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Abstract. Geometric deep learning is a promising approach to bring
the representational power of deep neural networks to 3D data. Explicit
3D representations such as point clouds or meshes can have varying and
often a huge number of dimensions, what limits their use as an input to a
neural network. Implicit representations such as signed distance functions
(SDF) are on the contrary low-dimensional and fixed representations of
the structure of a 3D shape that can be easily fed into a neural network.
In this paper, we demonstrate how deep SDF neural networks can be used
to precisely predict the deformation of a material after the application of
a specific force. The model is trained using a set of custom finite element
simulations in order to generalize to unseen forces.

Keywords: Geometric deep learning - Implicit neural representation -
Geometric deformation modeling - FEM simulations - 3D data
processing - Signed Distance Functions

1 Introduction

Deep neural networks have shown great potential in processing data such as
images and videos. In contrast, providing the 3D structures to the neural net-
works is still challenging. Geometric deep learning (GDL) is a branch of machine
learning (ML) that deals with 3D data for different purposes such as classifica-
tion, compression, and segmentation. Although 3D models are more informative
to describe the environment, common 3D representations are unfortunately not
easily combined with neural networks, and methods introduced for geometric
deformation processing are still under development.

The most common 3D representations are explicit, such as RGB-depth
images, voxels, point clouds, and meshes. A RGB-depth map simply concate-
nates the depth information to the 2D image grid, which makes it Neural Net-
work (NN)-friendly and an ideal data type for 3D pose estimation; however, the
3D modeling is partial and depends on the camera viewpoint.

Point clouds visualize the object’s shape with a set of unordered 3D points
sampled on the surface. The unstructured point clouds are most favored in the
industry and are easily captured by 3D scanners. As a global descriptor of the
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shape, they are mostly limited to segmentation and classification tasks [4,5]. A
point cloud does not contain surface information; therefore, dense sampling of
points is usually required. Insufficient point sampling of a shape with fine details
may cause an incomplete description while increasing the number of samples
becomes quickly memory inefficient. By extending the pixels of 2D images to
the third dimension, voxels represent the shape structure in a 3D space. Despite
the regular structure and arrangement of data units in grids that make them NN-
friendly, voxels are memory inefficient and are not suitable for small localized
deformations. As for point clouds, the sampling rate can highly affect memory
consumption.

Polygon meshes define a shape by a set of vertices on the surface and their
neighboring connections as edges. Meshes are generic data structures favored in
3D modeling for being simple, informative, and easy to use. However, bringing
them into the deep learning domain either limits us to the datasets with fixed
topologies [6], or the input size of the network should be equal to the largest
available mesh data sample [1]. In general, methods based on mesh representa-
tions suffer from a large set of features provided for the network as the whole
structure should be fed simultaneously as input. The difficulty in working with
meshes stems from the multitude of possibilities to apply a mesh on a shape, as
many different topologies could be defined for one geometry. Therefore for large
meshes, the network size drastically increases, and training will be computation-
ally expensive.

Recent advances in GDL and challenges of applying explicit representations
to deep networks have shifted attention to implicit ones. For instance, the well-
known representation “Signed Distance Functions” (SDF) refers to a regression
of the 3D space based on the distance from the shape surface. Here, each point
in the 3D space takes a signed value depending on whether they are inside or
outside of the shape. The density of these sample points increases the resolution
of the final shape and could be justified based on the needs of the problem. SDF
representations are a proper feed to deep networks and are highly efficient in
terms of memory consumption.

The idea of combining SDF with deep neural models was first introduced in
2019 [3] and has received significant attention since then. First, they trained a
network to estimate the SDF value of a shape S for each query input position in
the 3D space (Fig. 1-left). This neural network is an embedded representation of a
single shape. To generalize the network to multiple shapes, they add an encoded
shape S; as a condition to the network input and estimate the distance from
the shape S;. This shape encoding is implemented using a layered autodecoder
architecture. Similar to latent codes in autoencoder architecture, the “codes” of
an autodecoder are embedded representations of shapes. For each query point,
the network predicts the SDF value corresponding to the provided condition.
This continuous interpretation of space makes it possible to reconstruct shapes
in any desired resolution and preserves shape deformations without large mem-
ory requirements. This method could effectively address the problem of efficient
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shape embedding, and the network size is comparable to classical approaches for
processing any size of meshes with arbitrary topology.
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Fig. 1. Left: DeepSDF network for a single shape. Right: DeepSDF for an encoded
shape and a 3D query point.

2 Shape Deformation Modeling

The term “Deformation” refers to the changes in the geometry of a structural
body. Using Finite Element Analysis (FEA) has been a typical approach for
many years that helps the engineers to investigate the simulation results and
analyze the final product shape before production. However, the simulation pro-
cess is time-consuming for large meshes with fine details and requires high com-
putational power to solve the numerical equations. In addition, handmade tuning
and re-execution of simulations are required to find the proper process parame-
ters.

