected with each
other through inhibitory connections (inh). Excitatory connections from LH (exc) interact with
the excitatory ones from IT (labeled as mod): when no LH activation is present, a neuron can
be activated solely by its excitatory inputs from IT; when LH is activated, inputs from IT do
not drive the cell response. Such a non-linear interaction between different inputs may be me-
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Figure 5.3: Neural network description of the model. Pointed arrows represent excitatory or
dopaminergic synapses, while rounded arrows represent inhibitory synapses. The
black curved triangles represent connections from all units of a given population to
a single cell. The type of the connection (exc, mod, inh, dopa) is added next to the
arrow. Lateral inhibitory connections within BLA and NAcc are only partially repre-
sented for simplicity. BLA is composed of 36 units, whose activation is defined by
Equation 5.10. Each unit receives excitatory connections from all LH units (𝑔exc(𝑡)),
modulated connections from all IT units (𝑔mod(𝑡)), one dopaminergic connection
from VTA (𝑔dopa(𝑡)) and inhibitory connections from all other BLA units (𝑔inh(𝑡)).
Each of the 3 banks of 50 oscillators in vmPFC receives excitatory connections
(𝑔exc(𝑡)) from a specific cluster of 3 units in IT representing a given CS. NAcc is
composed of 36 units, whose activation is defined by equation Equation 5.16. Each
unit receives a single excitatory connection from BLA (𝑔exc(𝑡)), excitatory connec-
tions from all units of vmPFC (𝑔mod(𝑡)), one dopaminergic connection from VTA
(𝑔dopa(𝑡)) and inhibitory connections from all other NAcc units (𝑔inh(𝑡)). The other
populations are composed of single units, integrating excitatory or inhibitory inputs.
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diated through the somatostatin-containing interneurons in BLA, which are able to suppress
excitatory inputs to pyramidal cell distal dendrites (presumably from the cortex), but let them
react to the inputs from LH (Muller et al., 2007). A BLA unit in this model therefore averages the
behavior of pyramidal excitatory neurons, somatostatin- and parvalbumin-containing inhibitory
interneurons into a single equation.

The membrane potential of each cell is driven by Equation 5.10:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = Φ𝜏exc,𝑘(𝑔exc(𝑡)) + (1 − ΔΓ(𝑔exc(𝑡))) ⋅ Φ𝜏mod,𝑘(𝑔mod(𝑡)) − 𝑔inh(𝑡) + 𝜂(𝑡)

(5.10)

where 𝜏 = 10 ms is the time constant of the cell, 𝜏exc = 𝜏mod = 500 ms are the integration
constants for the phasic functions of inputs, 𝑘 = 0.8 is a parameter ensuring that the cell
still responds with a significant firing rate after the phasic component is processed, Γ = 0.1
is a threshold on the excitatory inputs ensuring that modulated inputs from IT can only drive
the cell’s activity when the input from LH is absent. The effect of this complex equation will be
explained with more details in Section 5.3.1.

CE is composed of a single unit, receiving excitatory inputs from all BLA units. Its membrane
potential is driven by Equation 5.9, with 𝜏 = 10 ms. As only one unit is active at a time
in BLA because of lateral inhibition, CE simply copies activity in BLA, regardless the CS-US
association.

Learning occurs in BLA for three types of connections: the excitatory input from LH, the modu-
lated input from IT and the inhibitory lateral connections between the BLA neurons. The learn-
ing procedure is composed of two phases: in the sensitization phase, the US are presented
alone, without any CS. This allows BLA to learn to represent each US by a single neuron. In the
conditioning phase, learning in the LH → BLA pathway is reduced. This represents the fact
that the formation of food reward representations in BLA is a much slower process than the
conditioning sessions.

Excitatory connections from LH to BLA are learned with a dopamine-modulated covariance-
based learning, with the addition of a homeostatic mechanism to ensure the weights do not
increase infinitely. The evolution of these weights is described by Equation 5.11:

𝜖 ⋅ 𝑑𝑤𝑖,𝑗(𝑡)
𝑑𝑡 = 𝐾 ⋅ Φ𝜏dopa,𝑘(𝑔DA(𝑡)) ⋅ OR(𝑟𝑖

pre(𝑡) − ̄𝑟pre(𝑡), 𝑟𝑗
post(𝑡) − ̄𝑟post(𝑡)) − 𝛼𝑗(𝑡) ⋅ 𝑟𝑗

post(𝑡)2 ⋅ 𝑤𝑖,𝑗(𝑡)
(5.11)

with 𝜖 = 100 in the sensitization phase and 10000 in the conditioning phase, 𝐾 = 10,
𝜏dopa = 100 ms, 𝑘 = 1. In the first term of the equation, the covariance term is modulated
by a value depending on the dopaminergic activity in VTA. This allows DA extracellular levels
to influence the induction of LTP in BLA, as experimentally observed (Bissière et al., 2003). It is
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filtered through the phasic functionΦ𝜏DA,𝑘(𝑔dopa(𝑡))with 𝑘 = 1, so that DA-mediated learning
only takes temporarily place when DA is significantly above its baseline, i.e. during a phasic
burst of activation.

This first term also differs from the covariance learning rule described by Equation 5.8, as it
uses a OR(𝑥, 𝑦) function, being OR(𝑥, 𝑦) = 𝑥 ⋅ 𝑦 if 𝑥 > 0 or 𝑦 > 0 and OR(𝑥, 𝑦) = 0
if both 𝑥 < 0 and 𝑦 < 0. If both cells are significantly more activated than their respective
population, the term is positive and LTP is engaged. If only one cell is significantly active (either
pre- or post-synaptic), the term is negative and LTD appears (homo- or hetero-synaptic LTD,
respectively). This simple behavior allows to develop a high selectivity for specific patterns in
the presynaptic population. In the case where both cells are inactive (𝑟𝑖

pre(𝑡) < ̄𝑟pre(𝑡) and

𝑟𝑗
post(𝑡) < ̄𝑟post(𝑡)), the covariance term would be positive but we set it artificially to 0, in order

to avoid that silent neurons build up strong connections.

The second term of the learning rule implements a regularization term derived from the Oja
learning rule (Oja, 1982) ensuring that the postsynaptic activity does not increase indefinitely
during learning (Schroll et al., 2012; Vitay and Hamker, 2010). This mechanism implements
homeostatic plasticity whose role is to keep neurons in an energetically efficient mode (Turri-
giano, 2008). As formulated in Equation 5.12, the regularization term 𝛼(𝑡) becomes positive
whenever the postsynaptic neuron fires above a certain threshold, thereby down-scaling the
most active connections to this neuron:

𝜏𝛼
𝑑𝛼𝑗(𝑡)

𝑑𝑡 + 𝛼𝑗(𝑡) = (𝑟𝑗
post(𝑡) − 𝑟max)+ (5.12)

𝑟max = 1 being the postsynaptic firing rate above which regularization is engaged.

Themodulated projection from IT toBLA follows adifferent learning rule: its principle is that this
projection should learn to activate a BLA neuron with the same strength as the corresponding
US. Learning is also modulated by dopamine release, as described by Equation 5.13:

𝜖 ⋅ 𝑑𝑤𝑖,𝑗(𝑡)
𝑑𝑡 = ΔΓdopa

(𝑔𝑗
dopa(𝑡)) ⋅ (𝑟𝑖

pre(𝑡) − ̄𝑟pre(𝑡)) ⋅ (𝑟𝑗
post(𝑡) − ̄𝑟post(𝑡)) ⋅ (𝑔𝑗

exc(𝑡) − 𝑔𝑗
mod(𝑡))+

(5.13)

with Γdopa = 0.3 being a threshold on VTA activity. The term (𝑔exc(𝑡) − 𝑔mod(𝑡))+ ensures
that themodulated projections stop learningwhenever their net effect on a postsynaptic neuron
exceeds the one of the excitatory projection from LH during DA bursts.

Lateral inhibitory connections betweenBLA cells are learned according to the covariance-based
learning rule described in Equation 5.8, forcing competition between the cells and ensuring that
only one BLA cell is active for a single stimulus.
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Pedunculopontine nucleus

PPTN is involved in generating phasic DA bursts in VTA for both reward-predicting cues and
rewards through direct glutamatergic projections (Pan et al., 2005). Two different populations
of PPTN neurons signal CS- and US-related signals to VTA (Kobayashi and Okada, 2007). In
the model, PPTN is therefore composed of two units, one receiving US information from LH,
the other CS information from CE, as depicted on Figure 5.3. These two neurons are moreover
inhibiting each other, so that only one is active at a given time. The dynamics of these neurons
are described by the same Equation 5.14, the only difference being the origin of the excitatory
information:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = Φ𝜏exc,𝑘(𝑔exc(𝑡)) − 𝑔inh(𝑡) + 𝜂(𝑡) (5.14)

with 𝜏 = 10 ms, 𝜏exc = 50 ms and 𝑘 = 1.

Ventromedial prefrontal cortex

As in the Striatal-beat frequency model (Matell and Meck, 2004), we model the cortical inputs
to NAcc by a bank of oscillators synchronized at CS onset. Each CS is represented by a group
of 50 units oscillating at various frequencies between 2 and 8 Hz. Indeed, enhanced top-down
synchrony in the extended theta band has been observed between vmPFC and NAcc during
reward anticipation (Cohen et al., 2012).

As three CS are used in the experiments presented in this article, there are three banks of 50
units, each activated by the corresponding cluster in IT. When the sum of excitatory inputs
exceeds a given threshold 𝑇start = 0.8, the current time 𝑡 of the simulation is stored in the
variable 𝑡0, and the membrane potential of each unit varies according to the Equation 5.15:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 1 + 𝑠𝑖𝑛(2𝜋 ⋅ 𝑓 ⋅ (𝑡 − 𝑡0) + 𝜑)

2 (5.15)

with 𝜏 = 1 ms, 𝑓 the frequency of the oscillator randomly chosen at the beginning of the
simulation in the range [2, 8] (uniform distribution) and 𝜑 the phase of the oscillator randomly
chosen in the range [0, 𝜋]. When the excitatory input falls below a threshold 𝑇stop = 0.2,
the membrane potential is set to 0. Contrary to the rest of the network, this mechanism is
not biologically plausible, but it abstracts the behavior of a coupled network of excitatory and
inhibitory neurons, all activated by CS onset and interacting with different synaptic strengths
and delays.
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Nucleus accumbens

As described by Figure 5.3, NAcc is composed of 36 units, integrating excitatory inputs from
BLA with a one-to-one pattern (each NAcc neuron receives a connection from only one neuron
in BLA), excitatory inputs from vmPFC (all-to-all), dopaminergic inputs from VTA and lateral in-
hibitory connections forcing competition betweenNAcc cells. Theirmembrane potential can be
either in a hyperpolarized down-state or in a depolarized up-state, depending on several factors:
1) spontaneous transition from the down-state to the up-state have been described, exhibiting
rhythmic delta-frequency (0.5-2Hz) activities in freely moving rats (Leung and Yim, 1993); 2)
Phasic DA release from VTA can bring NAcc neurons in the up-state (Goto and Grace, 2005;
Gruber et al., 2003); 3) Massive input from the prefrontal cortex (together with hippocampal
input, not modeled here) can also force this transition (McGinty and Grace, 2009).

Consequently, each unit of NAcc has an additional input variable 𝑠(𝑡) describing its current
state, taking the value −0.9 in the down-state and −0.4 in the up-state. Its effect is that the
neuron can more easily have a non-zero firing rate in the up-state than in the down-state. The
membrane potential of each NAcc cell evolves according to the Equation 5.16:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑔exc(𝑡) − 𝑔inh(𝑡) + 𝑔dopa(𝑡) + 𝑠(𝑡) + 𝜂(𝑡) (5.16)

with 𝜏 = 10 ms. The corresponding firing rate is restricted to the range [0, 1.1]. Transitions
between the two states are followed by another variable 𝑠time(𝑡), which integrates 𝑠(𝑡) over
time, as described by the Equation 5.17:

𝜏 ⋅ 𝑑𝑠time(𝑡)
𝑑𝑡 + 𝑠time(𝑡) = 𝑠(𝑡) (5.17)

with 𝜏 = 450 ms. The role of the variable 𝑠time(𝑡) is to ensure spontaneous transitions be-
tween the up- and down-states in the absence of external inputs or dopaminergic activation.
Transitions from the down-state to the up-state are provoked by one of the following events:

• The activity of VTA exceeds a threshold Γdopa = 0.3;
• Excitatory inputs 𝑔exc(𝑡) exceed the threshold Γglut = 1;
• The variable 𝑠time(𝑡) exceeds the threshold Γup = −0.45.

Transitions from the up-state to the down-state are provoked by the combination of these two
conditions:

• The activity of VTA is below the threshold Γdopa = 0.3;
• The variable 𝑠time(𝑡) is below the threshold Γdown = −0.85.
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The role of the variable 𝑠time(𝑡) is therefore to ensure spontaneous transitions from the down-
state to the up-state, regardless other inputs. It also ensures that the NAcc cell stays long
enough in the up-state before going back to the down-state when the other inputs fade away.

The mechanism proposed to exhibit up- and down-state fluctuations in our model of NAcc is a
phenomenological abstraction of the underlying biological components, sufficient to reproduce
some of their functional properties. A more detailed modeling approach is needed to better de-
scribe and understand the observed patterns in the context of temporal prediction. It could
rely on existing biophysically-detailed models of striatal spiny neurons, studying the effects on
membrane bistability of slow and fast potassium currents (Gruber et al., 2003), NMDA/AMPA
receptors ratio (Wolf et al., 2005) or D1-receptor activation (Humphries et al., 2009), for exam-
ple.

Excitatory inputs from vmPFC are learned using the same dopamine-modulated learning rule as
the LH → BLA projection, described by Equation 5.11 and Equation 5.12, with 𝜖 = 50, 𝐾 = 5,
𝜏dopa = 10ms, 𝑘 = 1, 𝜏𝛼 = 10ms and 𝑟max = 1. This three-factors rule covers some known
effects of dopamine on corticostriatal learning (Calabresi et al., 2007; Reynolds and Wickens,
2002; Shen et al., 2008): phasic DA release potentiates learning; LTP requires both DA release,
presynaptic activity and postsynaptic depolarization; strong presynaptic activation when the
postsynaptic cell is in the down-state leads to LTD. The third condition of the learning rule, called
heterosynaptic LTD where only the post-synaptic cell is active but not the pre-synaptic one, has
not been observed in the striatum but in the hippocampus (Doyere et al., 1997). However, low-
frequency stimulation at 1 Hz engage LTD at corticostriatal synapses (Fino et al., 2005), so
such a mechanism can not be ruled outgnote. The known influence of dopamine depletion on
corticostriatal learning is not used in this model.

𝜏𝛼 is set very low, restricting learning to the early phase of the dopaminergic burst of VTA activ-
ity. The weights between vmPFC and NAcc are allowed to become negative (𝑤min = −0.2) to
reflect the role of accumbal interneurons (TANs and GABAergic) in timing processes (Apicella
et al., 2009; Coull et al., 2011). This particularity is essential for the adequate temporal response
of NAcc neurons. Inhibitory lateral connections between NAcc cells are learned according to
the covariance-based learning rule described by Equation 5.8.

Ventral Pallidum

During classical conditioning, VP cells are excited by large rewards and the cues predicting
them, but are inhibited by small rewards (Tindell et al., 2004). While the major source of inhi-
bition is clearly NAcc, the source of excitation is still unknown. Based on known anatomical
connections, we hypothesize that this phasic excitation is transmitted by PPTN (Hallanger and
Wainer, 1988). However, when a reward is fully predicted and delivered, NAcc is activated and
cancels the excitation provided by PPTN. We propose a mechanism where VP is inhibited by
NAcc activation unless excitatory inputs from PPTN are present. This shunting mechanism is
described by Equation 5.18 governing the membrane potential of the single unit in VP:
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𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑔exc(𝑡) − ΔΓ(𝑔exc(𝑡)) ⋅ 𝑔inh(𝑡) + 𝐵 + 𝜂(𝑡) (5.18)

where 𝜏 = 10 ms, 𝐵 = 0.5 is the baseline activity of the VP neuron and Γ = 0.1 is a
threshold on excitatory inputs. The inhibitory projection from NAcc is learned according to the
thresholded Hebbian learning rule described by the Equation 5.7.

Lateral Habenula

LHb is activated by aversive stimuli and reward omission (Hikosaka et al., 2008; Hong et al.,
2011). In this model, signaling of reward omission is provoked by disinhibition from VP: when
VP is inhibited by NAcc at the expected time of reward delivery, it stops inhibiting LHb and
allows it to fire. As the source of excitatory inputs to LHb is still not clear, we simply consider in
this model that the single LHb cell has a very high baseline activity, which is normally cancelled
by the tonic inhibition of VP, as expressed by Equation 5.19:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = −𝑔inh(𝑡) + 𝐵 + 𝜂(𝑡) (5.19)

with 𝜏 = 10 ms and 𝐵 = 1.

Rostromedial tegmental nucleus

While most RMTg neurons are activated by aversive events, some also respond to reward omis-
sion. They are inhibited by rewards and reward-predicting stimuli (Jhou et al., 2009). The ex-
citation at reward omission has been shown to come from LHb glutamatergic inputs (Balcita-
Pedicino et al., 2011; Hong et al., 2011). In this model, the single unit of RMTg is under the tonic
inhibition from VP (Jhou et al., 2009), and can become activated when excitatory inputs from
LHb are present, as formulated by the Equation 5.20:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑔exc(𝑡) − 𝑔inh(𝑡) + 𝜂(𝑡) (5.20)

with 𝜏 = 10 ms.

Ventral tegmental area

The final stage of the model is a single dopaminergic unit in VTA. It receives excitatory inputs
from PPTN, inhibitory inputs from RMTg and modulatory inhibitory inputs from NAcc. The ex-
citatory inputs can progressively be canceled by the modulatory inputs, as the US becomes
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temporally predictable by NAcc. Additionally, RMTg inputs can provoke a prolonged inhibition
of the VTA cell below baseline if no reward is present. This is reflected by the Equation 5.21:

𝜏 ⋅ 𝑑𝑚(𝑡)
𝑑𝑡 + 𝑚(𝑡) = 𝑔exc(𝑡) ∗ (1 − Φ𝜏mod,𝑘(𝑔mod(𝑡))) − (1 − ΔΓ(𝑔exc(𝑡))) ⋅ Φ𝜏inh,𝑘(𝑔inh(𝑡)) + 𝐵 + 𝜂(𝑡)

(5.21)

with 𝜏 = 10 ms, 𝜏mod = 300 ms, 𝑘 = 1, Γ = 0.1, 𝜏inh = 30 ms and 𝐵 = 0.2. Modulatory
inputs from NAcc are learned according to the learning rule defined in Equation 5.7}.

