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Abstract

In Parkinson’s disease, a loss of dopamine neurons causes severe motor impairments. These motor impairments have long been
thought to result exclusively from immediate effects of dopamine loss on neuronal firing in basal ganglia, causing imbalances of
basal ganglia pathways. However, motor impairments and pathway imbalances may also result from dysfunctional synaptic plas-
ticity – a novel concept of how Parkinsonian symptoms evolve. Here we built a neuro-computational model that allows us to simu-
late the effects of dopamine loss on synaptic plasticity in basal ganglia. Our simulations confirm that dysfunctional synaptic
plasticity can indeed explain the emergence of both motor impairments and pathway imbalances in Parkinson’s disease, thus cor-
roborating the novel concept. By predicting that dysfunctional plasticity results not only in reduced activation of desired responses,
but also in their active inhibition, our simulations provide novel testable predictions. When simulating dopamine replacement ther-
apy (which is a standard treatment in clinical practice), we observe a new balance of pathway outputs, rather than a simple resto-
ration of non-Parkinsonian states. In addition, high doses of replacement are shown to result in overshooting motor activity, in
line with empirical evidence. Finally, our simulations provide an explanation for the intensely debated paradox that focused basal
ganglia lesions alleviate Parkinsonian symptoms, but do not impair performance in healthy animals. Overall, our simulations sug-
gest that the effects of dopamine loss on synaptic plasticity play an essential role in the development of Parkinsonian symptoms,
thus arguing for a re-conceptualisation of Parkinsonian pathophysiology.

Introduction

Motor symptoms in Parkinson’s disease (PD) result from a loss of
dopamine in the basal ganglia (BG). However, the mechanisms by
which dopamine loss causes BG dysfunctions and ultimately hypok-
inesia are not yet well understood. An influential set of theories dat-
ing back to the late 1980s (Albin et al., 1989; DeLong, 1990)
proposes that motor decay originates from an imbalance of excitatory
and inhibitory pathways in BG: the direct BG pathway (cortex?stri-
atum?globus pallidus internus) which facilitates activity in motor
cortex is assumed to become less active by dopamine loss, while the
indirect pathway (cortex?striatum?globus pallidus externus?sub-
thalamic nucleus?globus pallidus internus) which inhibits activity
in motor cortex is assumed to become more active. These theories
are widely accepted in their core proposals and have been corrobo-
rated by empirical evidence (Kravitz et al., 2010). However, they do
not explain some paradoxical effects of BG surgery (Marsden &
Obeso, 1994): lesions of globus pallidus internus (GPi), a BG output
structure, for example, substantially alleviate Parkinsonian motor

symptoms (Vitek et al., 2003), but do not significantly impair motor
performance in healthy animals (Horak & Anderson, 1984). More-
over, these theories merely propose global changes in pathway out-
puts, thus neglecting synapse-specific effects, and do not account for
compensatory mechanisms in Parkinsonian BG (cf. Bezard et al.,
1999).
In response to these theories’ shortcomings, Mink (1996) sug-

gested that pathway dysfunctions differentially affect selected and
competing (i.e. unselected) motor programs rather than affecting all
of them equivalently. Specifically, he proposed that a reduced output
of the direct pathway results in a specific deficit in facilitating
selected motor programs, while a reduced output of the indirect
pathway causes a deficit in inhibiting competing motor programs.
Recent empirical evidence, however, has challenged the latter
assumption (Kravitz et al., 2010). Nambu (2005) extended and
refined Mink’s (1996) ideas: he proposed that in Parkinsonian
brains, the direct pathway reduces its facilitation of selected motor
programs, while the hyperdirect pathway (cortex?subthalamic
nucleus?GPi) and the indirect pathway increase their suppression
of both selected and competing motor programs. Overall thereby,
selected motor programs are excited to a smaller degree and for a
shorter period of time, while the number of inhibited motor pro-
grams increases. While this theory accounts for a large body of
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neurophysiological evidence (e.g. Nambu et al., 2000; Tachibana
et al., 2008; Nishibayashi et al., 2011), it does not specify the
mechanisms via which dopamine loss causes pathway dysfunctions.
Recently, it has been shown in slices of mice brains that dopa-

mine loss profoundly disturbs synaptic plasticity in BG pathways
(Shen et al., 2008): it facilitates long-term depression (LTD) in D1
medium spiny neurons of the direct pathway, but favors long-term
potentiation (LTP) in D2 medium spiny neurons of the indirect path-
way. To investigate if such effects of dopamine loss on synaptic
plasticity can indeed account for altered neuronal activity and motor
performance in PD and explain core predictions of previous theories,
we developed a neuro-computational model.

Materials and methods

Model architecture

Our model consists of a cortico-basalganglio-thalamic (CBGT) loop
(Fig. 1A) that contains direct, indirect and hyperdirect BG pathways
as well as a cortico-thalamic pathway (Nambu et al., 2002; Haber,
2003). Thus, we model the functionally most relevant fiber tracts of
BG, but do not include all known connections (cf. Braak & Del Tre-
dici, 2008) to avoid overlap between pathways and to focus on their
major potential functions. These pathways spread between visual and
motor cortices, thereby bridging the gap from stimulus to response.
Each modeled brain area and nucleus consists of a pre-specified num-
ber of artificial neurons (cf. Table 1) whose firing rates are determined
based on the sums of glutamatergic (i.e. excitatory) and GABAergic