Most importantly, finding the optimized input parameters that lead to the
desired results in the FEA approaches is only possible through trial and error.
Neural networks can optimize input parameters that result in the desired out-
put where cause-and-effect FE methods could not handle this functionality.
Our research aims at modeling geometry deformations using neural networks.
Inspired by the original DeepSDF paper [3], we designed a model combining
SDF representations and deep networks to parameterize the shape deformation
based on input conditions. Although the primary goal of the DeepSDF method
was the efficient embedding of various shapes from different classes rather than
deformations on one shape, our results showed the effectiveness of the approach
for the shape deformation task.

2.1 Preparation of the Dataset

In order to train our model, we need a large dataset of deformed shapes. The
publicly available datasets are mainly designed for classification or segmentation
tasks and do not contain deformations or variations of shapes. Lacking appro-
priate data, we created our own dataset. For this purpose, we used FreeCAD,
which is an open-source application for CAD design, including packages such
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as FEA. In FreeCAD, we defined a simple cuboid, set the material properties,
and fixed the initial constraints on both ends. We then added force constraints
at different positions on the surface. By also varying the force magnitude, we
obtained 6228 deformed shapes corresponding to each condition. A mesh sample
in the FreeCAD environment is shown in Fig. 2. The generated dataset is freely
available for download'. The meshes then should be converted to the correspond-
ing SDF representation. Each 3D mesh is first scaled into a unit sphere and is
virtually rendered from 100 virtual cameras on the sphere surface. Then the
distance from the closest mesh triangle is calculated. It is important to sample
the points mostly near the surface to have an accurate sampling. We sampled
400000 points for each shape in our dataset.

e

Fig. 2. Left: the initial shape. Middle and right: resulting deformed meshes affected by
different forces.

2.2 Implementation Results

The neural network using SDF representations with arbitrary mesh topology can
handle large meshes without increasing the network size. We provide the spatial
coordinate and the force vector to the network and predict the corresponding
SDF value as an output. We train a fully-connected neural network with six
inputs (x, y, z coordinates of a sampled point, x, y position of the force applied
on the surface, and force magnitude). After a Bayesian hyperparameter search
using the optuna library, the neural network is composed of 4 hidden layers
(130-118-150-148) using the LeakyRelu activation function and one linear output
neuron. The mean square error loss is minimized using the Adam regularizer and
a learning rate of 0.0005. The network is trained for 150 epochs, with a validation
set composed of 20% of the data. At the end of the training, both the training
and validation losses are below 1076,

The network provides a continuous function representing the distance values
for each query point in the space, so another step needs to be taken for the
final shape retrieval. Marching cube (MC) [2] is the most common approach for
extracting the mesh in varying resolutions. By modifying the “cube size” as an
input parameter to the algorithm, the SDF values are discretized inside a unit
cube to reconstruct the surface of the shape in different resolutions. In Fig. 3,
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two generated mesh samples and the corresponding ground truth meshes are
depicted (for cube count = 953).

Fig. 3. The reconstructed mesh from NN prediction (in gray) and the ground-truth
mesh (in color) for two different samples. (Color figure online)

We use a popular metric, the Chamfer distance (CD), to evaluate the quality
of the reconstructed mesh. This metric represents the difference between two
sets of points S1 and S2 sampled from both mesh surfaces. In one variation of
CD, for all S1 points, the closest distance to the S2 points is averaged, and the
same process is repeated in reverse. The sum of these two averages is called CD,
which should be closed to zero. We randomly chose 116 samples from the test
set and reconstructed the mesh from the network predictions. The mean of CDs
for 30000 sample points is shown in Table 1. As expected, increasing the number
of cubes in the MC algorithm (that leads to finer meshes) reduces the Chamfer
distance.

The use of SDF representation has the following advantages: Any simulated
mesh or CAD model could be easily converted to an SDF representation so that
the existing datasets could be used for training. Contrary to explicit represen-
tations, this representation is NN-friendly and handles large-size meshes with
arbitrary topology. Also, a large number of shapes could be stored as a trained
neural network and save storage. After training the network, less computational
power and time are needed to process the large meshes compared with numerical
approaches. To our knowledge, this is the first time that this representation is
combined with neural networks for processing deformable objects.

Table 1. Chamfer distance metric for different resolutions of the MC algorithm.

Cube count | Chamfer distance
853 0.0009595
953 0.0009171

105% 0.0008937

120° 0.0008754

130° 0.0008747

Despite these advantages, SDF representations have two major difficulties
to deal with: The 3D mesh samples have to be watertight to divide the 3D
space into inside and outside regions. Unfortunately, many CAD models are not
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watertight, and some modifications in the algorithm are needed to be compatible
with non-watertight meshes. The second issue is the additional step added at the
end to discretize the space and extract an explicit representation of the shape
such as a mesh or point cloud. The final step is, unfortunately, dependent on the
required mesh size.

3 Conclusion and Future Work

In this paper, we showed that implicit representations could be effectively com-
bined with neural networks to predict the shape deformations caused by an
applied force. The designed network is able to be trained on very large meshes,
while the size of the network is kept reasonable. The main advantage is the
independence from mesh size and topology that brings the flexibility to process
3D shapes. However, the shapes provided to the network must be watertight.
Future work could be suggested to find a solution for non-watertight meshes to
generalize the approach. Another improvement could be proposed for the dis-
cretization phase in the end to substitute the current marching cube algorithm,
which highly depends on the mesh size.
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