5.3 Results

Most experiments in this section concern the concurrent learning of the three CS-US associa-
tions described in Table 5.1. The learning procedure is split into two phases: the sensitization
phase, where each US is presented alone for 10 trials, and the conditioning phase, where the
CS and US are presented together for 15 trials. The three CS-US associations are intermingled
in ascending order for simplicity, but a randomized order would not change the results. The
organization of each trial is described in Section 5.2.2.1.

5.3.1 CS-US associations in the amygdala

Figure 5.4 shows the firing rate of single BLA cells during the first (top row) and fifteenth (bot-
tom row) trials of the conditioning phase, for each of the three CS-US associations. After the
sensitization phase, only one cell in BLA is selective for each US because of the increased com-
petition induced by antihebbian learning in the lateral connections within BLA. The activity of
these US-specific neurons only is displayed, the other cells having a firing rate close to 0.

During the first conditioning trial, each BLA cell is activated only at reward delivery, with an
amplitude proportional to themagnitude of the US. It reaches a peak shortly after US onset and
slowly decreases to a small baseline because of the phasic integration of LH inputs described
in Equation 5.10. During the late conditioning trial, the same cells are activated by the onset
of the corresponding CS. Their firing rate also reaches a peak shortly after CS onset, with a
magnitude proportional to the reward magnitude (see Section 5.3.4 for further discussion) and
slowly decays to around 20% of their peak amplitude, due to the temporal integration of IT
inputs in Equation 5.10. However, these cells are still phasically excited by the delivery of the
predicted reward.

This behavior of single BLA cells during conditioning is in agreement with the known depen-
dency of BLA activity on reward magnitude (Bermudez and Schultz, 2010) as well as with the
observed firing rate of individual BLA neurons for both CS and US (Maren and Quirk, 2004; Ono
et al., 1995). As CE simply sums up BLA activity in our model, the response profile in CE is

146



5.3 Results

Figure 5.4: Timecourse of the activity of different BLA cells before and after conditioning. Activ-
ities for the CS1-US1, CS2-US2 and CS3-US3 associations are represented from left
to right in panels (A), (B) and (C), respectively. For each figure, the horizontal blue
line represents the presentation of the CS, while the red line represents the presen-
tation of the US. The top row shows the evolution of the firing rate of a single BLA
neuron over time during the first trial of conditioning. Because of the sensitization
phase and the lateral inhibition in BLA, there is only one cell in the population which
represents each US. During the first trial, this cell gets maximally activated at the
time of reward delivery (3, 4 and 5 seconds after the start of the trial, respectively),
and its firing rate decreases because of the adaptation of excitatory inputs in BLA,
before returning to baseline when the US is removed after 1 second. All other cells
in BLA are not activated. The bottom row shows the activity of the same cells dur-
ing the fifteenth trial of conditioning. They now show an increase of activity when
the CS appears (1 second after the start of the trial), reaching a maximum of similar
amplitude as the response evoked by the US, and slowly decreasing to a baseline
of about 20% of this maximal activity. When the reward is delivered, they increase
their firing rate similarly a in the first trial.
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similar during conditioning, although not specific to the CS-US association. This means that
the CE → PPTN → VTA pathway is able to signal the onset of specific reward-predicting cues
to VTA and generate the corresponding phasic burst, as observed experimentally (Fudge and
Haber, 2000; Lokwan et al., 1999).

5.3.2 Timecourse of activity in VTA

Figure 5.5: Timecourse of the activity of the VTA cell during conditioning. The activity for the
three CS-US associations is displayed from left to right in panels (A), (B) and (C),
respectively. For each figure, the horizontal blue line represents the presentation of
the CS, while the red line represents the presentation of the US. The first row repre-
sents the activity of VTA during the first trial of conditioning, the second row during
the fifth trial, the third during the fifteenth trial. They show a progressive reduction
of the amplitude of the US-related burst, while the CS-related burst appears early
in learning. The fourth row shows the activity of the VTA cell when the reward is
delivered one second earlier than previously associated. It shows that the VTA cell
responds to rewards delivered earlier with the same activation as for unpredicted
rewards. The fifth row shows omission trials: the CS is presented normally, but the
US is omitted. The VTA cell shows a phasic pause in firing at the time when reward
was expected.

Figure 5.5 shows the temporal evolution of VTA activity during several conditioning trials for
the three CS-US associations. The first row shows its activity during the first conditioning trial.
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As expected, the VTA cell only fires transiently at reward delivery, with an amplitude propor-
tional to the reward magnitude. This phasic excitation is provoked by the LH → PPTN → VTA
pathway.

The second and third rows show VTA activity during the fifth and fifteenth conditioning trials
for each association. The DA cell shows very early in learning a phasic burst of activity at
CS onset. In parallel, the amplitude of the US-related burst progressively decreses until an
almost complete cancellation at the fifteenth trial. This pattern of evolution is in accordance
of the observations of Pan and Hyland (2005) showing that the CS- and US-related bursts of
DA activation coexist in the early phases of training. Simple disconnection experiments show
that the CS-related phasic bursts are dependent on the CE → PPTN → VTA pathway, while the
cancellation of the US-related bursts is dependent on the modulatory projection from NAcc to
VTA.

After 15 conditioning trials for each association have been executed, two additional trials are
performed to test the functional properties of the model. The first additional trial (fourth row of
Figure 5.5) consists in early delivery of reward: the US previously pairedwith the CS is presented
one second earlier than usual (i.e. 1s after CS onset instead of 2s for the CS1-US1 association,
2s for CS2-US2 and 3s for CS3-US3). The CS presentation stops with the end of the US. In
this case the VTA cell reacts phasically to reward delivery with the same amplitude as for an
unpredicted reward, instead of the diminished burst observed when the reward is presented
at the expected time. This is in accordance with the experimental findings of Hollerman and
Schultz (1998).

In the second type of additional trial (fifth row of Figure 5.5), each CS is presented normally
but the US is omitted. Shortly after the expected delivery time (around 50ms), the VTA cell
receives a strong phasic inhibition bringing its firing rate to 0 for a prolonged period of time.
This activation dip is provoked by the NAcc → VP → LHb → RMTg → VTA pathway. This
behavior is in accordance with the reward-prediction error interpretation of VTA activity during
conditioning (Fiorillo et al., 2003; Schultz et al., 1997).

5.3.3 Evolution of VTA activity during conditioning

In this section, we take a closer look at the evolution of phasic activities in VTA during the
conditioning process. Figure 5.6 shows the evolution of US- and CS-related activation in BLA
over the 15 conditioning trials, for each of the three associations. The amplitude of the CS-
related (in blue) and US-related (in red) bursts is computed by taking the maximal firing rate of
the VTA cell in a small time window (± 100ms) around CS and US onsets, respectively.

Panels (A) and (C) (corresponding to rewards of magnitude 0.8 and 1.0, respectively) show
that the CS-related bursts, initially nonexistent as the baseline activity of VTA is 0.2, quickly rise
in a few trials to reach up a limit dependent on the reward magnitude. The US-related bursts
show the opposite pattern: the amplitude is initially dependent on the reward magnitude, but
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Figure 5.6: Evolution of the maximal activity in VTA during conditioning. For each of the three
associations (panels (A), (B) and (C), respectively), the maximal activity of the VTA
cell at CS onset (in blue) and at reward delivery (in red) is plotted for each trial of
the conditioning phase. These values are computed by taking the maximum value
of the firing rate of the VTA cell in a small time window (± 100ms) around CS onset
and reward delivery. The panels show the relative speed at which the CS-related
bursts appear and the one at which the US-related bursts are canceled.

is progressively decreases to a value close to the VTA baseline. One can observe that the
cancellation is not total, the maximal value of US-related bursts being between 0.3 and 0.4,
while the baseline activity is 0.2. However the duration of the phasic is also reduced from
approximately 200ms for unpredicted rewards to 50ms for fully predicted rewards, so the total
amount of dopamine released can be considered relatively low. This aspect will be discussed
in Section 5.4.2.

Panel (B), corresponding to a reward magnitude of 0.5, shows a different behavior. While the
CS-related burst still increases to reach a maximum equal to the initial US-related burst (al-
thoughmore slowly), the cancellation of the US is both slower and not total. This suggests that
rewardmagnitude influences conditioned responses in VTA in a non-linear manner. This will be
further investigated in the following section. Altogether, the results show that the cancellation
of the US-related VTA activation happens well after the appearance of CS-related bursts, what
is consistent with the experimental data (Pan and Hyland, 2005).

5.3.4 Influence of reward magnitude on conditioning

In order to study the influence of reward magnitude on VTA activity, we modified the condi-
tioning procedure. In this section, only one CS-US association (CS1-US1, with an interval of 2
seconds between the CS and US) is learned by the network, but the reward magnitude is varied
linearly between 0 and 1 instead of the previous value 0.8. For each value of the reward mag-
nitude, a different network performs the sensitization and conditioning tasks for this particular
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Figure 5.7: Dependency of the activity in BLA and VTA on reward magnitude. Panel (A) shows
the maximal firing rate in BLA around CS-onset and reward delivery during the first
and last trial of conditioning, for different reward magnitudes. For each value of the
rewardmagnitude, the CS1-US1 association is presented 15 times, and themaximal
activity in BLA around CS-onset (between 900 and 1100ms after the start of each
trial) and reward delivery (between 3900 and 4100ms after the start of the trial) is
recorded. The experiment is repeated 10 times (without different initial values), and
the mean (solid line) and standard deviation (colored area) of these measurements
are plotted. The blue dotted line shows the maximal activity at CS-onset during the
first trial, which does not depend on reward magnitude, as no learning has taken
place yet. The red dotted line shows the maximal activity at reward delivery during
the first trial, which is proportional to the reward magnitude because of learning in
the LH → BLA projection during the sensitization phase. For the last trial of con-
ditioning, the blue and red solid lines show the dependency on reward magnitude
of the maximal activity in BLA at CS onset and reward delivery, respectively. While
the US-related response is proportional to the reward, the CS-related activity only
appears for reward magnitudes bigger than 0.1. Panel (B) shows the dependency
on reward magnitude of the VTA bursts in the same conditions (blue dotted = CS
onset at trial 1, red dotted = US delivery at trial 1, blue solid = CS onset at trial 15,
red solid = US delivery at trial 15). While there are no CS-related bursts during trial
1, the US-related burst is proportional to reward magnitude. A similar relationship
can be observed for the CS-related burst at the end of learning. However the US-
related burst after learning shows a different pattern: small rewards (magnitude
smaller than 0.4) elicit burst proportionally to their magnitude, but bigger rewards
elicit strongly attenuated bursts, showing that the cancellation of US-related bursts
is dependent on reward magnitude.
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association. Activities in BLA and VTA are recorded during the first and fifteenth conditioning
trials, and the maximal activity of VTA and BLA cells at CS and US onsets (computed within
a time window of ± 100 ms) is shown on Figure 5.7, averaged for 10 different networks. Fig-
ure 5.7 A shows the dependency of US- and CS-related activation in BLA on reward magnitude,
while Figure 5.7 B shows the reward-magnitude dependency of VTA bursts.

During the first trial of conditioning, there is logically no CS-related activity in BLA and VTA (blue
dotted line), regardless the reward magnitude, as conditioning has not taken place yet. The US-
related activity (red dotted line) shows a linear dependency on reward magnitude in both VTA
and BLA. This is explained by the linear encoding of reward magnitude in LH: a more precise
model of food-related activation in LH may change this property.

During the last trial of conditioning, the CS elicits strong phasic activity in both BLA and VTA
(blue solid line), which is roughly proportional to the reward magnitude: additive noise plays an
important role in the learning dynamics of themodel, what explains that different networksmay
exhibit slightly different results. This is in accordance with the observation that CS-elicited DA
bursts increase monotonically with the magnitude of expected rewards (Tobler et al., 2005).

The situation is more contrasted regarding the US-related activation after conditioning (red
solid line): while BLA still phasically responds linearly to the USmagnitude (see also Figure 5.4),
the cancellation of reward-delivery bursts in VTA only occurs if the reward magnitude is high
enough (above 0.4). This cancellation is dependent on learning in NAcc, which is itself de-
pendent on DA release by VTA. Small rewards do not provoke sufficiently high VTA bursts to
modulate striatal processing and learning. While there is no direct evidence of such an effect
of rewardmagnitude on US cancellation, this effect is in agreement with the known influence of
reinforcer magnitude on the emergence of conditioned responding (Morris and Bouton, 2006)
or peak-interval tasks (Ludvig et al., 2007), which are dependent on learning in the striatum.

5.3.5 Timing mechanism in NAcc

An important functional aspect of the model is the inducement of dips in VTA when a predicted
reward is omitted. It relies on the ability of specific NAcc cells to learn the CS-US interval dura-
tion based on inputs from the synchronized oscillators in vmPFC, gated by the dopaminergic
bursts of VTA.

Figure 5.8 shows the evolution of several internal variables of one NAcc cell during reward
omission. This cell is selective for the US2 because of the corresponding input from BLA. Af-
ter successful learning of the CS2-US2 association (15 trials), CS2 is presented alone while
we record the temporal evolution of 1) the membrane potential of this cell (governed by Equa-
tion 5.16, red line), 2) the weighted sum of excitatory inputs from vmPFC (blue line) and 3) its
up- or down-state 𝑠(𝑡) (green line). For simplicity, its firing rate is not depicted, as it is only the
positive part of the membrane potential.
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Figure 5.8: Timecourse of the internal variables of a single NAcc neuron during a reward omis-
sion trial. After the conditioning phase, CS2 is presented alone. The NAcc neuron
which was selective for US2 during conditioning is recorded: its membrane poten-
tial 𝑚(𝑡) in red, the weighted sum of excitatory inputs from vmPFC in blue and its
up- or down-state 𝑠(𝑡) in green. The firing rate of the neuron is the positive part of
the membrane potential: the firing rate becomes only non-zero shortly at the time
where reward is expected but omitted.
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When the CS appears one second after the start of the trial, the CS-evoked VTA burst brings
the cell into the up-state, while the cortical oscillators start influencing themembrane potential.
However, this excitation is not sufficient to bring the membrane potential above the threshold
and activate the cell. During the delay period, the cell switches between down- and up-states
based on the internal dynamics of the variable 𝑠time(𝑡) (Equation 5.17). The sum of inputs from
vmPFC oscillate during this period, but is never strong enough to activate the cell. However,
at the time when the US is expected (4 seconds after the beginning of the trial), these inputs
become able to bring the cell into the up-state, what results in amembrane potential well above
threshold and provokes a short burst of the firing rate, although the US is not delivered.

This mechanism is very similar to the Striatal-Beat Frequency model proposed by Matell and
Meck (2004), although based on a different implementation (different number of cortical os-
cillators, different frequency range and different learning rule). The weighted sum of cortical
inputs, which peaks for the cortical pattern describing the learned interval, fluctuates a lot dur-
ing the delay period. In particular, there are several peaks during the delay period corresponding
to different harmonics (1

2 , 1
3 ...). As suggested in (Matell and Meck, 2004), the up- and down-

states are necessary to avoid spurious activation of NAcc during this period, what would lead
to unwanted VTA dips, especially at the beginning of learning. In the early conditioning trials,
the vmPFC input is too weak to bring the NAcc cell into the up-state, which is only dependent
on phasic DA bursts at reward delivery. As in the Striatal-Beat Frequency, we do not precisely
model how the cortical oscillators could be synchronized at CS onset: it is a simple threshold
on visual inputs from IT. A more detailed model is necessary to generate these oscillations,
perhaps through the opening of a vmPFC → ventral BG → medial thalamus → vmPFC loop,
gated by the VTA burst at CS onset.

5.3.6 Acquisition rate of temporal prediction

In order to study the speed at which the CS-US interval is learned in NAcc, we designed a dif-
ferent conditioning schedule. After sensitization to the three US, the 15 conditioning trials per
association are alternated with omission trials, i.e. each CS-US trial is immediately followed by
the CS alone. All learning rules are disabled during these omission trials, as we only want to
use the CS as a probe to measure the acquisition rate: we want to study what would happen if
the reward were omitted earlier in the conditioning process.

Figure 5.9 shows the maximal activity in NAcc (blue line) and the minimal activity in VTA (red
line) during these omission trials for each CS-US association ((A), (B) and (C)). One can observe
that NAcc becomes quickly able to react for an omitted reward (after only 2 conditioning trials
for CS3, 3 for CS1 and 7 for CS2). The speed of learning is therefore dependent on reward
magnitude, what is due to the dopaminergic modulation of cortico-striatal learning: smaller
rewards generate smaller VTA bursts, inducing less LTP in the NAcc. The VTA dips are directly
dependent on this learning: as soon as NAcc is able to get activated for omitted rewards, the
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Figure 5.9: Apparition of VTA dips during conditioning. For the three CS-US associations (pan-
els (A), (B) and (C), respectively), the panel represents what would happen in VTA
(red) andNAcc (blue) if the rewardwere omitted directly after each conditioning trial.
Learning is shut off during these omission trials. The red line shows the minimal ac-
tivity in VTA during these omission trials. After the first few conditioning trials, this
minimal activity is around the baseline (0.2), but quickly becomes equal to 0, denot-
ing the appearance of the strong phasic inhibition of VTA at reward omission. The
blue line shows the emergence of activity in NAcc at reward omission. The speed
at which the timing prediction appears in the ventral BG depends on reward magni-
tude.

minimal activity in VTA at reward omission switches from the VTA baseline activity (0.2) to 0,
indicating that VTA successfully signals reward omission.

This result is in accordance with experiments showing that the time interval from CS onset to
US delivery is learned very rapidly at the start of training (Balsam et al., 2002). Although reward
magnitude was long considered as playing only a minor role in acquisition speed during con-
ditioning (Gallistel and Gibbon, 2000), more recent experiments showed that it influences the
number of trials needed by an animal to exhibit conditioned responses during both appetitive
and aversive conditioning (Morris and Bouton, 2006) and that it speeds up learning of discrim-
ination tasks (Rose et al., 2009). In accordance with these results, our model predicts that the
ability to signal negative reward-prediction errors is learned faster when the reward magnitude
is high.

5.3.7 Time course of forebrain nuclei

In order to better understand how the different nuclei in the model interact during condition-
ing and reward omission, Figure 5.10 shows the time course of activity of several populations
during the fifteenth conditioning trial of CS1-US1 (Figure 5.10 A), followed by the omission of
US1 (Figure 5.10 B). The first row depicts the inputs to the networks, with the blue line show-
ing the mean activity in the IT cluster selective for CS1 and the black line showing the mean
activity of the LH neurons representing US1. As previously shown, VTA (second row) exhibits
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Figure 5.10: Timecourse of activity in different areas of the model. Panel (A) shows the ac-
tivity during the last conditioning trial of the CS1-US1 association, while panel (B)
shows what happen during reward omission after learning (CS1 alone). The first
row shows the inputs to the network, with the blue line showing the mean activity
in the IT cluster corresponding to CS1, while the black line shows themean activity
for the neurons of LH representing US1. The second row shows the timecourse of
the VTA cell during these trials, similar to what is shown on Figure 5.5. The third
row shows activity in CE, which matches the already observed timecourse in BLA
during conditioning on Figure 5.4. The fourth row depicts the timecourse of activ-
ity in PPTN, with the blue line showing the unit responding to CS onset (with inputs
fromCE) and the black the one responsive the US (with inputs from LH). The fourth,
fifth, sixth, seventh and eighth rows depicts the maximal activity in NAcc, VP, LHb
and RMTg, respectively. Please refer to the text for how these activations relate to
each other.
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a phasic burst at CS onset on both trials, but barely reacts after learning when the reward is
delivered, while it is strongly inhibited when the reward is omitted. The CS-driven burst is due
to associative learning in the amygdala, what is reflected in the activity of the CE unit (third row).
The transient activation of CE excites the CS-selective population in PPTN (fourth row, in blue),
which in turn generates the phasic VTA burst and excites VP (sixth row). The excitation of VP
increases the inhibition on LHb (seventh row) and RMTg (eighth row), which therefore remain
silent.

