
Scalable simulation of rate-coded and spiking
neural networks on shared memory systems

Helge Ülo Dinkelbach, Julien Vitay and Fred H. Hamker

Department of Computer Science, Chemnitz University of Technology, Germany

Overview

We compare ANNarchy - 4.6.8 with current versions of other neural simulation tools:

I Auryn -
0.8.2

I NEST -
2.16.0

I Brian2 -
2.2.2.1

I Brian2GeNN -
1.3.1

We investigate the performance on non-plastic recurrent networks (80% excitatory,
20% inhibitory neurons) using:

I stochastic linear rate-coded neuron
model with a fixed number of
connections per neuron (10%)
comparable to [1]

I conductance-based
integrate-and-fire neuron and a fixed
connection probability (2%)
comparable to [2, 3]

ANNarchy neural simulator [3]

ANNarchy is a Python based framework using code generation based on equation-
like definitions of biologically-inspired neural networks:

I Easy definition of rate-coded and spiking models

I High degree of freedom for definition of activation function or learning
mechanisms

I Different integration methods (Euler, exponential, Midpoint, Runge-Kutta
4 is planned)

I Code generation allows to adjust both runtime configuration and used data
structures

References

[1] Hahne, J., Dahmen, D., Schuecker, J., Frommer, A., Bolten, M., Helias, M., and Diesmann, M.
(2017). Integration of Continuous-Time Dynamics in a Spiking Neural Network Simulator. Frontiers
in Neuroinformatics, 11. doi:10.3389/fninf.2017.00034
[2] Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., . . . Destexhe, A.
(2007).Simulation of networks of spiking neurons: A review of tools and strategies. Journal of
Computational Neuroscience, 23(3), 349–398. doi: 10.1007/s10827-007-0038-6
[3] Vitay J, Dinkelbach H. Ü. and Hamker F. H. (2015). ANNarchy: a code generation approach to
neural simulations on parallel hardware. Frontiers in Neuroinformatics. 9:19,
10.3389/fninf.2015.00019
[4] Dinkelbach, H. Ü., Vitay, J., Beuth, F. and Hamker, F. H. (2012). Comparison of GPU- and
CPU-implementations of mean-firing rate neural networks on parallel hardware. Network:
Computation in Neural Systems, 23(4): 212-236.

Linear rate-coded benchmark

Single-thread computation time as a function of network size

I ANNarchy is faster than NEST using

single thread

I GPU implementation requires higher

number of elements to be efficient, as

shown in earlier experiments [4]

Scalability for 4,000 neurons and 1, 6 · 106 synapses on CPUs

I NEST achieves higher scalability

I ANNarchy scales sub-linear for

more than 4 threads

I Array-based implementations as in

ANNarchy are more likely impaired

by false sharing than object-oriented

implementations as in NEST

Spiking benchmark

Computation times for 4,000 neurons on CPUs and GPUs

I Auryn achieves the best results using

single- and multi-core

I NEST has a higher computation time due

to a more expensive numerical method

I The GPU implementations require larger

networks to be efficient

Scalability for the CPU implementations

I NEST achieves the best scalability

I Scalability of ANNarchy is limited by

connectivity representation

I Array-based approaches (Auryn and

ANNarchy) achieve lower scalability

compared to object-oriented

implementation (NEST)

Conclusion

ANNarchy was originally designed as a rate-coded simulator which was then extended
to spiking networks, while NEST went the other way. Other simulators like Auryn
and Brian2 are focused on the development of spiking neural networks. We draw the
same conclusion as [1]: the two paradigms, rate-coded and spiking, require different
techniques for communication and computation. This makes the implementation
within a unified simulation environment a challenging task, where code generation
might prove very useful.

Acknowledgement

This work was supported by Deutsche Forschungs-
gemeinschaft (DFG) in the projects ”Computational
Connectomics” and ”Auto-tuning for neural simula-
tions on different parallel hardware”.

ANNarchy project repository: https://bitbucket.org/annarchy/annarchy.git helge-uelo.dinkelbach@informatik.tu-chemnitz.de


