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Abstract Automatic processing of emotion information through
deep neural networks (DNN) can have great benefits for human-
machine interaction. Vice versa, machine learning can profit from
concepts known from human information processing (e.g., visual
attention). We employed a recurrent DNN incorporating a spa-
tial attention mechanism for facial emotion recognition (FER) and
compared the output of the network with results from human ex-
periments. The attention mechanism enabled the network to se-
lect relevant face regions to achieve state-of-the-art performance
on a FER database containing images from realistic settings. A vi-
sual search strategy showing some similarities with human sac-
cading behavior emerged when the model’s perceptive capabil-
ities were restricted. However, the model then failed to form a
useful scene representation.
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1 Introduction

As emotions are deeply rooted within psychological and physiological
processes, they inform us about personality traits, intentions, physio-
logical states, or important events [1, 2]. Hence, there is a strong inter-
est in the automatic processing of emotion information in the fields of
human-machine interaction and machine learning.
For automatic facial emotion recognition (FER), deep neural networks
(DNN) have become the preferred approach [3]. As FER requires the de-
tection of subtle changes in facial structure [4, 5] spatial attention might
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Figure 1.1: Maps of relevant visual information for facial emotion recognition
(adapted from [10]).

improve classification performance, as it allows to select relevant seg-
ments of a visual scene [6]. It also has the benefit of reducing the com-
putational cost of image processing, as the whole image does not need
to be processed [7].
Eye-tracking studies show that humans preferably attend to the eye and
mouth regions when classifying facial expressions [8,9]. Moreover, Blais
et al. [10] showed that depending on the displayed emotion different
portions of the face are relevant for FER (Fig. 1).
Located in the spectrum of human and artificial information processing,
the aim of the present work is twofold: (a) to employ a recurrent DNN
incorporating a spatial attention mechanism for FER and (b) to compare
the output of the network with results from human experiments on FER
(i.e., Blais et al. [10]).

2 Related Work

Generally, attention can be understood as a guiding signal for the pro-
cessing of relevant information [6]. In humans the main function of
visual attention is to guide the gaze towards relevant parts of visual
scenes [11]. Mnih et al. [7] took this as inspiration for their recurrent at-
tention model for image processing which perceives only a small part of
a visual scene through a so-called glimpse sensor. The sensor’s location
is controlled by a recurrent network thus extracting information from
the image for a fixed number of iterations.
Based on the further developed deep recurrent attention model [12],
Ablavatsky et al. [13] proposed their enriched deep recurrent atten-
tion model (EDRAM) featuring the spatial transformer [14] as the new
glimpse sensor (“Attention Mechanism”, Fig. 2). This layer extracts a
scaled and rotated patch from an input array by performing an affine
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Figure 1.2: EDRAM overview (adapted from [13]).

transformation on a set of grid points defining sampling positions in
the input. The number of grid points is equal to the resolution of the re-
sulting output. The transformation is controlled by the fully connected
emission network which generates the transformation matrix A.
The glimpse network receives the image patch and extracts a feature

vector through a convolutional neural network. This vector is multi-
plied elementwise with the output of a dense layer of the same dimen-
sionality receiving the transformation matrix as an input thus merging
“what” and “where” information [15]. This information is passed to two
sequential recurrent networks (RNN) which accumulate the glimpse in-
formation thus building up a scene representation. The first RNN’s out-
put is used for classification and feeds into the second RNN, which is
connected to the emission network. Its hidden state is initialized by the
context network – a small CNN using a heavily down-sampled version
of the whole input image.

3 Model Training

The model was trained on the AffectNet database [16]. We used exam-
ples of the six categories of basic emotions (Happy, Sad, Surprise, Fear,
Disgust, and Anger) and the neutral category. As most databases for
FER, AffectNet has a strong class imbalance. The predefined validation
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set however is balanced with respect to the classes. To counteract the
training class imbalance, examples of the i-th of nclasses containing Ni

examples were weighted by a factor wi =
√

Ntotal

Ni×nclasses
when comput-

ing the classification loss.
In addition to categorial information, AffectNet includes continuous
ratings of valence and arousal of each facial expression. To use this in-
formation a second fully connected “classification” network was added
to the model. Instead of softmax classification the final layer of this net-
work had two units with hyperbolic tangent activation functions.
For preprocessing, images were cropped based on bounding boxes gen-
erated by a DNN face detector from the open CV package1 or the frontal
face detector from the Dlib library [17] if the first detector failed, down-
scaled to 100x100 grayscale, and contrast limited histogram equaliza-
tion was applied [18]. Data augmentation was applied online.

4 Experiments

We implemented EDRAM within the Tensorflow/Keras framework.2

The parameters for the first glimpse of an input were based on the ini-
tial state of the second recurrent network as in Ba et al. [12]. While
Ablavatski et al. [13] used batch normalization layers [19] with shared
weights between model iterations our model used unique batch nor-
malization layers for each timestep, as the pattern of layer activations
was expected to vary with each timestep. Furthermore, we computed
the loss for the emitted transformation matrix only for the zoom param-
eter thus enabling our model to freely choose the location of the glimpse
sensor. The target zoom factor was set to .35. All other model specifica-
tions were initially the same as in [13].

The model achieved a mean classification accuracy of 60.4% (recent
work of Li et al. [20] achieved 58.8% on the same data). The happy cat-
egory had an accuracy of 86.7% while all other class accuracies were
50–60%. The visual search strategy of the model was characterized by
a uniform application of the glimpse sensor. The model first used a
whole-face glimpse and then zoomed in on the left eye region (Fig. 3).

1 github.com/opencv/opencv/tree/master/samples/dnn/face_detector
2 The spatial transformer implementation was taken from github.com/oarriaga/
STN.keras
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Figure 1.3: Heat maps of glimpse areas. Unrestricted model (left) and model
with its zoom factor restricted to .30 (right).

Furthermore, we limited the zoom factor so that the network could only
generate glimpses which covered 50% respectively 30% of the image.
On average both models then only produced glimpses with their max-
imum zoom factor. The 50% model performed relatively good (57.8%
accuracy). This model shifted its glimpse sensor from the lower left of
the face to the upper middle (not shown). Interestingly, the positions
of the first glimpses produced by the 30% model showed a high inter
and intra-category variance (Fig. 3). Inspection of sample classifications
showed that this model produced saccade-like jumps of its glimpse sen-
sor instead of gradually zooming in on a face area or gradually shifting
the glimpse position (Fig. 4). The performance of this model however
was considerably worse than of other models (41.8% accuracy).

5 Conclusion

We showed that a DNN with a recurrent attention mechanism can
achieve state-of-the-art performance in FER. The experiments with
restricted zoom factors showed that a good classification performance
can be achieved by shifting glimpses with a medium size across the
image. The model which was restricted to relatively small glimpses
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Figure 1.4: Emotion classification sample. Labels represent model predictions.

showed a saccade-like search pattern. However, this model performed
considerably worse, indicating that it failed to form a scene representa-
tion from the separate glimpses.
Second, it was of interest whether the model would make use of
emotion-specific search strategies. The better-performing models
showed a relatively uniform search strategy. However, they also
processed relatively large regions of the face at once. The model whose
glimpse sensor was restricted showed emotion-specific search patterns
with a preference for the mouth region as can be found in the data of
Blais et al. [10].

This work was partly supported by the European Social Fund at the
Free State of Saxony (Grant ESF-100269974).
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