When the reward is delivered (Figure 5.10 A), LH activates directly the US-selective population
of PPTN (fourth row, in black), but also the amygdala (reflected in the excitation of CE). How-
ever, the strong competition between the CS- and US-related populations of PPTN results in the
phasic activation of the US group only (as it receives LH inputs slightly before the CS group gets
activated by CE, which is a disynaptic pathway and therefore slower). The US group of PPTN
activates VTA and VP similarly. At the same time, NAcc gets activated by the reward delivery,
through its inputs from BLA and vmPFC, in conjunction with the phasic VTA burst bringing the
cell into the up-state. NAcc is then able to cancel the VTA burst through its direct modula-
tory projection. NAcc also inhibits strongly VP, but this inhibition is canceled by the excitatory
projection from PPTN to VP. VP therefore keeps inhibiting LHb and RMTg, and no VTA dip is
observed.

When the reward is omitted (Figure 5.10 B), PPTN does not receive inputs from LH or CE. The
activation ofNAcc at the expected timeof reward delivery is nowable to inhibit strongly VP,what
releases LHb and RMTg from its strong tonic inhibition. LHb becomes transiently activated,
exciting RMTg which can provoke a complete pause in VTA firing.

Although not directly comparable to recorded firing rates, the displayed time courses are in
agreement with several observations, such as the activation of two different populations of
PPTN neurons for reward-predictive cues and rewards (Pan et al., 2005), the activation at re-
ward omission of LHb (Hikosaka et al., 2008; Hong et al., 2011) and RMTg (Jhou et al., 2009),
or the activation of VP for large reward-predicting cues and rewards (Smith et al., 2009; Tindell
et al., 2004). VP is also inhibited at reward omission, what is consistent with the observed inhi-
bition of some VP cells when small rewards is received during a session where larger rewards
are available (Tachibana and Hikosaka, 2012).

5.4 Discussion

We have proposed a neuro-computational model of the afferent system to the dopaminergic
area VTA, which is able to reproduce several observations on VTA’s behavior during appeti-
tive conditioning: progressive appearance of phasic bursts of activity at CS onset, progressive
diminution of the amplitude of the phasic bursts elicited by primary rewards, strong phasic inhi-
bition at the timewhen reward is expected but not delivered (Fiorillo et al., 2003; Pan andHyland,
2005; Schultz et al., 1997). Cancellation of US-related bursts and inhibition at reward omission
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both rely on learning of the duration of the CS-US interval in the NAcc, which influences VTA
either directly or through the output structures of the ventral BG. This is in accordance with
experiments showing that rewards delivered earlier than expected provoke a very high ampli-
tude VTA burst which would have been canceled if delivered at the learned time (Hollerman
and Schultz, 1998). Furthermore, the model reproduces the dependency on reward magnitude
of the activities in BLA (Bermudez and Schultz, 2010) and VTA (Tobler et al., 2005).

There are several aspects of reward processing and dopaminergic activity which are not cov-
ered by thismodel: themodel is limited in its current form to classical conditioning and does not
specifically address instrumental conditioning or goal-directed learning. However, Pavlovian-
to-Instrumental transfer of learning, which is known to be particularly dependent on NAcc, is
thought to be a critical component of goal-directed learning (Cardinal et al., 2002; Corbit and
Balleine, 2011) and the proposed model is a first step towards understanding these processes.
Consequently, the model does not incorporate yet the known effects of the tonic component
of VTA activity, which is thought to modulate motivation and engage reward-directed behav-
iors (Daw et al., 2006; Niv et al., 2007), and focuses only on the phasic components of VTA
activity.

Three dimensions are particularly relevant in reward processing: reward magnitude, reward
probability and time, with NAcc having been shown crucial in the adequate response to each
of these dimensions (Stopper and Floresco, 2011). The proposed model focuses on reward-
magnitude and time, leaving reward probability to further work. Manipulating reward probability
will require to investigate the effect of VTA dips on learning in BLA and NAcc, with the extreme
end of the spectrum being extinction of conditioning (Tye et al., 2010).

Within these validity boundaries, the model is able to make several testable predictions, among
which the fact that VTA dips should only appear for sufficiently big rewards, or that the num-
ber of trials needed to observe US-related burst cancellation should be proportional to reward
magnitude. It also predicts that at least a subpopulation of NAcc (presumably in the shell part)
should be activated by reward omission. This prediction will be further discussed in the rest of
the section.

From the neuro-computational point of view, the model is fully autonomous: it only learns from
the relative timecourse of CS and US inputs. Apart from the distinction between the sensitiza-
tion and conditioning phases, no additional mechanism such as a central executive is required
to control learning in any of its populations. It relies only on the numerical integration of a set of
interdependent dynamical equations, in conjunction with sensory inputs. Moreover, the neural
mechanisms employed provide scalability, as multiple CS-US associations can be learned in
parallel, depending on the number of neurons in BLA and NAcc. Future work will address its
integration on a neurorobotical platform with realistic inputs.
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5.4.1 Relation to other work

Early implementations of the TD algorithm used a unitary backward chainingmechanism using
serial-compound temporal representations of the CS, where the value of the reward is progres-
sively transferred to the previous time step (or state), until it corresponds to CS onset (Mon-
tague et al., 1996; Schultz et al., 1997; Suri and Schultz, 1999). For each time step of the con-
ditioning sequence, DA represents a reward prediction error, i.e. the discrepancy between the
amount of predicted reward and the actually received reward. Unless very long eligibility traces
are used, TD predicts that DA bursts will gradually shift backwards in time from reward delivery
to CS onset, what is not observed experimentally (Pan and Hyland, 2005). This also implies
that the mechanism should work for any higher-order conditioning task, transferring the pha-
sic burst to the earliest predictor of reward. In practice, only second-order conditioning has
been observed, as noted in (Hazy et al., 2010). It however explains phenomenologically many
aspects of DA activity during conditioning and has been used with great success in action-
selection and decision-making frameworks as long as the action space is not too large, but its
mapping on brain structures is problematic.

Ludvig et al. (2008) introduced an alternative temporal representation of the stimuli for the
TD(𝜆) algorithm. A set of overlapping temporal basis functions is used to filter out an expo-
nentially decreasing trace of the stimuli (both CS and US) and provide a coarse coding of the
time elapsed since stimulus onset. The output of this microstimuli representation gradually
becomes weaker and coarser as time goes. Using these representations as inputs, the TD(𝜆)
algorithm is able to learn a reward-prediction error signal, gradually responding positively to the
CS while cancelling its response to the US. If the US is omitted, it exhibits a negative reward-
prediction error, although much weaker than previous versions of TD. If the reward is delivered
earlier than expected, it responds maximally to it but shows only a very small dip at the ex-
pected time, without the need for an explicit reset of the temporal representations (see below
for a discussion). A later extension of this model (Ludvig et al., 2009) incorporated an addi-
tional array of microstimuli signaling the presence of a stimulus in addition to its trace and was
able to better explain the functional difference between delay and trace conditioning, as well
as to make interesting predictions about the role of the hippocampus in trace conditioning.

The model of Rivest et al. (2010; Rivest et al., 2013) used an interesting approach to provide
a temporal representation of the stimuli to the TD(𝜆) algorithm: a LSTM network (Hochreiter
and Schmidhuber, 1997) is used to learn a temporal representation of both CS and US based
only on stimulus onset and the reward-prediction error signal. A LSTM network is composed of
recurrent memory blocks, each integrating its inputs depending on an adaptive gating function.
This allows to learn to represent the CS by ramping functions peaking just before US delivery,
allowing the TD(𝜆) to access an adaptively timed representation of the stimulus. This model
exhibits all the expected temporal properties of the DA signal in both delay and trace condi-
tioning without any explicit representation of the task. Although needing an irrealistic number
of trials to converge and having a significant error rate, this model builds an interesting bridge
between reward-prediction, timing and working memory processes.
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The proposed model shares more assumptions with the dual-pathway models. The model of
Brown et al. (1999), later extended by Tan and Bullock (2008), has been a very important step
in overcoming the problems of TD, and many of its assumptions still hold true. It similarly
considers that rewards provoke DA bursts (although in SNc rather than VTA, but this is more a
labeling issue) through the LH→PPTN→ SNc pathway. Reward-predicting cues progressively
elicit burst firing through the NAcc → VP → PPTN → SNc pathway, while the striosomes of
NAcc learn to generate lagged, adaptively timed signals inhibiting SNc at the time when reward
is expected. The comparison between the predicted and received rewards occurs directly at the
level of the dopaminergic cells, while it occurs in VP in our model, providing an explanation for
the role of LHb and RMTg in reward omission. Moreover, this model hypothesizes a common
NAcc→ SNc pathway for both US-related burst cancellation and dips at reward omission, while
they are functionally separated in our model. The major problem with the model of Brown et
al. (1999) and Tan and Bullock (2008) in our view is the mechanism underlying the adaptively
timed inhibitory learning in the striosomes of NAcc. The proposed intracellular spectral timing
mechanism (Fiala et al., 1996; Grossberg and Schmajuk, 1989), relying on mGLUR1-mediated
delayed Ca2+ spikes with distinct time constants for each striosomal cell, indeed allows to
learn specific duration in conjunction with DA bursts, but the maximal interval learnable by
this mechanism is equal to the longest delayed spike possible, what is likely to lie in the sub-
second range as in the cerebellum (Fiala et al., 1996). For the supra-second range, network-
based oscillatory mechanisms such as the striatal-beat frequency model are more likely to be
sufficiently efficient and robust to learn such delays (Coull et al., 2011).

The model called PVLV (Primary-Value and Learned-Value) initially proposed by O’Reilly et al.
(2007) and refined in Hazy et al. (2010) builds up on these ideas. The primary value (PV, the
value of the reward itself) and the learned value (LV, the value of the reward-predicting cue)
during conditioning are computed by two different afferent systems to VTA, both with an exci-
tatory and an inhibitory component. The excitatory PV system PVe signals reward delivery to
VTA through a direct connection from LH to VTA, although a relay through PPTNwould perform
the same function as in ourmodel. The excitatory LV systemLVe learns to generate DAbursts at
CS onset, through a direct projection fromCE to VTA: as in ourmodel, the amygdala learns to as-
sociate a sustained representation of the CS to the delivery of reward when the US-related burst
(or dip) occurs. The inhibitory PV system PVi, composed of the striosomal neurons in NAcc,
learns to cancel progressively US-related bursts, but in an almost time-independent manner:
they use a ramping function activated by CS onset and peaking at reward delivery that mod-
ulates the reward prediction. The origin of such as signal is putatively in the cerebellum, but
no details are provided on how such a signal could be adapted to different CS-US durations.
Moreover, this implies that rewards given earlier than expected would still provoke attenuated
DA bursts. Last, the inhibitory LV system LVi, also in the striosomes of NAcc, slowly learns to
cancel CS-related bursts in order to avoid over-learning in auto-shaping experiments (where the
CS becomes an incentive to action, what is not covered by our model). Themain issue with this
model is that timing mechanisms are only phenomenologically incorporated, what may be due
to the fact that the equations governing neuronal activation and learning are discretized with
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a time step of 1 second, instead of 1 millisecond in the model of Brown et al. (1999) or ours.
However, this model explains several aspects of conditioning, including acquisition, extinction,
blocking, overshadowing, conditioned inhibition and second-order conditioning. Furthermore,
it has been successfully integrated into a wider functional model of working memory including
the prefrontal cortex and the dorsal BG (O’Reilly and Frank, 2006).

Together with an extensive review of the functional and electrophysiological properties of the
ventral basal ganglia, Humphries and Prescott (2010) propose a neuro-computational model of
howa specific subcircuit of the ventral BG, involving the shell part of NAcc (which integrates cor-
tical, amygdalar and hippocampal inputs) and some part of VP, can selectively produce either
bursts or dips in VTA, depending on the relative balance between the direct pathway (arising
from NAcc cells carrying D1 receptors and projecting directly on VTA) and the indirect pathway
(with NAcc neurons carrying both D1 and D2 receptors and projecting mainly on VP). In this
framework, the prediction of a reward activates the direct pathway, what can either reduce the
bursting amplitude or produce a dip in VTA, while the actual receipt of that reward activates the
indirect pathway, canceling the influence of the direct pathway and allowing VTA bursts. While
being more precise than our model on the functional role of NAcc cell subtypes, this model is
limited to bursts or dips occurring at reward delivery (or at the time when reward is expected),
but does not address the case of reward-predicting stimuli nor the issue of timing. This model
has nevertheless the advantage of being understood equally well in the reward-prediction error
framework of DA activity and in the action-outcome repertoire framework, which proposes that
DA bursts primarily help associating an action with its delayed consequences (Redgrave et al.,
2008).

Chorley and Seth (2011) proposed a dual-pathway model incorporating some concepts of the
striatal-beat frequency model. It is composed of several populations of spiking point-neurons,
subject to synaptic plasticity using a dopamine-modulated spike-timing dependent plasticity
(STDP) learning rule (Izhikevich, 2007). In this model, the sensory representation of the US ini-
tially activates the DA population through an excitatory relay (either the subthalamic nucleus
(STN) or the superior colliculus). The corresponding DA burst enables STDP learning between
the sustained sensory representation of the CS and STN, what leads to a progressive bursting
behavior in VTA at CS onset. In parallel, the inhibitory pathway to VTA, involving the prefrontal
cortex and the striatum, learns to progressively cancel the US-related burst and, if reward is
omitted, to strongly inhibit the VTA population. The mechanism for learning the CS-US inter-
val is similar to the striatal-beat frequency hypothesis: CS onset activates a pre-recorded se-
quence of spikes in the prefrontal cortex (identical in each trial) and the striatum learns to react
phasically to the precise pattern corresponding to the elapsed duration at US onset. This pre-
recorded sequence of spikes is functionally equivalent to a set of neural oscillators synchro-
nized at CS onset and expressing reproducible patterns at the population level. Oprisan and
Buhusi (2011) investigated a similar mechanism using Morris-Lecar neurons and showed that
even noisy oscillators, with variable inter-spike intervals, are able to produce a population code
for the elapsed duration since CS onset which can be detected by striatal coincidence detec-
tors. The model of Chorley and Seth (2011) is an elegant mechanism describing the evolution
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of DA bursts during conditioning as well as for earlier delivery of reward or reward omission. It
does not however map very precisely on the brain’s architecture, nor take the effect of reward
magnitude into account.

5.4.2 Biological plausibility

The structure of the proposed model is derived from known anatomical connections, and the
used neural mechanisms are consistent with experimental data, either at the cellular or popula-
tion level. It provides a minimal description of the network involved in controlling VTA activity
during classical conditioning, with respect to a limited set of observations. However, there
exists a certain number of other brain areas which are directly or indirectly involved in this pro-
cess. Similarly, alternative mechanisms, especially for timing, might replace or complement
the proposed ones. The purpose of this section is to discuss alternatives to the current as-
sumptions.

One key assumption in the model is that there exists a subgroup of NAcc neurons, presum-
ably in the striosomes (group of striatal neurons that project directly on SNc or VTA), which
get activated at reward omission. The previously reviewed dual-pathway models also share
this assumption, and justify it by observations that some cells in the ventral striatum display a
ramping activity pattern, with firing rates almost linearly increasing from CS onset and peaking
at the timewhen reward is expected (Deadwyler et al., 2004; Schultz et al., 1992). This indicates
that the CS-US interval duration is indeed learned by NAcc cells, but raises the question of how
such a ramping signal can be transformed into a phasic inhibition after reward is expected: di-
rect inhibition of VTA by such ramping cells in NAcc should progressively reduce VTA firing as
the time since CS onset increases, which is obviously not the case. Is there a still undiscov-
ered group of NAcc cells firing only at reward delivery/omission, or do these ramping activities
play a more complex role in the timing of CS-US intervals during conditioning? In the striatum,
some cholinergic TAN interneurons show complex patterns (either excitation or inhibition) at
reward omission (Apicella et al., 2009). As these cholinergic interneurons can disinhibit MSNs
through the modulation of fast-spiking inhibitory interneurons and bring them in the up-state
(Coull et al., 2011), it may provide amechanism for the phasic activation of a subgroup of NAcc
cells at reward omission. A more detailed model of the internal circuitry of NAcc is obviously
needed.

Alternatively, ramping activities in the NAcc during the CS-US interval might complement or
even replace such mechanisms. Such ramping activities have been also observed in the tha-
lamus (Komura et al., 2001) and prefrontal cortex (Reutimann et al., 2004), with the slope of
the ramp being proportional to the duration. This suggests that a cortex - ventral basal ganglia
- thalamus loop might be a good candidate to actually learn the CS-US interval duration with
climbing activities, modulated by the dopamine level. Based on this idea, many models have
been proposed for interval timing using neural integration or drift-diffusion models (Durstewitz,
2004; Luzardo et al., 2013; Simen et al., 2011). The model of (Rivest et al., 2010; Rivest et al.,
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2013) is a good example of such a mechanism. However, how the maximal activity reached by
such ramps is transformed into a precisely-timed phasic signal at reward omission still raises
difficult technical questions, such as the effect of noise on the precision of neural integration,
especially for long intervals, or the plausibility of the learning mechanisms.

In comparison to the other dual-pathway models, our model is to our knowledge the first to
explicitly incorporate distinct origins for the cancellation of US-related bursts and for the dips
at reward omission, although the idea was already proposed in (Hazy et al., 2010) as a func-
tional interpretation of the inhibitory component of the PV system PVi. As the authors noted,
cancellation of a US-related burst must derive from an inhibitory signal occurring slightly in ad-
vance from the receipt of reward in order to be efficient, while the dips associated with omitted
rewards occur clearly after the expected time, and the duration of these dips extends signif-
icantly longer than the corresponding bursts. They state that the first component is likely to
be implemented by the direct inhibitory projection of NAcc on VTA, while the second results
from a disinhibition of LHb by NAcc through a relay on VP, but the learning site of the CS-US
duration is NAcc in both cases. This interpretation is consistent with our model. The question
that arises is whether distinct subpopulations of NAcc participate in these two mechanisms:
do the striosomes directly projecting to VTA exhibit ramping activity, thus being able to cancel
US-related bursts in advance, while the matrix neurons, projecting to VP and therefore to the
LHb/RMTg complex, exhibit a more phasic behavior and get activated only at reward delivery
or omission, as predicted by the striatal-beat frequency model?

