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Abstract

The cerebellum is thought to be able to learn forward models, which allow to predict the
sensory consequences of planned movements and adapt behavior accordingly. Although
classically considered as a feedforward structure learning in a supervised manner, recent
proposals highlighted the importance of the internal recurrent connectivity of the cerebellum
to produce rich dynamics (Rössert et al., 2015), as well as the importance of reinforcement-
like mechanisms for its plasticity (Bouvier et al., 2018). Based on these models, we propose
a neuro-computational model of the cerebellum using an inhibitory reservoir architecture
and biologically plausible learning mechanisms based on perturbation learning. The model
is trained to predict the position of a simple robotic arm after ballistic movements. Under-
standing how the cerebellum is able to learn forward models might allow elucidating the
biological basis of model-based reinforcement learning.

Computational model

Cortical inputs reach the cerebellum through the pons, which sendsmossy fibers to the 1000
granule cells (GC) and 100 Golgi cells (GoC). As formalized by Rössert et al. (2015), the GC-
GoC recurrent network forms a reservoir allowing to represent complex dynamics even in the
absence of stimulation. Granule cells send parallel fibers along the surface of the cerebel-
lum, which are read out by 20 Purkinje cells (PC) inhibiting 2 dentate nucleus (DN) neurons,
the output of the cerebellum. 2 inferior olive (IO) neurons send a binary error signal to PCs,
allowing to adapt the parallel fibers-PC synapses.
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Figure 1: Network architecture: GC - granule cells, GoC -Golgi cells, PC - Purkinje cells, DN
- dentate nucleus, IO - inferior olive. Edges ending with an arrow head indicate excitatory
connections, edges ending in a dot indicate inhibitory connections. Dashed lines are plastic.

Granule-Golgi Network as a Reservoir

The neuronmodel of GC, GoC, PC and DN neurons use synaptic integration to exhibit various
dynamics:
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The excitatory-inhibitory GC-GoC network exhibit rich dynamics after the presentation of a
short impulse input:

Figure 2: a) Activity of 20 selected granule cells after a short impulse input. b) Lyapunov
exponent depending on synaptic time constants.

Perturbation Learning

As in Bouvier et al. (2018), each PC receives random perturbations from the IO during a trial.
This perturbation modifies the PC’s rate and can either improve or worsen the overall perfor-
mance. Each synapse between the i-th GC (rate zi(t)) and the j-th PC (rate pj(t), perturbation
lj(t)) maintains an eligibility trace eij(t) according to:
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At the end of a trial at time T, PF-PC synaptic weights are updated according to:

∆wij = −η ceij(T)

where c is a simple binary reinforcement signal indicating whether the global performance

improved after the perturbation or not:

c = sign(εµ − Iµ)

The current error εµ for an input µ is the Euclidean distance between the network output and
the target value. The average of recent errors for a specific input pattern Iµ is estimated by
a linear combination of the GC outputs Iµ = ∑ivizi(T), where zi(T) is the firing rate of the i-th
GC at the end of a trial and the coefficient vi is updated at the end of each trial according to:

∆vi = η czi(T)

Contrary to Bouvier et al. (2018), weights are restricted to be positive.

Forward model of a 2D arm

We train the model to predict the next position xt+1,yt+1 of the end effector of a 2D arm with
two DoF θ1 and θ2 based on the current position xt,yt and the motor command ∆θ1,∆θ2. The
network is presented with the four input signals xt,yt,∆θ1 and ∆θ2 for 20 ms. After a delay
of 50 ms, the network response is read out. During this response period of 5 ms, the Purk-
inje cells receive random perturbations that modify the cerebellar output. Perturbations are
generated randomly and independently by each IO neuron with a mean rate of 50 Hz and
an amplitude of 0.1. Finally, the network response is evaluated, compared with the desired
positions, and the parallel fibre-Purkinje cell weights are updated. The network is trained on
a set of 5,000 random samples for 2,000 epochs and its performance is evaluated on a test
set of another 5,000 random samples.

Figure 3: a) Development of the prediction error during perturbation learning with positivity
constraint. b) Distribution of the prediction error in the arm’s workspace.

Figure 4: a) Activity of DN projection neurons for a random input sample. b) Development of
the predicted arm position for a particular movement during training.

Conclusion

The proposed model combines the recurrent dynamics of the GC-GoC excitatory-inhibitory
network proposed by Rössert et al. (2015) with the perturbation-based learning rule for par-
allel fibres-PC synapses proposed by Bouvier et al. (2018). The model is able to learn a
simple non-linear prediction task on a 2D simulated arm, although still imprecisely. Contrary
to the classical supervised approach requiring complete error signals, themodel learns from
a binary teaching signal indicating whether the prediction error has improved compared to
baseline performance. This allows to learn forward models with a cerebellar model: the IO
mainly receives low-level motor and proprioceptive information, so it can only drive super-
vised learning of inverse models (motor adaptation). For supervised forward models, the IO
would need to compare cortical sensory representations in order to compute the teaching
signal, what seems to be a very challenging task for such a small nucleus. By relying on a
much simpler reinforcement-like teaching signal, the proposed model could learn forward
models even if the predicted sensory space is high dimensional.
Code available at https://github.com/kimschmi/CerebellumForwardModel.
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