As observed experimentally (Fiorillo et al., 2008), the cancellation of the US-related bursts be-
comes weaker when the CS-US interval increases. We are not aware of any study reporting a
similar effect of the interval duration on dips at reward omission. If not, this may support the
idea that two different mechanisms govern the two types of inhibition: neural integration be-
comes less precise when the duration increases, as it becomes more difficult to detect when
the maximum of the slope is attained, while coincidence detectors are more robust, provided
that the oscillators are not too noisy (Matell and Meck, 2004; Oprisan and Buhusi, 2011).

An open issue with the coincidence detectors hypothesis is that corticostriatal learning is po-
tentiated by DA bursts at reward delivery. Typical bursts in VTA are relatively long (150 to 200
ms), what implies that cortical oscillators with a frequency superior to 5 or 6 Hz can show a
full period during the burst. In the model, the parameter 𝜏dopa = 10 ms representing the time
constant of the phasic effect of DA on corticostriatal learning (Equation 5.11) was artificially
set to a very fast value to ensure that learning occurs at the very beginning of the burst. Slower
values led to the situation where NAcc could only predict the occurrence of reward delivery
at the end of the burst, what arrives too late to effectively cancel the burst. In the model of
(Chorley and Seth, 2011), bursting behavior occurs in a time window of 50 ms, which, coupled
to the precise timing properties of STDP when compared to Hebbian learning rules, allows a
very sharp learning of the time elapsed since CS onset. How can very high oscillation frequen-
cies (the original Striatal-Beat Frequency model uses oscillators in the delta range 8 to 13 Hz)
accommodate with such large DA bursts is still an unresolved question.
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In Section 5.3.2, the earlier delivery of a reward lead to a VTA burst of the same amplitude as an
expected reward, but not to a dip at the expected time, as observed experimentally (Hollerman
and Schultz, 1998). This is only because the CS representation stops when the US disappears.
If the CSweremaintained for a longer duration, such a dipwould in fact be observed as the oscil-
lators in vmPFC would still signal the elapsed duration. There is a need for a reset mechanism
stopping the oscillators at reward delivery. A possible pathway would involve a closed-loop
between vmPFC and the ventral BG, with the inhibitory projection from VP on the mediodorsal
nucleus of the thalamus (MD) being able to stop thalamo-cortical oscillations betweenMD and
vmPFC at reward delivery. The problem of resetting temporal representations after reward de-
livery is common to many models (see Daw et al. (2006) for a review), at the notable exception
of the model of Ludvig et al. (2008).

Although successfully reproducing the known effects of reward magnitude on DA activity, the
proposed model does not investigate the case where less reward than expected, instead of no
reward at all. Experimentally, VP gets activated by large rewards and inhibited by small ones
(Tachibana and Hikosaka, 2012), while LHb shows the opposite pattern (Hikosaka et al., 2008).
Based on the current model, we propose that the comparison between predicted and received
reward may be computed in VP through the competition between inhibitory inputs from NAcc
and excitatory inputs from PPTN and is further transmitted to VTA either directly or through
disinhibition of LHb and RMTg. A further refinement of the model in these areas may also shed
some light on the influence of aversive stimuli, which are able to activate the lateral habenula
and produce DA dips (Matsumoto and Hikosaka, 2007) but also to generate bursts in some
subpopulations of VTA (Brischoux et al., 2009; Lammel et al., 2012).

The subthalamic nucleus (STN) has been left out of the model, although it is part of the ventral
BG. Like NAcc, its medial part receives cortical inputs from the medial prefontal cortex, but
it projects excitatorily on the part of VP receiving connections from the core of NAcc. It has
been shown to encode both reward magnitude, reward expectation and errors (Darbaky et al.,
2005; Lardeux et al., 2009) and is important for Pavlovian-to-Instrumental transfer of learning
(Winstanley et al., 2005). STNmay signal themotivational value of stimuli to VP, complementing
the information received from PPTN. Future extension of this model to instrumental learning
will have to investigate the role of STN more deeply.

Similarly, the cerebellum is a very important player in aversive conditioning, as in the eyeblink
conditioning paradigm (Christian andThompson, 2003; Thompson andSteinmetz, 2009). It has
been left out of the model as its involvement in appetitive conditioning is still unknown. How-
ever, it is now acknowledged that the cerebellum and the basal ganglia communicate more
with each other than initially thought: in particular, the cerebellum projects on thalamic nu-
clei which directly contact the striatum, especially the D2-type neurons of the indirect pathway
(Bostan and Strick, 2010). How the BG and the cerebellum cooperate during conditioning still
has to be explored.

The role of the ventral striatum in timing processes is also subject to debate. Several studies
have shown that NAcc plays no important role in the timing of instrumental responding (Gal-
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tress and Kirkpatrick, 2010; Meck, 2006), contrarily to the timing of Pavlovian responses (Singh
et al., 2011). However, both processes are interrelated, as they both rely on dopaminergic ac-
tivation, while NAcc is considered as a crucial site for Pavlovian-to-Instrumental transfer of
learning (Corbit and Balleine, 2011). The Striatal-Beat Frequency model was initially proposed
for the timing of instrumental responses, and identified the dorsal striatum as a potential sub-
strate for the coincidence detection. Are two sites of temporal learning really needed for such
interdependent processes? Kirkpatrick (2013) proposed a functional model of the interactions
of timing and prediction error learning, where NAcc and BLA cooperate to compute the reward
value, while the timing of the association itself is learned in the dorsal BG and transmitted to
the DA system through its output GPi (internal segment of the globus pallidus). Indeed, the
border regions of GPi, which is usually considered as composed of GABAergic neurons pro-
jecting to the thalamus, have been shown to send an excitatory projection on LHb, what can in
turn produce DA dips (Hong and Hikosaka, 2008). These LHb-projecting neurons in GPi exhibit
a negative reward-prediction error pattern, excited by reward omission and inhibited by large
rewards, which is similar to the one in LHb but occurs slightly in advance. These border re-
gions of GPi receive projections from both the dorsal and ventral striatum, so it is possible that
both the dorsal and ventral parts of the BG cooperate to learn the temporal properties of both
action-outcome and stimulus-reward associations.

The proposed model is also rather conservative regarding the role of the amygdala in timing:
given that the amygdala is a key structure in acquiring, processing and storing Pavlovian as-
sociations and that timing is a fundamental component of conditioning, there should be some
neural correlates of temporal processing in the amygdala. Several lines of evidence indeed sug-
gests such an involvement, as reviewed in (Díaz-Mataix et al., 2013). In particular, a subgroup
of neurons in BLA exhibits a strong change in firing rate at the time when the US is expected but
not delivered (Belova et al., 2007), while some others show anticipatory activity for the reward,
proportional to the instantaneous reward delivery probability (Bermudez and Schultz, 2010).
This phenomenon might be particularly relevant for extinction, where the prolonged absence
of the US should decrease the conditioning strength associated to the CS (Tye et al., 2010). The
question is now from where does this timing information come from. Is it only signaled by the
dopaminergic projection from VTA to BLA, which is able to modulate both firing and learning in
BLA, or do other structures such as the hippocampus or vmPFC play a role?

In our model, the CS-related bursts in VTA arise from the BLA → CE → PPTN pathway, both
during and after learning. However, CE has been shown to be important for learning but not
expressing approach to appetitive cues (Groshek et al., 2005; McDannald et al., 2004). One
possibility is that associations learned in the amygdala are progressively transferred to the or-
bitofrontal or ventromedial prefrontal cortices, which are known to project excitatorily onto VTA
(Geisler et al., 2007). It is indeed known that frontal-amygdalar interactions are necessary for
the formation and use of expectancies of reinforcers in the guidance of goal-directed behavior
(Holland and Gallagher, 2004). It is therefore possible that the value associated to a reward
is first associated to the sensory features of the predicting CS in the amygdala (what can ini-
tially generate CS-related bursts) but that the prefrontal cortex progressively learns to compute
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the motivational value of the CS and activate the dopaminergic system with this information.
The known inhibitory projection from the medial prefrontal cortex to BLAmight provide a direct
mechanism to implement this transfer of responsability (Carmichael and Price, 1995), while
NAcc is at a central position to control their interplay (O’Donnell and Grace, 1995).

5.4.3 Conclusion

Wehave proposed a neuro-computationalmodel linking reward processing to timing processes
by focusing on the observed activity patterns of dopaminergic neurons during Pavlovian con-
ditioning. We isolated a group of brain areas involved in the different aspects of appetitive
conditioning and built a network using known anatomical connections. The resulting neural
network model reproduces several experimental observations, while providing a robust mecha-
nism for classical conditioning which can be implemented on a robotical platform. Its structure
provides a first step toward building biologically realistic models of instrumental responding by
understanding how the dopaminergic signal can be generated. Future extensions of thismodel,
especially by focusing on the ventral BG and the crucial role of NAcc, will allow to learn the mo-
tivational value of different stimuli by transferring the value of an outcome to the action associ-
ated to the stimulus. They will ultimately allow to study the neural substrates of goal-directed
behavior and their relationship with neuromodulators such as dopamine.
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6 ANNarchy: a code generation approach to
neural simulations on parallel hardware

Abstract

Manymodern neural simulators focus on the simulation of networks of spiking neurons on par-
allel hardware. Another important framework in computational neuroscience, rate-coded neu-
ral networks, is mostly difficult or impossible to implement using these simulators. We present
here the ANNarchy (Artificial Neural Networks architect) neural simulator, which allows to eas-
ily define and simulate rate-coded and spiking networks, as well as combinations of both. The
interface in Python has been designed to be close to the PyNN interface, while the definition
of neuron and synapse models can be specified using an equation-oriented mathematical de-
scription similar to the Brian neural simulator. This information is used to generate C++ code
that will efficiently perform the simulation on the chosen parallel hardware (multi-core system
or graphical processing unit). Several numerical methods are available to transform ordinary
differential equations into an efficient C++ code. We compare the parallel performance of the
simulator to existing solutions.

6.1 Introduction

The efficiency and flexibility of neural simulators becomes increasingly important as the size
and complexity of the models studied in computational neuroscience grows. Most recent ef-
forts focus on spiking neurons, either of the integrate-and-fire or Hodgkin-Huxley type (see
Brette et al., 2007 for a review). The most well-known examples include Brian (Goodman and
Brette, 2008; Stimberg et al., 2014), NEST (Gewaltig and Diesmann, 2007), NEURON (Hines and
Carnevale, 1997), GENESIS (Bower and Beeman, 2007), Nengo (Bekolay et al., 2014) or Auryn
(Zenke and Gerstner, 2014). These neural simulators focus on the parallel simulation of neural
networks on shared memory systems (multi-core or multi-processor) or distributed systems
(clusters) using either OpenMP (open multi-processing) or MPI (message parsing interface).
Recent work address the use of general-purpose graphical processing cards (GPU) through the
CUDA or OpenCL frameworks (see Brette and Goodman, 2012 for a review). The neural simula-
tors GeNN 1, NCS (Thibeault et al., 2011), NeMo (Fidjeland et al., 2009) andCARLsim (Carlson et

1The GeNN project, http://sourceforge.net/projects/genn/
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al., 2014) provide in particular support for the simulation of spiking and compartmental models
on single or multiple GPU architectures.

A common approach to most of these neural simulators is to provide an extensive library of
neuron and synapse models which are optimized in a low-level language for a particular com-
puter architecture. These models are combined to form the required network by using a high-
level interface, such as a specific scripting language (as in NEST or NEURON) or an interpreted
programming language (e.g. Python). As these interfaces are simulator-specific, the PyNN in-
terface has been designed to provide a common Python interface tomultiple neural simulators,
allowing a better exchange of models between researchers (Davison et al., 2008). The main
drawback of this approach is that a user is limited to the neuron and synapse models provided
by the simulator: if one wants to even marginally modify the equations of a model, one has to
write a plugin in a low-level language without breaking the performance of the simulator. This
can be particularly tedious, especially for CUDA code on GPUs.

A notable exception is the Brian simulator, which allows the user to completely define the neu-
ron and synapse models using a simple mathematical description of the corresponding equa-
tions. Brian uses a code generation approach to transform these descriptions into executable
code (Goodman, 2010), allowing the user to implement any kind of neuron or synapse model.
The first version of Brian executes the code in Python directly (although some code portions can
be generated in a lower-level language) using vectorized computations (Brette and Goodman,
2011), making the simulation relatively slow and impossible to run in parallel on shared mem-
ory systems. The second version in development (Brian 2, Stimberg et al., 2014) proposes a
complete code generation approach where the simulation can be implemented in different lan-
guages or parallel frameworks. This approach is promising as it combines flexibility in model
design with efficient and parallel simulation performance.

Rate-coded networks, however, do not benefit much from the advances of spiking simulators.
Rate-coded neurons do not communicate through discrete spike events but through instanta-
neous firing rates (real values computed at each step of the simulation). Rate-coded simulators
are either restricted to classical neural networks (static neurons learning with the backpropa-
gation algorithm) or optimized for particular structures such as convolutional networks. To our
knowledge, no rate-coded simulator provides a flexibility similar to what Brian proposes. The
Emergent simulator (Aisa et al., 2008) provides some features - including parallel computing
- and is used in a number of models in computational neuroscience (e.g. O’Reilly and Frank,
2006) but is restricted to a set of neuron and synapse models provided by the Leabra library.
Topographica (Bednar, 2009) and CNS (Cortical Network Simulator, Mutch et al., 2010) primar-
ily focus on convolutional networks. DANA (Distributed, Asynchronous, Numerical and Adap-
tive computing framework, Rougier and Fix, 2012) is a generic solver for distributed equations
which can flexibly simulate dynamical rate-coded networks, but it does not address parallel
computing yet.

Rate-coded networks are nevertheless an important paradigm in computational neuroscience,
as they allow to model complex structures and dynamics with a smaller computational foot-
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print than spiking networks. Each unit of a rate-coded network can model the dynamics of sev-
eral biological neurons, so a rate-coded network typically requires less units to perform a func-
tion than a functionally equivalent spiking network. The rate-coded domain also benefits from
a wide range of biologically realistic learning rules - such as the Bienenstock-Cooper-Munro
(BCM) rule (Bienenstock et al., 1982) or the Oja learning rule (Oja, 1982). Synaptic plasticity
in spiking networks, including spike-timing dependency plasticity (STDP), is an active research
field and the current implementations can be hard to parameterize. Except in cases where syn-
chronization mechanisms take place or where precise predictions at the single-cell level are
required, rate-coded networks can provide a valid approximation of the brain’s dynamics at the
functional level, see for examplemodels of reinforcement learning in the basal ganglia (Dranias
et al., 2008; O’Reilly and Frank, 2006; Schroll et al., 2014), models of visual attention (Beuth and
Hamker, 2015; Zirnsak et al., 2011) or models of gain normalization (Carandini and Heeger,
2012).

Another reason why rate-coded networks should not be neglected by neural simulators is that
advances in computational neuroscience allow to aim at complete functional models of the
brain which could be implemented in simulated agents or robots (e.g. Eliasmith et al., 2012).
However, spiking networks may not yet be able to perform all the required functions, especially
when in a learning context. Hybrid architectures, combining rate-coded and spiking parts, may
prove very useful to achieve this goal. We consider there is a need for a parallel neural simula-
tor which should: 1) be flexible for the definition of neuron and synapse models, 2) allow the
definition of rate-coded, spiking and hybrid networks, 3) be computationally efficient on CPU-
and GPU-based hardware and 4) be easy to interface with external programs or devices (such
as robots).

This article presents the neural simulator ANNarchy (Artificial Neural Networks architect) which
allows to simulate rate-coded, spiking as well as hybrid neural networks. It proposes a high-
level interface in Python directly inspired from PyNN for the global structure and Brian for the
definition of neuron and synapse models. It uses a C++ code generation approach to perform
the simulation in order to avoid the costs of an interpreted language such as Python. Further-
more, rate-coded and spiking networks raise different problems for parallelization (Dinkelbach
et al., 2012), so code generation ensures the required computations are adapted to the parallel
framework. ANNarchy is released under the version 2 of the GNU Public License. Its source
code and documentation2 are freely available.

2http://bitbucket.org/annarchy/annarchy and http://annarchy.readthedocs.org
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6.2 Interface of the simulator

6.2.1 Structure of a network

The interface of ANNarchy focuses on the definition of populations of neurons and their in-
terconnection through projections. Populations are defined as homogeneous sets of identical
neurons, while projections gather all synapses formed between the neurons of the pre-synaptic
population and the ones of the post-synaptic population. Each projection is associated to a
target name (e.g. ‘exc’ for excitatory synapses and ‘inh’ for inhibitory ones). This allows the
post-synaptic neurons receiving these synapses to integrate them differently, for example to
implement modulatory effects. The target can represent the excitatory/inhibitory nature, the
corresponding neurotransmitter (‘ampa’, ‘nmda’, ‘gaba’) or even the functional role of a synapse
(‘feedforward’, ‘feedback’).

Figure 6.1: ANNarchy script reproducing the pulse-coupled spiking network described in Izhike-
vich (2003). A population of 1000 Izhikevich neurons is created and split into sub-
sets of 800 excitatory and 200 inhibitory neurons. The different parameters of the
Izhikevich neuron are then initialized through attributes of the two populations. a, b,
c and d are dimensionless parameters, noise is a multiplicative factor on the ran-
dom variable Normal(0., 1.) drawn each step from the standard normal distribu-
tion 𝒩(0, 1), v_thresh is the spiking theshold of the neurons and tau is the time
constant in milliseconds of the membrane conductances. The network is fully con-
nected, with weight values initialized randomly using uniform distributions whose
range depend on the pre-synaptic population. The source code for the network is
then generated, compiled and simulated for 1000 milliseconds.

Figure 6.1 shows a simple example implementing the pulse-coupled spiking network proposed
by Izhikevich (2003). It creates a population of 1000 Izhikevich neurons and splits it into two
subsets of 800 excitatory and 200 inhibitory neurons each. These neurons are reciprocally con-
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nectedwith each other (all-to-all connection pattern) through excitatory and inhibitory synapses.
Such a pulse-coupled network exhibits oscillating pattern at various frequencies, depending on
the strength of the connections. The example uses Izhikevich neurons, which are defined by
Equation 6.1:

𝐼(𝑡) = 𝑔exc(𝑡) − 𝑔inh(𝑡) + 𝑛 ⋅ 𝜒
𝑑𝑣(𝑡)

𝑑𝑡 = 0.04 ⋅ 𝑣(𝑡)2 + 5 ⋅ 𝑣(𝑡) + 140 − 𝑢(𝑡) + 𝐼(𝑡)
𝑑𝑢(𝑡)

𝑑𝑡 = 𝑎 ⋅ (𝑏 ⋅ 𝑣(𝑡) − 𝑢(𝑡))
if 𝑣(𝑡) > 𝑣thresh ∶ 𝑣(𝑡) = 𝑐 and 𝑢(𝑡) += 𝑑

(6.1)

with 𝐼(𝑡) being the total input current to a neuron at time 𝑡, 𝑔exc(𝑡) (resp. 𝑔inh(𝑡)) the total
current current injected by excitatory (resp. inhibitory) synapses, 𝑣(𝑡) the membrane potential
and 𝑢(𝑡) a recovery variable. 𝜒 is an additive random variable following a standard normal dis-
tribution and 𝑛 a multiplicative factor. When the membrane potential 𝑣(𝑡) exceeds a threshold
𝑣thresh, a spike is emitted, the membrane potential is reset and the recovery variable is incre-
mented. 𝑎, 𝑏, 𝑐 and 𝑑 are dimensionless parameters specifying the dynamics of the neuron
type.

Populations are defined by three fields: 1) the geometry, which can represent either the to-
tal number of neurons (a single integer) or a multi-dimensional structure (tuple) similar to the
shape of a Numpy array (Walt et al., 2011); 2) the type of neuron used in the population (either
a pre-defined neuron model or one defined by the user, see Section 6.2.3 and Section 6.2.4)
and 3) an optional unique name allowing to access the population globally. Defining a multi-
dimensional geometry is primarily useful for visualization purposes andwhen defining distance-
dependent connection patterns between two populations, but the internal data is arranged in
one-dimensional arrays (see Section 6.3.1).

Once the populations are created, the value of each parameter and variable can be directly set
using population attributes, by providing either a single value (which will be the same for all
neurons) or lists/Numpy arrays of the same size/shape as the population. Like many other
simulators, but unlike Brian, parameters and variables use implicit physical units: except for
time which is expressed in milliseconds, the user must decide if the value of a variable repre-
sents volts or millivolts, for example. Brian uses explicit physical units, which allows to ensure
consistency between the parameters. The neurons of a population can be accessed either in-
dividually or in subsets (similar to the PopulationViews of PyNN), allowing a finer control over
the parameter values. Subsets use the slice notation of NumPy.

Projections are defined by four values: 1) the pre-synaptic population, 2) the post-synaptic pop-
ulation, 3) the associated target (e.g. “exc” or “inh”) and 4) optionally the synapse type. Sub-
sets of a population can also be used to create the projection. A connecting method has to
be applied on the projection in order to create the synapses using a pre-defined scheme and
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initialize the corresponding weights and delays. The network is here fully connected, using the
connect_all_to_all() method. Several methods are provided by the simulator (all-to-all,
one-to-one, distance-dependent, probabilistic…) but the user can also define its own connection
patterns in Python, or load connection matrices from a file. Compatibility with the Connection
Set Algebra proposed by Djurfeldt (2012) is currently under development.

Once the populations and projections are defined and initialized, the corresponding C++ code
has to be generated and compiled by calling the compile() method. If the network struc-
ture has not changed since the last execution of the script, compilation is skipped. The C++
structures storing the parameters and variables of the populations and projections are then
initialized with the values previously defined. The network can be then simulated for a certain
duration in milliseconds. The values of all population/projection attributes can be read and
modified at any point between two calls to simulate(), allowing an easy definition of com-
plex experimental protocols.

This simple script outlines the high-level interface necessary to create a network: in its most
simple form, all implementation details (including the neuron/synapse models) are hidden to
the user. At this level, there is also no distinction between rate-coded and spiking networks.
This distinction only appears when defining or using neuron and synapse models.

6.2.2 Equation-oriented description

Neuron and synapse models are described using an equation-oriented approach, where each
equation is expressed by a simple textual description. The goal of the syntax is to provide a
high flexibility to the user while being close to natural mathematical descriptions (Stimberg
et al., 2014). Our equation-oriented syntax has been designed to be close to the Brian syntax
(Goodman and Brette, 2008), although some differences had to be introduced to take into ac-
count the semantic difference between rate-coded and spiking neurons.

The syntax chosen for the equations ruling each variable allows to describe most common
mathematical operations. Each variable has to be described by an equation, either regular or
differential. For themoment, ANNarchy only supports first-order ordinary differential equations
(ODE). For regular equations, the left side must hold only the name of the variable which will
be updated (e.g. a = b + c). The available operators are assignment (=) and the different
augmented assignments (+=, -=, *=, /=). For ODEs, the left term can be more complex
(tau*dv/dt + v = E is the same asdv/dt = (E - v)/tau), but only the assignment operator
is allowed. The right term can use single operations (+, -, *, /) or power functions (y^d) of
other parameters or variables. Different mathematical functions are available (given they exist
in the C math library), for example cos, sin, exp, log…

Conditional statements (if/then/else) can be useful for some rate-coded neurons, although they
are classically avoided in spiking neurons. They follow a Python-like syntax using the if and
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else keywords and : as a separator. The rectifier transfer function can for example be imple-
mented like this:

r = if v > 0.0: v else: 0.0

with r being the output of a neuron and v its net activation. The condition can use any parame-
ters or variable of the neuron or synapse. All relational operators are available (<, >, <=, >=, ==,
!=…), and they can be combined using the and and or logical operators. Conditioal statements
can be nested.

6.2.3 Rate-coded neurons and synapses

Figure 6.2: Examples of rate-coded neuron and synapse definitions. a) Noisy leaky-integrator
rate-coded neuron. It defines a global parameter tau for the time constant and a
local one B for the baseline firing rate. The evolution of the firing rate r over time
is rules by an ODE integrating the weighted sum of excitatory inputs sum(exc) and
the baseline. The random variable is defined by the Uniform(-1.0, 1.0) term,
so that a value is taken from the uniform range [−1, 1] at each time step and for
each neuron. The initial value at 𝑡 = 0 of r is set to 1.0 through the init flag and
theminimal value of r is set to zero. b) Rate-coded synapse implementing the IBCM
learning rule. It defines a global parameter tau, which is used to compute the sliding
temporal mean of the square of the post-synaptic firing rate in the variable theta.
This variable has the flag postsynaptic, as it needs to be computed only once per
post-synaptic neuron. The connection weights w are then updated according to the
IBCM rule and limited to positive values through the min=0.0 flag.
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Rate-coded neurons

The definition of a rate-coded neuron model is done by instantiating a Neuron object, with
arguments specifying the parameters and variables of the neuron. Let us consider a simple
noisy leaky-integrator rate-coded neuron:

𝜏 ⋅ 𝑑𝑟(𝑡)
𝑑𝑡 + 𝑟(𝑡) =

𝑁
∑
𝑖=1

𝑤𝑖 ⋅ 𝑟𝑖(𝑡) + 𝐵(𝑡) + 𝑢(−1, 1) (6.2)

where 𝑟(𝑡) is the instantaneous firing rate of the neuron at time 𝑡, 𝜏 its time constant, 𝐵(𝑡)
its baseline firing rate (which can change over time), 𝑢(−1, 1)) a random variable taken at

each time 𝑡 in the uniform range [−1, 1] in order to add noise and ∑𝑁
𝑖=1 𝑤𝑖 ⋅ 𝑟𝑖 represents

the weighted sum of excitatory inputs to a particular neuron. Figure 6.2 a shows a possible
implementation of such a neuron in ANNarchy.

The first argument parameters is a string or multi-line string defining two parameters: tau,
the time constant of the neuron, initialized to 10 milliseconds, and B, the baseline firing rate,
initialized to 0. Parameter definitions can be placed on different lines or separated by semi-
colons. Once a population is created, these parameters are accessible and modifiable through
population attributes. Various flags can be set after the : symbol. In this example, the flag
population tells the code generator that the value of tau will be shared by all neurons of a
population, so it only needs to store one value. It is also possible to specify the type of the
parameter: parameters (and variables) are by default represented by double precision floating-
point values. The int and bool flags change the type of the attribute to integer or boolean, if
needed.

The second argument equations defines the variables of the neuron, whose value will evolve
with time during the simulation. The number of variables defined in the model is unlimited, but
at least one of them should be named r, as this is the default variable used by post-synaptic
neurons to compute their weighted sum of inputs. The code corresponding to Equation 6.2 is
straightforward. The temporal derivative of 𝑟(𝑡) is symbolized by the term dr/dt. The random
variable 𝑢(−1, 1)) is generated by the term Uniform(-1.0, 1.0), where -1.0 and 1.0 and
the bounds of the uniform range. Different distributions can be used in an equation, including
the normal, log-normal, exponential and gamma distributions. The weighted sum of excitatory
inputs is represented by sum(exc), which sums over all projections possibly reaching a partic-
ular neuron the product between the connection weight w and the firing rate of the pre-synaptic
neuron r. The term exc corresponds to the target name defined when creating the projections.
By default, this ODE will be solved using the explicit (forward) Euler method, but other methods
are available, see Section 6.3.4. The flag init defines the initial value of the variable for all
neurons and min defines a lower bound for the variable (if r is negative after an update, it will
be set to 0), as the firing rate r is usually ensured positive in rate-coded networks. The max flag
is also available.
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Rate-coded synapses

When the pre-synaptic population of a projection is rate-coded, the synapses of the projection
are assumed to be also rate-coded. A synapse is represented by a fixed connection weight (or
synaptic efficiency) named w and a delay in synaptic transmission d (in milliseconds). Each
synapse will participate in the weighted sum of inputs of the post-synaptic neuron with 𝑤(𝑡) ∗
𝑟(𝑡 − 𝑑), where 𝑟(𝑡 − 𝑑) is the firing rate of the pre-synaptic neuron at time 𝑡 − 𝑑. Synaptic
delays in a network must be a multiple of the fixed integration step dt (see Section 6.3.4), but
each synapse of a projection can define a different delay. The minimal delay is dt, as neurons
can only access the value of variables computed at the previous time step (synchronous com-
putation). Note that the Brian simulator can simulate rate-coded synapses, but only without
delay.

In a learning context, connection weights evolve with time according to a variety of learning
rules (Dayan and Abbott, 2001). Synapsemodels can be created to override the default behav-
ior and implement synaptic plasticity or non-linear transmission. Figure 6.2 b shows a possible
implementation of the IBCM learning rule (Intrator and Cooper form of the BCM rule) (Intrator
and Cooper, 1992). It is a Hebb-like product of the pre-synaptic firing rate and a quadratic func-
tion of the post-synaptic firing rate. The quadratic function uses a dynamical threshold 𝜃(𝑡)
which is defined as the expectation of the square of the post-synaptic firing rate:

𝜃(𝑡) = 𝐸(𝑦2(𝑡))
𝑑𝑤(𝑡)

𝑑𝑡 = 𝑦(𝑡) ⋅ (𝑦(𝑡) − 𝜃(𝑡)) ⋅ 𝑥(𝑡)
(6.3)

where 𝑥(𝑡) is the pre-synaptic firing rate, 𝑦(𝑡) the post-synaptic one, 𝑤(𝑡) the connection
weight and 𝜃(𝑡) is defined as the moving average of 𝑦2(𝑡) through the 𝐸() expectation op-
erator. In the code displayed on Figure 6.2 b, the moving average is calculated using a first-
oder ODE integrating the square of the post-synaptic firing rate, with a time constant tau of 2
seconds by default. Pre- and post-synaptic neural variables (usually the firing rate r, but any
other variable can be used) can be accessed by prefixing the variable name by pre. and post.,
respectively.

The update rule for the weight w is simply derived from Equation 6.3 using these conventions.
theta is a post-synaptic variable, as it only depends on the post-synaptic neural activity. It
would therefore be awaste of resources to compute it for each synapse: once per post-synaptic
neuron is enough. The equation for theta (as well as the corresponding parameter tau) is
associated with the flag postsynaptic, which has a similar meaning as population for a
neuron: the global variable will be updated only once per post-synaptic neuron. The variable w
is local to a synapse, so the flag should not be set. Instead, min=0.0 is used to ensure that the
weight will not become negative over time.

175



6 ANNarchy

In a rate-coded neuron model, the term sum(exc) represents by default the weighted sum of
excitatory inputs to this neuron. It is possible to change this behavior in the synapse definition
by adding a psp argument to the synapse definition, whose default value is "w * pre.r".
Non-linear synapses, where for example 𝑤𝑖 ⋅ log(𝑟𝑖) should be summed over all synapses
instead of𝑤𝑖 ⋅ 𝑟𝑖, can be implemented by setting psp = "w * log(pre.r)". The summation
operation can also be changed, by defining the operator argument, whose default value is
"sum". If "max", "min" or "mean" is used, the maximal (resp. minimal or mean) value of psp
is calculated over all synapses associated to the target excwill be returned by sum(exc). This
is particularly useful for pooling operations, which are used for example in hierarchical visual
processing (Hamker, 2004b; Riesenhuber and Poggio, 1999).

6.2.4 Spiking neurons and synapses

Spiking neurons

Integrate-and-fire neurons (IF) describe the temporal evolution of the membrane potential 𝑣(𝑡)
through a system of first-order ODEs. When themembrane potential exceeds a given threshold,
a spike is emitted and the value of the different neural variables is clamped to a reset value
for a certain duration called the refractory period. The condition for spike emission as well
as the reset and refractory behaviors have to be explicitly defined in addition to the internal
dynamics. More complex spiking neurons such as the Hodgkin-Huxley neuron model have
their own dynamics for the reset and refractory mechanisms. Figure 6.3 a shows a possible
implementation of the Izhikevich neuron described by Equation 6.1.

As for rate-coded neurons, the argument parameters describes the different parameters of
the neuronmodel: a, b, c and d are dimension-less parameters, v_thresh is the spiking thresh-
old, noise is a multiplying factor on the noise random variable and tau is the time constant
in milliseconds of the conductances. The argument equations describes the evolution of the
three variables I, v and u of Equation 6.1. Normal(0., 1.) is a randomvariable taken fromthe
standard normal distribution. g_exc and g_inh represent the total excitatory and inhibitory cur-
rents or conductances generated by incoming pre-synaptic spikes. They are the equivalent for
spiking neurons of sum(exc) and sum(inh) for rate-coded neurons. The syntax g_target is
different from the rate-coded case because they have a different behavior: while sum(target)
is computed at every time step of the simulation by summing pre-synaptic activity, g_target
is event-driven. Every time a pre-synaptic spike arrives to a neuron, the corresponding conduc-
tance is increased from a value corresponding to the weight (or efficiency) w of the synapse. If
no spike arrives, the conductance evolves with its own dynamics, independently from inputs.

The default behavior for conductances is governed by instantaneous synapses: once all the
incoming spikes have been summed, the total conductance is reset to 0 for the next time step.
More realistic models use exponentially decreasing or alpha (double exponential) functions
to model the dynamics of the conductance. The example of Figure 6.3 a uses exponentially

176



6.2 Interface of the simulator

Figure 6.3: Examples of spiking neuron and synapse definitions. a) Izhikevich neuron. The pa-
rameters and equations fields follow the same principles as for rate-coded neu-
rons. The variable I gathers the inputs to the neuron, namely the sum of the exci-
tatory g_exc and inhibitory g_inh input currents and a constant current i_offset.
The membrane potential v and the recovery variable u are updated according to the
desired dynamics, with initial values specified with the init keyword. The spike
field defines the condition for emitting a spike, here when the membrane potential
v exceeds the threshold v_thresh. The reset field specifies the modifications
happening after a spike is emitted. Here the membrane potential is clamped to
the value c and the recovery variable u is incremented by d. The refractory period
is determined by the refractory field, here 2 milliseconds. b) Short-term plas-
ticity (STP) synapse. For this synapse, the increment of the post-synaptic conduc-
tance g_target when a pre-synaptic spike arrives depends not only on the synap-
tic efficiency w, but also on the value of variables internal to the synapse x and u.
These are updated through two mechanisms: the equations field specifies their
exponentially-decreasing dynamics, while the pre_spike defines their increments
when a pre-synaptic spike arrives at the synapse. However, the integration of the cor-
responding ODEs is event-driven through the use of the event-driven flag: when a
pre- or post-synaptic spikes occurs, the new value of these variables is directly com-
puted using the analytical solution of the ODE. This can speed up the simulation if
the number of spiking events is low. c) Spike-timing dependent plasticity (STDP)
synapse. For this synapse, the post-synaptic conductance is increased by w after a
pre-synaptic spike is received, but the synaptic efficiency is adapted depending on
two internal variables Apre and Apost. The pre_spike field states what should
happen when a pre-synaptic spike arrives at the synapse, while the post_spike
field describes the changes occuring when the post-synaptic neuron fires. The vari-
ables Apre and Apost are integrated in an event-driven manner. The clip() func-
tion is used to maintain w in the range [0, w_max]. d) NMDA non-linear synapse.
This synapse does not transmit information to the post-synaptic neuron in an event-
driven manner. Rather, the synaptic variable g is summed at each time step by the
post-synaptic neuron, as for rate-coded networks. This is specified by the psp field.
When a pre-synaptic spike occurs, the variable x is increased by w, which in turn
will modify the evolution of g through the coupled equations described in the equa-
tions field. These equations cannot be solved with the event-driven method, as
their values should be available at each time step.
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decreasing synapses, by specifying a linear first-order ODE for the conductances g_exc and
g_inh. If no spike arrives for a certain duration, the conductances will progressively decay
back to 0, with a time constant defined by the parameter tau.

Two other arguments of the Neuron object have to be defined: spike defines the spiking con-
dition, i.e. the condition that must be satisfied in order to emit a spike (typically when the mem-
brane potential exceeds a given threshold); reset describes what should happen after a spike
is emitted. The spiking condition has to be a boolean expression; it can depend on any pa-
rameter or variable, possibly combined through the logical operators and and or. The reset
statement forces some neural variables to take predefined values after a spike is emitted: here
the membrane potential is clamped to a reset value c and the recovery variable is incremented
by d.

Spiking neurons can also define a refractory period, during which the ODEs are not evaluated
(i.e. the membrane potential stays at its reset value), except for the conductances g_exc and
g_inh. This corresponds to the hyper-polarized state of a neuron after spike emission, where
no spike can be further emitted. The duration of this refractory period is set through the re-
fractory argument, which takes here a constant value of 2 milliseconds, but the name of a
parameter or variable can be given, allowing for dynamical refractory period: for example, the
refractory period can be progressively increased if the firing rate becomes too high.

As shown in Stimberg et al. (2014), the five arguments parameters, equations, spike, re-
set and refractory are sufficient to describe the dynamics of most point-spiking neurons,
including IF and Hodgkin-Huxley models, and are directly related to the Brian syntax (although
parameters is implicit in Brian). They are not well suited to describe multi-compartment mod-
els, which are the main focus of simulators such as NEURON or GENESIS. However, Brian 2
introduces support for this kind of models.

Event-driven synaptic transmission

Synaptic behavior in spiking networks is also different from rate-coded networks, and requires
additional description. The basic type of synapses is the linear synapse, where synaptic trans-
mission is event-driven: when the pre-synaptic neuron emits a spike, it increases the corre-
sponding post-synaptic conductance by a given value (generally the synaptic efficiency w). If
no spike occurs, the synapse does not need to transmit any information: the dynamics of
conductances are already defined at the post-synaptic neuron level. As in Brian, a spiking
synapse can therefore define two additional arguments: pre_spike which specifies what
should happen when a pre-synaptic spike arrives at the synapse (potentially after a given de-
lay) and post_spikewhen the post-synaptic neuron emits a spike. The default linear synapse
only defines pre_spike with the value g_target += w. g_target is a generic name for the
conductance associated to the synapse. Depending on the target of the projection, g_target
will be replaced by g_exc or g_inh, for example. The underlying idea is that the same synapse
type can be used in different projections, regardless of their target.
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Some event-driven synapsemodelsmodify the post-synaptic conductancewith a value depend-
ing on specific synaptic variables. This is for example the case in short-term plasticity (STP)
synapses (Markram et al., 1998), where the increment of the post-synaptic conductance de-
pends on the history of the synapse. Frequent stimulation of a facilitating synapse leads to
an increased influence on the post-synaptic neuron, while depressing synapses show the op-
posite effect. A possible model of STP synapses uses two internal variables 𝑢(𝑡) and 𝑥(𝑡),
which evolve continuously according to linear ODEs:

𝜏rec ⋅ 𝑑𝑥(𝑡)
𝑑𝑡 = 1 − 𝑥(𝑡)

𝜏facil ⋅
𝑑𝑢(𝑡)

𝑑𝑡 = 𝑈 − 𝑢(𝑡)
(6.4)

When a pre-synaptic spike arrives at the synapse, the post-synaptic conductance should be
incremented with𝑤(𝑡) ⋅𝑢(𝑡) ⋅𝑥(𝑡), while the synaptic variables should be modified according
to:

𝑥(𝑡) ← 𝑥(𝑡) ⋅ (1 − 𝑢(𝑡))
𝑢(𝑡) ← 𝑢(𝑡) + 𝑈 ⋅ (1 − 𝑢(𝑡)) (6.5)

Figure 6.3 b shows an implementation of a synapse with short-term plasticity. The parameters
are tau_rec, tau_facil and U, which define the dynamics of the synapse and whether it
is facilitating or depressing. The two variables u and x directly relate to Equation 6.4. The
pre_spike argument defines what should be modified when the pre-synaptic spike occurs:
g_target should be incremented with w*u*x instead of w by default, and u and x are modified
according to Equation 6.5.

The equations for u and x use the flag event-driven. As explained later in Section 6.3.4, this
defines the numerical method used to integrate the ODE. Here both variables are defined by
first-order linear ODEs, so their current value can be directly calculated whenever a pre- or post-
synaptic spike occurs, based on the time elapsed since the last event (exponentially decreasing
function of time). This can spare a lot of computations if the number of spikes in the network
is not very high.

An event-driven synapse does not need to rely only on spike times for its dynamics. As for rate-
coded synapses, it can access pre- and post-synaptic variables during updates: the pre- (resp.
post-) synaptic membrane potential is accessed with pre.v (resp. post.v). Pre-synaptic vari-
ables are delayed if necessary. However, only the post-synaptic conductance g_target can
be modified by a synapse, contrary to Brian 2.
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Synaptic plasticity

Synaptic plasticity can also be described using event-driven mechanisms: the weight w of a
synapse usually only needs to be updated when a pre- or post-synaptic spike occurs. Most
biologically-realistic synaptic plasticity mechanisms in spiking networks indeed derive from
the spike timing dependent plasticity (STDP) rule (Gerstner et al., 1996; Markram et al., 1997).
Although many different implementations exist, there is an online version of STDP which is
event-driven (Song et al., 2000). With this rule, each synapse integrates two variables 𝐴pre(𝑡)
and𝐴post(𝑡)which represent traces of the pre- and post-synaptic spikes, respectively. Between
two spikes, they follow linear first-order ODEs:

𝜏+ ⋅ 𝑑𝐴pre(𝑡)
𝑑𝑡 = −𝐴pre(𝑡)

𝜏- ⋅
𝑑𝐴post(𝑡)

𝑑𝑡 = −𝐴post(𝑡)
(6.6)

When a pre-synaptic spike occurs, the pre-synaptic trace𝐴pre(𝑡) is incremented by a fixed value,
and at the same time the post-synaptic trace 𝐴post(𝑡) is substracted from the synaptic effi-
ciency 𝑤(𝑡), allowing long-term depression (LTD):

𝐴pre(𝑡) ← 𝐴pre(𝑡) + 𝐴+ ⋅ 𝑤max

𝑤(𝑡) ← 𝑤(𝑡) − 𝐴post(𝑡)
(6.7)

with 𝑤max being the maximal value allowed for the weight. When a post-synaptic spike occurs,
the post-synaptic trace is incremented, and the synaptic efficiency 𝑤(𝑡) is increased from the
pre-synaptic trace, allowing long-term potentiation (LTP):

𝐴post(𝑡) ← 𝐴post(𝑡) + 𝐴− ⋅ 𝑤max

𝑤(𝑡) ← 𝑤(𝑡) + 𝐴pre(𝑡)
(6.8)

Figure 6.3 c shows a possible implementation of this STDP plasticity rule. The equations for
Apre and Apost can be integrated with an event-driven method, as their value is only required
when a pre- or post-synaptic spike occurs. Synaptic transmission is linear, so pre_spike de-
fines g_target += w. The increments in pre_spike and post_spike follow Equation 6.7
and Equation 6.8, while the weight w is clipped between 0 and 𝑤max by using the clip func-
tion. An alternative implementation could have used the min and max flags instead of the clip
function, as w is a variable of the synapse.

180



6.2 Interface of the simulator

Continuous synaptic transmission

In some cases, synaptic transmission cannot be described in an event-driven framework.
Synapses using the NMDA neurotransmitter are for example often modeled as non-linear
synapses (Wang, 2002). These synapses require the post-synaptic conductance to be a sum
of synapse-specific variables, as for rate-coded neurons, and not simply incremented when a
pre-synaptic spike occurs. This is similar to the summed flag of Brian 2. NMDA synapses can
be represented by two variables 𝑥(𝑡) and 𝑔(𝑡) following first-order ODEs:

𝜏 ⋅ 𝑑𝑥(𝑡)
𝑑𝑡 = −𝑥(𝑡)

𝜏 ⋅ 𝑑𝑔(𝑡)
𝑑𝑡 = −𝑔(𝑡) + 𝑥(𝑡) ⋅ (1 − 𝑔(𝑡))

(6.9)

When a pre-synaptic spike occurs, 𝑥(𝑡) is incremented by the weight 𝑤(𝑡). However, it does
not directly influence the post-synaptic neuron, as the output of a synapse is the signal 𝑔(𝑡).
The post-synaptic conductance is defined at each time 𝑡 as the sum over all synapses of the
same type of their variable 𝑔(𝑡):

𝑔exc(𝑡) =
𝑁exc

∑
𝑖=1

𝑔𝑖(𝑡)

Figure 6.3 d shows a possible implementation of such a non-linear NMDA synapse. The main
differencewith the previousmodels is that it defines apsp argumentwhichmeans that the post-
synaptic conductance should be summed over this value (g in this case) at every time step. It
is therefore not possible to use the event-driven scheme for such non-linear synapses. The
psp argument can access any synaptic variable, as well as any pre- or post-synaptic variable.
For example, it can be used for gap junctions (also called electrical synapses) which do not
exchange spikes but directly a function of the pre- and post-synaptic membrane potentials.

6.2.5 Additional features

Standard neurons and synapses

Although the definition of neuron and synapse types is rather simple, the library provides
a set of predefined models which can be used directly when creating populations and
projections. Spiking neuron models are conveniently standardized, especially since the
introduction of the PyNN interface (Davison et al., 2008). Using the PyNN nomenclature for
the model names and parameters, ANNarchy provides the main neuron models common
to most neural simulators: simple integrate-and-fire neuron, using either exponentially-
decaying or alpha-shaped conductances or currents (IF_curr_exp, IF_cond_exp,
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IF_curr_alpha, IF_cond_alpha), adaptive integrate-and-fire neurons (Izhikevich,
EIF_cond_alpha_isfa_ista, EIF_cond_exp_isfa_ista) or Hodgkin-Huxley neurons
(HH_cond_exp). Synapse models include short-term plasticity (STP) and spike-timing de-
pendent plasticity (STDP). Each model is associated with a docstring describing completely
the parameters and equations, allowing to easily create a new derivative model. Rate-coded
neuron models are less standardized than spiking ones. The library only provides a generic
leaky-integrator neuron similar to Equation 6.2. Rate-coded synapses include the Hebbian
learning rule (Hebb), the Oja learning rule (Oja) and the IBCM learning rule described by
Equation 6.3 (IBCM). The available rate-coded models will be extended in future versions.

Specific populations

Specific populations are available to provide functions which are difficult or unnecessarily com-
plicated to implement with single neuron models. The PoissonPopulation class allows to
directly create a population of spiking neurons whose spikes are generated from a Poisson
distribution. The rate underlying the distribution can be a single value or one value per neuron
(homogeneous Poisson process, as the rate for each neuron is constant), or a string expres-
sion defining the evolution of rate over time (e.g. '1 + sin(2*pi*t)', heterogenous Poisson
process). The SpikeArray class allows to create a population and to specify for each neuron
the exact times at which they will emit a spike. These spiking times can be modified between
two simulations using attributes.

The ImagePopulation class allows to represent images through the firing rates of a rate-
coded population with the same geometry as the image (two-dimensional for grayscale, three
for colored images, the last dimension representing the R, G and B components). Firing rates
are normalized between 0 and 1. It relies on the Python Imaging Library (PIL), which allows
the use of many file formats, including JPEG. Similarly, the VideoPopulation class allows to
grab image streams fromwebcams and use them as firing rates of a population. It relies on the
OpenCV 2.x C++ library to access the desired hardware. Grabbing images has to be explicitly
called by the user between two simulations.

Hybrid networks

Apart from the neuron and synapse definitions, there is no difference in the interface between
rate-coded and spiking networks: populations and projections behave the same regardless of
the framework. It then becomes possible to create hybrid networks, composed of rate-coded
and spiking populations interacting with each other. Interaction between the two types of neu-
rons is achieved by introducing specific populations and projections to perform the conver-
sion.

Converting a rate-coded population into a spiking one is straightforward: the output r of the
rate-coded population is interpreted as an instantaneous firing rate in Hz and used to generate
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spikes according to a Poisson distribution. The abovementioned PoissonPopulation object
accepts a target argument, stating that the rate of each Poisson neuron is determined by its
weighted sum of inputs:

pop1 = Population(1, Neuron(equations="r = 1 + sin(2*pi*t)"))
pop2 = PoissonPopulation(100, target='exc')
proj = Projection(pop1, pop2, 'exc')
proj.connect_all_to_all(1.0)

The connectivity matrix can have any form, but in the most simple case one single rate-coded
neuron should determine the firing rate of a group of spiking neurons (one-to-many pattern).
The weight of the connection determines the scaling: a weight of 1.0means that a pre-synaptic
rate of 1.0 will generate Poisson spike trains at 1 Hz. With a weight of 100.0, the train would be
at 100 Hz. Other distributions than Poisson will be added in future versions.

Converting a spiking population into a rate-coded one is a much more difficult problem. Esti-
mating neural firing rates from single spike trains instead of averaging over multiple trials is an
open issue in neuroscience (Cunninghamet al., 2009). Themainmethods include peri-stimulus
time histograms (PSTH, Gerstein and Kiang (1960)), smoothing kernels (Nawrot et al., 1999),
Kalman filters (Wu et al., 2004) or Bayesian estimation (Shimokawa and Shinomoto, 2009). All
these methods are biased and can only infer firing frequencies in a particular bandwidth. Here,
the problem is even more difficult as it has to be performed online during the simulation: in the
interval between two spikes of the same neuron, it is not possible to predict the real instanta-
neous firing rate of the neuron, as future incoming spikes are still unknown.

ANNarchy provides a simple method to infer online the firing rate of a spiking population, using
the assumption that a rate-coded neuron usually represents a large group of spiking neurons.
The two populations are connected with a specific projection object DecodingProjection
and a many-to-one pattern. For example, a single rate-coded neuron could decode the firing
rate of a population of 1000 Poisson neurons:

pop1 = PoissonPopulation(1000, rates=100.0)
pop2 = Population(1, Neuron(equations="r=sum(exc)"))
proj = DecodingProjection(pop1, pop2, 'exc', window=10.0)
proj.connect_all_to_all(1.0)

The input sum(target) of a post-synaptic neuron at time 𝑡 is a weighted sum of all spikes
received during a sliding window of duration 𝑇 (defined by the argument window), normalized
by the total number of synapses to this neuron:

sum(target)(𝑡) = Weighted sum of spikes received in [𝑡 − 𝑇 , 𝑡]
𝑇 ∗ Number of incoming synapses

It approximates the mean firing rate in the pre-synaptic population during the last 𝑇 millisec-
onds. By default, 𝑇 is equal to the simulation step dt, but the decoded rate may be fluctuating
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if the number of pre-synaptic neurons is too small. One should either increase 𝑇 or apply a
low-pass filter to sum(target) in the post-synaptic neuron. The weights of the projection
can be used to scale the output firing rate: by default, an input firing rate at 1 Hz leads to
sum(target)=1.0.

Figure 6.4 illustrates the use of hybrid networks. A single rate-coded neuron is used to acti-
vate a population of 1000 Poisson neuron with a firing rate increasing every 250 ms (0, 10, 50
and 100 Hz). Figure 6.4 a shows a raster plot of the spikes emitted by the Poisson population.
Figure 6.4 b shows the original (blue) and decoded (green) firing rate, for a single rate-coded
neuron connected to all 1000 Poisson neurons. The projection uses a sliding window of 10 ms
to smoothen the rate. The decoded firing rate follows the original one, but with a small variance
due to the stochastic nature of the Poisson spike trains, and with a small temporal lag corre-
sponding to the sliding window: when the firing rate suddenly increases, it takes approximately
𝑇 milliseconds to completely reflect the change.

Figure 6.4 c shows the effect of the number of connected neurons on the precision of the de-
coding. For the three stimulations at 10, 50 and 100 Hz, we measure the mean of the nor-
malized error between the decoded firing rate 𝑟(𝑡) and its target value 𝐹 ∈ [10, 50, 100]:
𝜖 = 1

250 ∫250
𝑡=0

|𝑟(𝑡)−𝐹|
𝐹 𝑑𝑡 for post-synaptic neurons receiving 1 to 1000 inputs from the Pois-

son population. Unsurprisingly, the more inputs are used for decoding, the better is the preci-
sion. The sliding window method is also more precise at high frequencies, as more spikes can
be used to estimate the firing rate. The remaining error for a high number of neurons is mostly
due to the temporal lag of the integration. The script allowing to reproduce Figure 6.4 is given
in the Supplementary Material.

Weight sharing and convolution operations

Regular projections instantiate a set of connection weights per post-synaptic neuron. This can
be a waste of resources when the weights are identical for each neuron, the only difference
being the coordinates of the corresponding neurons in the pre-synaptic population, as it is the
case in convolutional networks (Lecun et al., 1998) or image filtering. Such convolution oper-
ations can be implemented by creating a SharedProjection instead of a Projection and
calling the convolve() connector method:

proj = SharedProjection(pre=pop1, post=pop2, target='exc')
proj.convolve(weights=kernel)

The generated code depends on the respective geometry of the pre- and post-synaptic popu-
lations, as well as on the weights kernel. If they all have the same number of dimensions (for
example two-dimensional), a regular convolution will be performed:
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Figure 6.4: Example of an hybrid network encoding a rate-coded population into a spiking
population (PoissonPopulation) and decoded back to the rate-coded domain
(DecodingProjection). The script for this plot is provided in the Supplementary
Material. a) Raster plot of the spiking population reacting to step-wise inputs for 1
second. Each step lasts 250ms (0, 10, 50 and 100 Hz). b) Firing rate of a single rate-
coded neuron decoding the corresponding spiking neuron. The blue line shows the
firing rate in the input population and the green line shows the decoded firing rate.
It follows the original firing rate with some noise due to the stochastic nature of the
spike trains and some delay due to the integration window. c) Relative decoding

error (𝜖 = 1
250 ∫250

𝑡=0
|𝑟(𝑡)−𝐹|

𝐹 𝑑𝑡) depending on the number of spiking neurons used
for decoding, for different input firing rates (10, 50 and 100 Hz). For small number of
neurons, the decoding error is high as individual spike trains are stochastic. When
the number of neurons is increased (over 200), the decoding error is reduced. De-
coding is relatively more precise at high frequencies than at low ones.

185



6 ANNarchy

sumexc(𝑥, 𝑦) =
𝑑𝑖

∑
𝑖=−𝑑𝑖

𝑑𝑗

∑
𝑗=−𝑑𝑗

𝑊(𝑖, 𝑗) ⋅ pre.r(𝑥 − 𝑖, 𝑦 − 𝑗)

with (𝑑𝑖, 𝑑𝑗) representing the extent of the weights kernel 𝑊 . If the pre- and post-populations
do not have the same number of neurons in each dimension (for example 200∗200 and 100∗
100, corresponding to a sub-sampling ratio of 2), the mapping between the coordinates of the
post-synaptic neurons and the center of the corresponding pre-synaptic region is automatically
computed, but this can be overwritten.

The convolution operation can also be performed in parallel over a specific dimension of the
pre-synaptic population. For example, if the last dimension of the population represents the
RGB color channels of an image, the first two being the width and height, a two-dimensional
filter can be applied on each color channel separately. The post-synaptic population has then
three dimensions too. It is also possible to apply a bank of filters on the pre-synaptic population
(e.g. edge detection with different orientations), leading to a post-synaptic population with one
additional dimension (feature map).

Pooling (e.g. max-pooling) can also be implemented using a shared projection. The opera-
tion must be specified when creating the projection, before calling the pooling connector
method:

proj = SharedProjection(pre=pop1, post=pop2, target='exc', operation='max')
proj.pooling()

Each post-synaptic neuron will be associated to a region of the pre-synaptic population and
will extract the maximal firing rate in this region, without defining any weight. For example, if
the two populations are 200 ∗ 200 and 100 ∗ 100, each post-synaptic neuron covers a 2 ∗ 2
area. The extent of the region is automatically computed based on the respective geometries,
but this can be overwritten. The operation can be changed to the minimal or mean firing rate in
the region ('min' and 'mean'). Weight sharing is for the moment only possible for rate-coded
networks and learning is disabled. This will be improved in future versions.

Recording of variables

All neural and synaptic variables (defined in the equations argument of a neuron or synapse)
can be recorded during a simulation. Populations (or subsets of a population) and projections
can be associated to a Monitor object together with a list of variable names. A frequency of
recording can also be defined, e.g. once every 10 ms. In the following calls to simulate(), the
value of these variables for all neurons/synapses will be internally appended to a vector until
get() is called, which returns a matrix containing the recorded values and empties the record-
ing vectors. Recording can be stopped, paused and resumed using methods of Monitor.
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The advantage of this recording method is that the user is not bound to a specific file format:
the returned values are a dictionary of Numpy arrays (one per variable) which can be directly
manipulated or saved into a file. The drawback is that the available RAM can quickly be filled,
especially when recording synaptic variables such as weights. It is the user’s responsibility to
record only the necessary periods of the simulation (using pause/resume) and to save interme-
diary results regularly.

Conditional simulations

By default, simulate() runs the simulation for a fixed duration. In some cases itmay be useful
to simulate until a criterion is reached, for example when themaximal firing rate in a population
crosses a threshold, or a neuron has emitted a certain number of spikes. This can be used to
run conditional simulations, e.g. the network has made a decision and we need to perform the
corresponding action. Each population accepts a stop_condition argument, which states
the condition that must be true to stop the simulation. In the following example, the simulation
would be stopped when one or more neurons of the population have a firing rate r higher than
1:

pop1 = Population( ... , stop_condition = "r > 1.0")

The stop condition can use any neural parameter or variable, and can combine several boolean
predicates using the and, or and not operators. If the simulation should be stopped when the
condition is true for all neurons, not just any of them, the : all flag can be appended to the
condition. The simulation can then be runwith thesimulate_until()method, which accepts
a maximal duration for the simulation (if the criteria is never met) and a (list of) population(s)
whose criteria should be checked.

Structural plasticity

The number of synapses in a network is determined at the time when projections are created
and is usually constant during the simulation. Some networks require to dynamically add or
remove synapses between neurons during the simulation, a mechanism called structural plas-
ticity (Butz et al., 2009). Projections define create_synapse() and prune_synapse()meth-
ods which allow to dynamically create or delete synapses between any pair of neurons. These
functions are called from Python, so the user has to regularly stop the simulation and check if
the conditions for creating or deleting a synapse are met, depending on some neural or synap-
tic variable or randomly. If the structural plasticity mechanism is applied frequently, it will slow
down the simulation because of the constant switches between Python and C++.

Alternatively, simple rules for the creation or deletion of a synapse can be passed to the defini-
tion of the synapse model. The pruning argument takes a simple boolean expression which,
when true, will lead to the online deletion of the synapse. Oppositely, the creating argument
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defines a binary condition which leads to the creation of a synapse if it does not exist yet. Cre-
ation or deletion can bemade probabilistic by passing the flag proba after the rule. The weight
and delay of created synapses can also be specified.

In the following example, each synapse updates an age variable which is incremented at each
simulation step, but is reset to 0 when both pre- and post-synaptic neurons are simultaneously
active. When the age of a synapse exceeds a given threshold, the synapse is pruned with a
probability of 0.5. Similarly, a synapse can be created when two unconnected neurons are
strongly active at the same time.

StructuralPlasticity = Synapse(
parameters = "max_age = 1000.0 : postsynaptic",
equations = "age = if pre.r * post.r > 0.9: 0.0 else: age + dt",
pruning = "age > max_age : proba=0.5",
creating = "pre.r * post.r > 0.9 : proba=0.5, w=0.5"

)

Creation and pruning of synapses have to be explicitly started with start_creating() and
start_pruning() methods, which also accept a period argument defining how often the
structural plasticity conditions will be checked (by default at every time step, which is compu-
tationally inefficient and probably unnecessary in most cases). Structural plasticity is available
for spiking networks, but creating and pruning can not be linked to events such as the emission
of a spike: it must rely on continuous variables.

Reporting

As noted by Stimberg et al. (2014), the equation-based representation of neural networks al-
lows the automatic documentation ofmodels. Parameters are known, equations can be parsed
to LATEXmathematical code, and the structure of the network is simply defined in terms of popu-
lations and projections. User-defined neuron or synapsemodels can be documented by adding
a name and a detailed text description of its behavior. Calling the report() method will gen-
erate a complete LATEX file, organized in tables as suggested by Nordlie et al. (2009). It con-
tains a summary of the network, a list of all the populations (including their size and the neuron
model), a list of all the projections with a description of the connectivity and the synapsemodel,
a textual description of each neuron and synapse models used in the network (with the parsed
equations) and finally the initial value of the parameters used in each population and projec-
tion. The generated file still requires some editing before being published, but it should ease
the modeler’s work.
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6.3 Code generation

The approach chosen for the neural simulator is based on a complete code generation mech-
anism. As noted in Goodman (2010), code generation allows to couple the flexibility of a high-
level language (here Python) with the speed and hardware specificities of a low-level language
(C++). This approach is used in Brian to speed up some code portions and is further extended
in Brian 2 where a complete C++ code for the network can be optionally generated at runtime
(cpp_standalone mode, Stimberg et al., 2014). ANNarchy relies entirely on this concept, by
generating and compiling a shared C++ library during the call to compile(). Only this library
will hold the data representing the model. The library is then imported by the Python script
which transfers the initial value of all parameters and variables and starts the simulation. The
Python script has only an indirect access to the C++ data and possible recordings through
Cython wrappings. Cython is a Python-like compiled language allowing to execute instructions
at C-speed and to access C or C++ data structures and methods (Behnel et al., 2009). Cython
was for example used to createmaintainable bindings to NEST (Zaytsev andMorrison, 2014).

The main advantage of a complete code generation in comparison to a simple interface to a
low-level simulator [as in PyNest; Eppler et al. (2008)] is that it allows to optimize the execution
regarding the structure of the network. For example, if the model does not use delays in synap-
tic transmission (which require to implement queues for the output variables), or if no structural
plasticity mechanism is involved (requiring more flexible data structures for the synapses), the
corresponding code is not generated, reducing the complexity of the code and avoiding unnec-
essary overhead. Furthermore, the code can be adapted to the parallel computing platform,
either a shared memory system with OpenMP (the parallel strategy can be different depending
on whether 4 or 256 cores are available) or a graphical processing unit with CUDA (depending
on its model or version). A drawback is that the structure of the network cannot be changed
after the call to compile(): no population or projection can be added, or equations modified.
The only changes possible are parameter or variable values, as well as the dynamical addition
or suppression of synapses in case of structural plasticity.

6.3.1 Internal representation of data

Each population and projection is represented by a C++ structure storing each attribute, either a
parameter or a variable. Their name is easily extracted from the parameters and equations
arguments to the neuron model: they are alone on the left side of the equation, except for
ODEs where it is surrounded by d and /dt. Local attributes of a population are represented
by a standard C++ vector with as many elements as neurons in the population while global
ones (annotated by the population flag) are represented by a single value. Indexing is simple
because all neurons have the same attributes.

For projections, the data representation depends on the platform: on shared memory systems
with openMP, local attributes are represented by a vector of vectors, one per post-synaptic neu-
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ron receiving connections. Each of these vectors represents all synapses reaching this post-
synaptic neuron (they can have different sizes). The connectivity matrix is therefore stored
as a list of lists (LIL) structure in order to associate each value to the corresponding synapse.
On graphical cards with CUDA, the connectivity is stored in the compressed sparse row (CSR)
format, where the values of each attribute are flattened into a single vector and a list of row
pointers allow to attribute portions of this array to a single post-synaptic neuron (see Brette
and Goodman, 2011 for a review). These different data structures lead to a better parallel
performance: CSR representations ensure a coalesced access to the attributes (i.e. the data
is contiguous in memory), which is a strong condition for GPU computations to be efficient
(Brette and Goodman, 2012), while the LIL structure allows a faster distribution of the data
to the different OpenMP threads (Dinkelbach et al., 2012). LIL and CSR representations have
similar memory requirements, but LIL is more adapted to the dynamical addition or suppres-
sion of synapses: structural plasticity is very inefficient on the GPU platform and is currently
disabled.

The ability to adapt the data structures to the hardware is a clear advantage of the code gener-
ation approach, especially when the number and type of attributes is a priori unknown. These
data structures can furthermore be easily exported to the Python namespace through the gen-
eration of Cython bindings, so the choice of the data structure is transparent to the user.

6.3.2 Simulation steps

ANNarchy performs the simulation with an equidistant time grid, where the integration step
size dt is fixed for all equations. Although this scheme is natural for rate-coded networks, it
can have a negative influence on spiking networks because of the forced alignment of spike
times on this grid (Morrison et al., 2007). Brian also allows the use of different clocks for
different parts of the model, which is currently impossible in ANNarchy. Future versions will
address this issue.

Each simulation step is composed of several successive computational processes, which are
mainly common to spiking and rate-coded networks:

1. Propagation: the results of the previous simulation step is propagated in the network. For
rate-coded projections, the weighted sum of pre-synaptic firing rates is accumulated in
the post-synaptic population. For spiking projections, the post-synaptic conductances
are increased from the synaptic weight (or any other value defined in the pre_spike
argument of the synapse) if the corresponding pre-synaptic neuron has emitted a spike.
The variable updates defined in pre_spike are also processed if they exist (e.g. in the
STDP rule). In both cases, if delays in synaptic transmission are defined, these operations
are performed on the value of these variables at the corresponding time.

2. Neural update: the variables of each population are updated according to their definition
in the equations argument of the neuron model. For spiking populations, the spiking

190



6.3 Code generation

condition is then evaluated. If the condition is met, the rank of the neuron is appended to
a vector, the reset statement is evaluated and the neuron is possibly put into a refractory
state. However, if a spiking neuron is in the refractory state, only the ODEs corresponding
to the conductances are updated until the refractory period has elapsed, so no spike can
be emitted.

3. Delayed outputs: before the simulation starts, each population computes the maximal
delay in synaptic transmission required by outgoing projections and instantiates a double-
ended queue of the adequate size. In this step, the new value of the output variable (firing
rate or spike) is appended to the queue while the oldest value is removed.

4. Synaptic updates: the variables of each projection (if any) are updated, including synaptic
plasticity.

5. Post-synaptic events: for each spiking projection where a post-synaptic neuron has emit-
ted a spike, the post_spike statement is evaluated for all synapses reaching this neuron.

6. Structural plasticity: if structural plasticity is defined, the addition/suppression of
synapses is evaluated.

7. Recording: each neural or synaptic variable is associated with a boolean flag which en-
ables the recording of the variable with a given period. When the criterion ismet, the value
of the variable is appended to a vector.

Finally, the internal time t is incremented. These steps are all performed sequentially to ensure
the correctness of the simulation. Parallel computations only occur within each of these steps
if possible. The only difference between rate-coded and spiking networks are the pre_spike
and post_spike statements, as well as the spike emission mechanism. This common struc-
ture allows hybrid networks to be simulated.

6.3.3 Mathematical parser

The different mechanisms described above are based on the equations defined at the neural
or synaptic level. As the simulation is performed in C++, the computations are not vectorized,
so an update rule for the variable has to be defined for each neuron of a population or each
synapse of a projection. The transformation between the mathematical equation and the cor-
responding C++ code snippet is performed through the use of the Sympy library (Joyner et al.,
2012) coupled with regular expressions.

The first step in the analysis of a neuron or synapse model is to determine with regular ex-
pressions the list of parameters and variables (by analysing the left side of the equation), their
locality (presence of population or postsynaptic in the flags), their type (int, float or bool),
bounds (min and max), initial value (init) and eventually the associated numerical method. The
value of each parameter (e.g. tau = 10.0) is stored in a temporary dictionary which will be
transferred to the C++ library when it is instantiated.
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For each variable, the equation is first manipulated to extract non-standard vocabulary. For
example, the weighted sum in a rate-coded neuron (sum(exc)) is extracted and replaced
by a temporary variable name (_sum_exc_). The same is done for random number distri-
butions (Uniform(0, 1) is replaced by _rand_) and global operations (mean(pre.r) by
_mean_pre_r). Conditional statements (if A: B else: C) are also extracted and each of
the three terms are recursively analyzed. These temporary variables are added to the list of
parameters and variables of the model.

This list allows to build a dictionarywhere the correspondence between the nameof an attribute
and its C++ equivalent is calculated. Each attribute belongs to a C++ structure representing a
population or projection, so the name of the attribute must be prepended by the instance of the
structure: pop%(id)s. for populations, proj%(id)s. for projections, where %(id)s will be
replaced by the ID of the population or projection when the complete code is generated. As the
update will be performed in a loop over all neurons or synapses, the index of the neuron in its
population ([i]) or of the synapse in the projection ([i][j] for the LIL structure) is appended
to this name. For example, the firing rate r of a neuron is represented by pop%(id)s.r[i]
while the weight of a synapse becomes (proj%(id)s.w[i][j]).

Once the dictionary is built, Sympy is able to directly generate the C++ code equivalent to each
side of the equation: constants (such as numbers) and functions of the C math library are
automatically recognized and correctly translated. The temporary variables introduced for the
weighted sums or random distributions are finally replaced by the adequate code thanks to
regular expressions. As an example, the following equation for a neuron:

r = sum(exc) + B + cos(2*pi*t)

with B being a global parameter and t the current time in milliseconds, leads to the following
code:

pop%(id)s.r[i] = pop%(id)s.sum_exc[i] + pop%(id)s.B + cos(2.0*M_PI*double(t)*dt))

6.3.4 Numerical methods

A special case has to be made for ODEs, as the desired numerical method will influence the
resulting C++ code. Additionally, a neuron or synapse can be described by a set of coupled
ODEs, so the code generation must be performed globally depending on the numerical method.
We retained an approach similar to the one described in Stimberg et al. (2014), except that we
do not explicitly generate an abstract code representation of the equations, but rather directly
manipulate Sympy symbols.

To illustrate how the numerical methods are applied, we take the example of a simple spiking
neuron defined by Equation 6.10, but the principle is similar for synapses or rate-codedmodels,
regardless of the number of ODEs.
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𝜏 ⋅ 𝑑𝑣(𝑡)
𝑑𝑡 + 𝑣(𝑡) = 𝑔exc(𝑡) − 𝑢(𝑡)

𝜏 ⋅ 𝑑𝑢(𝑡)
𝑑𝑡 + 𝑢(𝑡) = 𝑣(𝑡)

(6.10)

Such a neuron could be represented by the following description:

tau * dv/dt + v = g_exc - u
tau * du/dt + u = v

with tau being a global parameter of the population. The problem to be addressed by the
numerical method is to find the next value of the variables v and u based on the value they had
at the previous time step and the current value of the conductance g_exc. Figure 6.5 shows the
code generated for these equations by the different available numerical methods (explicit,
implicit, exponential and midpoint).

Explicit Euler

The explicit (or forward) Euler method evaluates the gradients dv/dt and du/dt at the current
time 𝑡. In the textual representations of the equations, dv and du are simply replaced by two
new variables _v and _u, and the system of equations is solved and simplified to find the value
of these increments as a function of v, u, tau and g_exc. Here, the problem is simple because
_v and _u are present only once per equation: the equations are not coupled. The increments
are translated into a C++ code snippet using the same dictionary-based approach as for regular
equations, and the increments are then added to the previous value of v and u.

Implicit Euler

The implicit (or backward) Euler method evaluates the gradients dv/dt and du/dt at the next
time 𝑡 + 𝑑𝑡. dv and du are replaced by _v - v and _u - u, where _v and _u represent
the next value of the variables, and all occurrences of v and u are replaced by _v and _u. This
leads to a system of two linear equations with two variables, which is solved using the Sympy
linear solver. Contrary to the explicit method, the equations are coupled, and the solver will only
succeed if the equations are linear in v and u. The parser will return an error if not. Once the
solution is found, we subtract v and u to _v and _u and simplify the equation in order to find
the increment that will be added to the previous value of the variables.

193



6 ANNarchy

Figure 6.5: Example of code generated for Equation 6.10 using different numerical methods:
1. Explicit Euler, 2. Implicit Euler, 3. Exponential Euler, 4. Midpoint (Runge-Kutta
method of order 2). pop0 is a C++ structure holding the different attributes of the
population: the vectors v and u for the two variables, the vector g_exc for the exci-
tatory inputs and the double value tau for the time constant. All methods compute
first the increments _v and _u before adding them to v and u, in order to make
sure the update rules use the previous values of these variables. The number of
elementary operations differs from one method to another, increasing the simula-
tion runtime, but the numerical precision and stability of themore complexmethods
might be required in some cases.
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Exponential Euler

The exponential Euler method is a special forward method which has the smallest numerical
error on uncoupled linear first-order ODEs. The first step is to canonize each equation in the
form 𝜏 ⋅ 𝑑𝑥(𝑡)

𝑑𝑡 + 𝑥(𝑡) = 𝐴(𝑡), with 𝜏 being the time constant of the variable and 𝐴(𝑡) its
steady state. Here the equations are already in this form, but a conductance-based neuron
with the equation tau*dv/dt + v = g_exc*(E-v) would have an equivalent time constant
of tau/(1+g_exc) and a steady state of g_exc*E/(1+g_exc). Once these equivalent time
constants and steady states are identified and simplified for each equation, the increments can
be directly obtained through:

𝑥(𝑡 + 𝑑𝑡) = 𝑥(𝑡) + (1 − exp(−𝑑𝑡
𝜏 )) ⋅ (𝐴(𝑡) − 𝑥(𝑡)))

Midpoint

The midpoint method is a Runge-Kutta method of order 2, described in Stimberg et al. (2014).
It evaluates successively the gradient at 𝑡 and in the middle of the interval [𝑡, 𝑡 + 𝑑𝑡]. The
gradient at 𝑡 is evaluated using the samemechanism as in the explicit Euler method and stored
in the variables _k_v and _k_u. These variables allow to estimate the value of v and u by v
+ dt/2*_k_v and u + dt/2*_k_u, respectively. The equations are again manipulated, by
replacing all occurrences ofv anduby their estimates at 𝑡+𝑑𝑡/2 andfinding the corresponding
increment using the explicit Eulermethod. Thismethod has amuch smaller numerical error and
is more stable than the explicit or implicit methods, but requires more computations during the
simulation, as the gradient is evaluated twice.

Event-driven integration

This method is only available for spiking synapses, if the ODEs are linear (which is the case for
the online STDP rule). For this method, the equations are not evaluated at each time step, but
only when a pre- or post-synaptic spike occurs for a synapse. The new value of the variables
is then computed exactly, using the time elapsed since the last event. Event-driven integration
is not yet available for neural equations, as it requires to predict the occurrence of the next
spike. Future versions of ANNarchy will address this mechanism. However, it may only speed
simulations up if the network is small and does not generate too many spikes per step (Brette
et al., 2007; Morrison et al., 2007).

6.3.5 OpenMP and CUDA code generation

Once the structure of network is known and all equations have been analyzed, the C++ code
corresponding to the simulation can be generated depending on the desired parallel framework.
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Figure 6.6: Code generated for a single population pop0 of 1000 identical neurons. a) Neu-
ron model used for code generation: a global parameter tau and a local variable
r following a linear ODE and limited to positive values. b) Code generated for the
OpenMP framework. The code is pasted into the main C++ code ANNarchy.cpp
and called at each step. It iterates over the 1000 neurons of the population and
updates their firing rate depending on the corresponding code snippet. It operates
directly on the data contained in the structure pop0. A simple #pragma statement al-
lows parallel processing over the available threads. c) Code generated for the CUDA
framework. The code is pasted into the specific ANNarchy.cu file. A copy of the
vectors _sum_exc and r (prefixed by gpu) is sent to the device (GPU) through the
call to cuPop0_step by the host (CPU). The code inside cuPop0_step is executed
in parallel on the device for the 1000 neurons and updates the array corresponding
to r. This copy of r is transfered back to the CPU at the end of the simulation block
for analysis in Python. Note that the parser can be configured to not generate the
struct prefixes as for the OpenMP backend.
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Each simulation step described in Section 6.3.2 leads to the generation of a code portion for the
corresponding populations and projections which is then integrated into the main simulation
code. Figure 6.6 shows an example of a code portion for the update of the neural variables of a
population pop0whose 1000 neurons are defined by the neuronmodel described on Figure 6.6
a. It defines a global parameter tau and the firing rate r is defined by the ODE tau*dr/dt =
sum(exc) - r, limited to positive values with the flag min=0.0. The OpenMP implementation
on Figure 6.6 b is in this case simple: the code snippet corresponding to the ODE (here using
the explicit Euler method) is integrated into a for-loop over the 1000 neurons, where the value of
each element in the corresponding vector is updated sequentially. The parallel execution of this
loop over the available cores is ensured through the addition of anOpenMP#pragma statement.
The complete code is pasted in a standard C++ file called ANNarchy.cpp and compiled using
g++ on Linux or clang++ on MacOS X.

The code generated for the samepopulation in theCUDA framework ismore complex, as shown
on Figure 6.6 c. The instructions executed on the GPU have to be compiled with the NVIDIA
compiler nvcc, so the code is generated in a special file called ANNarchy.cu. CUDA code
generally consists of two sections: one is intended to run on the CPU (host code) while the
other (flagged with the keywords __global__ or __device__) will be executed on the GPU
(device code). At the beginning of the simulation, the vectors holding population and projection
data are transferred to the GPU using the CUDA method cudaMemcpy(). The CUDA object will
work on these copies during the whole simulation and they will be transfered back to the host at
the end, allowing the Python script to analyze the results. An exception is during the recording
of variables: the arrays to be recorded are transferred to the host at each time step, as the
amount of memory is usually limited on GPUs.

Figure 6.6 c shows the corresponding host and device code portions: the host code simply calls
the device method with a copy of the necessary data. The device code updates the passed
variables in parallel according to the desired numerical method. The same mechanism is used
for all steps of the simulation. The weighted sum of inputs is for example executed in parallel
over blocks of post-synaptic neurons with OpenMP. In contrast, parallel reduction is used in the
CUDA implementation, as it leads to better performance (Dinkelbach et al., 2012). The main
advantage of this code generation approach is that only the required steps are generated: spike-
only mechanisms are skipped for rate-coded networks, as well as mechanisms for synaptic
delays or structural plasticity if the network does not define them. This allows to minimize the
code overhead and improves the readability of the generated code.

6.4 Benchmarks

We here report the parallel performance of the neural simulator but do not attempt to study it in
all details. It is planned to issue future releases of ANNarchy, most improvements concerning
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the parallel performance. Nevertheless, we want to highlight that code generation already al-
lows to obtain a parallel performance comparable tomost specialized simulators. TheOpenMP
tests are performed on a Linux machine with 2 Intel XEON X5675 at 3 GHz (12 physical cores
in total, with hyperthreading disabled) and 12 GB RAM. The CUDA tests are performed on a
Linux machine with 2 Intel XEON E5-2650 at 2.6 GHz, 128 GB RAM and a NVIDIA Tesla K20m
graphical card. The simulation times are measured and averaged over 10 different trials with
the same initial conditions (standard deviations are omitted as they are negligible in all cases).
All scripts used in this section are provided in the Supplementary Material.

Rate-coded benchmark

To test the parallel performance of rate-coded networks, we used a simple network of two pop-
ulations composed of N = 1000 (resp. 4000) neuron each, connected with a all-to-all projection
representing 1 (resp. 16) million connections. Each neuron is a simple leaky-integrator of exci-
tatory inputs with a firing rate defined by the ODE tau*dr/dt + r = sum(exc), tau being a
global parameter of the population. Unlike spiking networks, the simulation timeof a rate-coded
network does not depend on the activity in the network and the summation of inputs for all-to-all
connectivity patterns hugely overcomes the update of neural variables (Dinkelbach et al., 2012),
so such a simple network is sufficient to exhibit the parallel performance of the simulation. As
outlined in the introduction, we are not aware of parallel simulators of rate-coded networks
which could simply implement this network, so we only present in Figure 6.7 the speed-up ratio
of the simulation time when using 1 to 12 threads with OpenMP or when using CUDA as the
simulation backend. The single-threaded implementation is performed without the OpenMP
primitives, so it avoids the small sequential overhead of OpenMP. The CUDA implementation
uses the default configuration used by ANNarchy (32 threads for the neural variables updates,
192 threads for the weighted sums), but this can be changed by the user.

The network with 1000 neurons in each population shows a fairly efficient scaling behavior,
while the network with 4000 neurons quickly saturates to a speed-up of approximately 2.9. This
can be explained by the fact that the connectivitymatrix with 16million synapses (each connec-
tion weight being represented by a double floating-point value) cannot fit into the cache, so we
have a memory-bound problem where memory transfers between the RAM and the processor
limit the efficiency of the parallel implementation on shared-memory systems. This limitation
is well-known for this kind of operation, especially because of the LIL structure used for the
connectivity matrix. We chose this structure as it allows easier modification through structural
plasticity mechanisms and internal tests showed that a CSR structure does not improve much
the performance. We will investigate further the influence of data structures on parallel perfor-
mance. The main operation performed here is a matrix-vector multiplication. The strategy to
efficiently parallelize this operation depends on the sparseness of the connectivity matrix. De-
pending on this type, there aremultiple methods available, including single-instruction-multiple-
data operations (SIMD), cache blocking, loop unrolling, prefetching and autotuning (Kelefouras
et al., 2015; Williams et al., 2007). Thanks to the code generation approach used in ANNarchy,
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Figure 6.7: Speedup ratio obtained by ANNarchy for a fully connected rate-coded network com-
posed of two populations of 1000 (resp. 4000) neurons each. The speedup ratio
is defined by the ratio between the execution time (measured for a simulation of 1
second) of the single-threaded implementation and the onemeasured when using T
threads. The single-threaded implementation does not use OpenMP nor CUDA prim-
itives. For the OpenMP implementation, the number of threads is varied between 2
and 12. For the CUDA implementation, the default configuration of ANNarchy (32
threads for the neural variables updates, 192 threads for theweighted sums) is used.
The CUDA implementation is run on a different machine for technical reasons, so
the single-threaded baseline measured on this machine differs from the one used
for OpenMP. Nevertheless, only the scaling ratio is interesting here, not the absolute
execution times. The black line denotes the ideal linear scaling, the blue line the scal-
ing of the network with 1000 neurons, the green one the scaling for 4000 neurons.
With OpenMP, the scaling for 1000 neurons is slightly sub-optimal, while the one
for 4000 neurons saturates quickly at a ratio of 2.9. The situation is reversed with
CUDA: the network with 1000 neurons only achieves a speedup ratio of 3.8, while
the network with 4000 neurons achieves a ratio of 7.15.
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we will be able in future versions to implement these improvements depending on the known
connectivity before compilation.

The situation is reversed for the CUDA implementation: the network with 1000 neurons is
speeded up by a factor 3.8, while the network with 4000 neurons obtains a speedup of 7.15,
more than three times the maximal speedup obtained with OpenMP. This confirms our pre-
vious work showing that rate-coded networks with a relatively small number of connections
might benefit more from a CPU-based implementation, while networks with many connections
should be run on a GPU (Dinkelbach et al., 2012).

Spiking benchmark

Figure 6.8: Comparison of the simulation times of different simulators depending on the num-
ber of threads on a shared-memory system. The parallel performance of the simu-
lators Brian (version 1.4.1), Brian 2 (version 2.0b3), NEST (with Python bindings, ver-
sion 2.4.2), Auryn (version 0.4.1) and ANNarchy (version 4.4.0) are investigated up
to 12 threads. Two versions of NEST are used: one using the Runge-Kutta-Fehlberg
4(5) method (noted NEST-RK45), and a patched version using the explicit Euler
method (NEST-Euler). The simulation times are normalized to show the real-time ra-
tio: a normalized time of 1 means that simulating the network for one second takes
exactly one second of computer time (simulations are run for 10 seconds). Both
axes use a logarithmic scale. Brian only allows single-threaded simulations. Brian
2, NEST and ANNarchy use OpenMP, while Auryn uses MPI (openMPI 1.4.3). Auryn
only allows a number of processes which is a multiple of 2. The single-threaded
version of ANNarchy compares well to other neural simulators, but its scaling prop-
erties are not optimal compared to NEST.
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For spiking networks, we compare the parallel performance of ANNarchy with other neural sim-
ulators on the COBA benchmark proposed in Brette et al. (2007) and based on the model of
Vogels and Abbott (2005). The network is composed of 4000 integrate-and-fire neurons (3200
excitatory and 800 inhibitory) using exponentially-decreasing conductance-based synapses:

𝐶 ⋅ 𝑑𝑣(𝑡)
𝑑𝑡 = 𝑔𝐿 ⋅ (𝐸𝑙 − 𝑣(𝑡)) + 𝑔𝑒(𝑡) ⋅ (𝐸𝑒 − 𝑣(𝑡)) + 𝑔𝑖(𝑡) ⋅ (𝐸𝑖 − 𝑣(𝑡)) + 𝐼

𝜏𝑒 ⋅ 𝑑𝑔𝑒(𝑡)
𝑑𝑡 = −𝑔𝑒(𝑡)

𝜏𝑖 ⋅ 𝑑𝑔𝑖(𝑡)
𝑑𝑡 = −𝑔𝑖(𝑡)

(6.11)

All neurons are randomly connectedwith a probability of 0.02. We implemented this benchmark
on ANNarchy (version 4.4.0), Brian (version 1.4.1), Brian 2 (version 2.0b3), NEST (with Python
bindings, version 2.4.2) and Auryn (version 0.4.1). As noted in Zenke andGerstner (2014), NEST
uses by default the precise but very expensive Runge-Kutta-Fehlberg 4(5) (RK45) numerical
method, while Brian and Auryn use the faster explicit Euler method. We therefore also applied
the patch provided by Zenke and Gerstner (2014) to force NEST to use the Euler method (noted
NEST-Euler as opposed to NEST-RK45). The Auryn simulator was modified to use synaptic de-
lays of 0.1 ms. The code for Brian 2 uses the cpp_standalonemode to generate efficient C++
code and OpenMP parallel processing. All simulations were run using the same parameters,
random number generator seeds (for the initial values of the membrane potential) and connec-
tivity matrix (generated as a Scipy sparse matrix and loaded into the different simulators). The
ANNarchy and Brian implementations produced exactly the same spiking patterns, while the
other simulators showed only minor deviations. The time needed for 10 seconds of simulation
(excluding building time) was measured using the Python timemodule, except for Auryn where
MPI timer routines were used.

The results are shownonFigure 6.8. In agreementwith the results of Zenke andGerstner (2014),
the default NEST implementationwith RK45 is roughly ten times slower than themodifiedNEST
version with explicit Euler, but both have a very good scaling behavior. In the single-threaded
version, Brian 2 ismuch faster than Brian and comparable to ANNarchy, but its scaling behavior
is not as optimal as other simulators. It should be noted that Brian 2 is still in development, so
this result is only preliminary. Auryn is almost one order of magnitude faster than the other sim-
ulators andwith an satisfying scaling behavior (although the number ofMPI processesmust be
a multiple of 2). The single-threaded implementation of ANNarchy is in comparison fairly effi-
cient, but the scaling properties could be further improved. This is mostly due to the spike prop-
agation mechanism (increasing post-synaptic conductances when a spike is emitted), which
scales poorly in comparison to the neural variable updates. Future work will investigate differ-
ent implementations of this mechanism.
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6.5 Discussion

We have described the core principles of the neural simulator ANNarchy. It provides a high-
level interface in Python similar to PyNN to facilitate the creation of rate-coded, spike-coded or
hybrid neural networks. An important set of neuron and synapse models can be implemented
with an equation-oriented syntax close to the one proposed by Brian. These definitions are used
to generate an entire C++ library optimized for the underlying parallel framework (OpenMP for
shared memory systems, CUDA for GPU cards). Different numerical methods are available for
solving the possible ODEs. Code generation allows complete control over data structures and
computational methods, which leads to the execution of fine-tuned and simple code. It allows
to obtain a parallel performance comparable to specialized simulators.

ANNarchy brings the flexibility of the Brian interface to rate-coded networks, while being com-
patible with state-of-the-art spiking simulators. Although several features and concepts for
spiking networks are comparable to other simulators (especially Brian 2, Stimberg et al., 2014),
ANNarchy also provides novel features to the community. Structural plasticity can be easily im-
plemented through simple synapse-specific rules. Any neural or synaptic variable can be easily
recorded during the simulation. The network can be easily interfaced to external C/C++ libraries
through the Cython bindings, so images or video streams can efficiently be fed to the network,
or neural activity read to control robots in real-time. Automatic reporting allows to generate
complete reports in LATEX about the current network model, including the network structure, the
equations used for the neurons and synapses, as well as the different parameters used. Brian
2 provides a similar feature as it is also based on Sympy, but only for individual equations.
Some features are implemented only for rate-coded networks (such as convolution or pooling
operations which do not make much sense for spiking networks), but the hybrid ability of AN-
Narchy allows for example to integrate convoluted rate-coded networks for vision with spiking
cognitive models.

The chosen equation-oriented approach is very powerful, but has some limitations, some of
which are already listed in Stimberg et al. (2014). The number of explicit neural states is limited
to two for spiking neurons (active or refractory) and only one for rate-coded ones. However, the
syntax allows the use of conditional statements which can modify entirely the properties of a
neuron, mimicking additional states. The equation-oriented syntax is also limited in its current
form to the description of point-neurons, neglecting the effects of the neurons’ morphology on
their properties. Such neurons would require the use of another simulator such as NEURON or
GENESIS.

As Brian 2 and ANNarchy are based on the principles stated in Stimberg et al. (2014), one
should highlight the main differences between the two equation-oriented interfaces for spiking
networks. Brian 2 proposes a powerful mechanism to incrementally build connection matrices
by accessing the underlying data structure, possibly through text-based rules. It is also possi-
ble to dynamically add and remove populations and projections between two simulations. This
is currently impossible with ANNarchy: all data structures are linked to the generated library
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and are only indirectly accessible in Python. Synapse definition in Brian 2 allows to modify
any pre- or post-synaptic neural variable. Because of the way the code is generated, ANNar-
chy only allows the synapse to modify the post-synaptic conductance in addition to synaptic
variables. Brian 2 allows to solve stochastic differential equations (SDE), while ANNarchy is
limited for now to ODEs: one can only use random variables inside an ODE to simulate for ex-
ample intracellular noise, but this is not a stochastic process. Brian 2 allows a finer control
on the evolution of neural variables during the refractory period, while ANNarchy freezes all
variables during this period except for the conductances. SDEs and control over variables dur-
ing the refractory period will be progressively introduced in future versions. On the other hand,
ANNarchy proposes a solution to structural plasticity and hetero-synaptic plasticity (through
the possible use of global post-synaptic variables in a projection) which could be integrated in
Brian 2. It also provides additional control over the evolution of variables, such as their initial
value and the minimal or maximal value they can take over the course of a simulation.

ANNarchy will be further maintained and new features will be integrated in future releases.
Learning in rate-coded networks is focused on biologically-plausible rules where all information
is local to the synapse, which currently rules out methods such as backpropagation. Synap-
tic delays are currently only implemented between the pre-synaptic neuron and the synapse,
while some plasticity models rely on an additional delay between the synapse and the soma
of the post-synaptic neuron. Exact event-based integration of neural dynamics needs to be im-
plemented (Morrison et al., 2007), as it allows to simulate faster low-firing networks of linear
neurons. Additional numerical methods (such as Runge-Kutta of order 4) will be progressively
introduced. Computations are limited to an equidistant time grid, as it is the easiest method for
rate-coded networks. Some networks may nevertheless benefit from adaptive time steps, or of
the use of different clocks in different parts of the model. This may be particularly useful for
hybrid networks, as rate-coded networks often behavewell with integration steps of 1ms, while
some spiking networks require at least 0.1 ms. Finally, as the chosen interface is very close to
PyNN (Davison et al., 2008), we will implement a fully compatible interface so that ANNarchy
can be used as an alternative simulation backend using the available standard models.

As the interface is already stable, there is room for improvement regarding the parallel perfor-
mance. On CPU-based shared memory systems, the OpenMP implementation is efficient for
rate-coded networks (in the limit of memory bandwidth), but the spike propagation mechanism
does not scale linearly yet, introducing a strong sequential component to the simulation. This
issue will be investigated in future releases: based on our experiments, simulators using array-
based computations (Brian 2, ANNarchy and partially Auryn) tend to scale sub-optimally, while
NEST performs better. A possible reason for this difference is linked to the object-oriented
design of NEST: each thread computes individual neurons, leading to a more cache-friendly
access to the variables, especially when using synaptic delays. In contrast the array-based ap-
proach share neural and synaptic data among several threads and quickly fill the cache. The
opposite effect seems to be true for the update of neural variables (Zenke and Gerstner, 2014).
Hybrid solutions between array-based and object-oriented implementationsmight lead to a bet-
ter parallel performance for spiking networks.
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Parallel computing on distributed memory systems is also planned. The performance of NEST
on such systems suggests that this is an interesting solution for spiking networks, although
it has been shown that memory transfers might impair scaling already for medium-scale spik-
ing networks (Zenke and Gerstner, 2014). Communication costs might become a problem for
rate-coded networks, as firing rates must be exchanged at each simulation step. However,
if synaptic data is appropriately distributed on each node, it may increase the total available
memory bandwidth, which is an important limiting factor. We are currently investigating hybrid
MPI/OpenMP solutions which may minimize the communication costs through a structural
analysis of the network’s topology.

The generation of CUDAcode for simulation onGPUplatforms is still experimental and currently
only available for rate-coded networks. One major issue is the choice of the correct configu-
ration depending on the network, such as the number of threads per operation (the optimal
number of threads for the summation of inputs is different from the one for the update of neu-
ral or synaptic variables). ANNarchy currently proposes a default configuration which can be
overwritten by the user, but we will investigate solutions using auto-tuning of the simulation
parameters (Dinkelbach et al., 2012).
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