(i.e. inhibitory) synaptic inputs as well as a baseline rate. The direct
BG pathway and the cortico-thalamic pathway have net excitatory
effects on motor cortex, while indirect and hyperdirect pathways have
net inhibitory effects (Fig. 1B). For the indirect pathway, distinct
routes have been proposed (Smith et al., 1998) of which we included
the short one that does not contain the subthalamic nucleus (STN) – in
accordance with previous computational models (e.g. O’Reilly &
Frank, 2006; Stocco et al., 2010). Thus, we avoided overlap between
indirect and hyperdirect pathways. In accordance with previous theo-
ries and computational models, we assume BG pathways to be entirely
distinct before converging in GPi. Although this is probably a simplifi-
cation (L�evesque & Parent, 2005), it provides solid ground for our
analyses. We further assume that thalamic motor signals are, via stria-
tum, relayed back to pallidum (cf. Fig. 1B). As suggested by Brown
et al. (2004), thalamic feedback may solve a credit-assignment prob-
lem after incorrect responses: it informs BG pathways which response
has just failed to elicit reward and thus enables specific suppression of
this response. Lateral competition in GPi favors selection of just a sin-
gle response in each trial.
We do not pre-specify synaptic connectivity patterns or connectiv-

ity strengths in CBGT pathways, but define the mechanisms through
which connectivity self-organises via synaptic plasticity. Thus, path-
ways initially do not implement any function, but have to establish
their functions by adapting their synaptic weights. In line with
empirical findings (Gerfen et al., 1990; Shen et al., 2008), we
assume synaptic plasticity to be a function of dopamine, presynaptic
activity and postsynaptic activity. In pathways that are equipped
with D1 dopamine receptors (i.e. direct and hyperdirect pathways),
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Fig. 1. Model architecture, systemisation of pathways and task. (A) Anatomical architecture of our neuro-computational model. Boxes denote anatomical struc-
tures, arrows the fibers between them. We implement only those pathways that are assumed to fulfill fundamental functions with respect to response selection,
i.e. the direct BG pathway (cortex–putamen–GPi), the indirect BG pathway (cortex–putamen–GPe–GPi), the hyperdirect BG pathway (cortex–STN–GPi) and
the cortico-thalamic pathway (cortex–thalamus). (B) Pathways are implemented to differ along two dimensions: they either excite or inhibit cortical activity and
dopamine facilitates either LTP or LTD in their synapses (the latter effect being mediated by different types of dopamine receptors; cf. Boyson et al., 1986;
Gerfen et al., 1990; Braak & Del Tredici, 2008; Shen et al., 2008). (C) Trial set-up and timing of our stimulus-response task. Stimuli are presented to stimulus
cortex; responses are read out of motor cortex. Fifty milliseconds after stimulus onset, one of five possible responses is selected based upon motor-cortex activ-
ity in the model. If the selection is correct, reinforcement is given immediately while the stimulus is still present. Trials are separated by inter-trial intervals of
100 ms. (D) Stimuli and rewarded responses. Four stimuli vary along two dimensions (illustrated as spatial frequency and orientation). For each stimulus, only
one particular response (numbers 1–5) is rewarded if chosen. Correct (i.e. rewarded) responses change for the re-learning task phase.
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high levels of dopamine facilitate LTP, while low levels facilitate
LTD (Fig. 1B). In pathways that are equipped with D2 dopamine
receptors (i.e. the indirect pathway), high and low levels exert
exactly opposite effects. For illustration, Fig. 2 presents the effects
of dopamine-receptor stimulation and dopamine-receptor blocking
on D1-type and D2-type striatal medium spiny neurons (MSNs) in
our model (cf. Shen et al., 2008).
When we train the model on a stimulus–response (SR) reinforce-

ment-learning task as described below, stimuli are fed into stimulus
cortex and the model’s responses are recorded from motor cortex.
With a correct response, a reward signal is fed into the substantia ni-
gra compacta (SNc) where a reward-prediction signal (of opposite
sign) is added as specified in ‘Mathematical set-up’. In line with
empirical evidence (Hollerman & Schultz, 2003), SNc activity peaks
above baseline whenever more reward is received than predicted; it
dips below baseline in the case of unexpectedly little reward. SNc

firing determines dopamine levels in BG nuclei and thereby modu-
lates synaptic plasticity in BG pathways. To provide an insight into
model dynamics, Fig. 3 shows how activity spreads through the dif-
ferent nuclei of a healthy, randomly initialised network that has
already been trained on an SR task (cf. ‘Behavioral task’).
The model’s parameters were determined such that it is capable

of SR learning under normal dopamine levels; only afterwards did
we simulate Parkinsonian dopamine loss and investigated how this
causes CBGT pathway dysfunctions and behavioral impairments.

Mathematical set-up

The model contains a predefined number of rate-coded neurons for
each of the modeled brain regions and nuclei (cf. Table 1). Differen-
tial equations control these neurons’ membrane potentials and firing
rates as well as synaptic plasticity between them. All differential

Table 1. Numbers of cells for each of the model’s layers as well as parameters and transfer functions for computing membrane potentials and firing rates

Cell type No. of cells fr(x) = wff wff wlat B ei,t

Stimulus cortex 4 x 0.0 0.0

Motor cortex 5 x wThal�Cx
i;j ¼ 1:0 wCx�Cx

i;j ¼ �1:0 0.0 [�1.0 1.0]

Striatum (D1) 16 x wStr ðD1Þ�Str ðD1Þ
i;j ¼ �0:3 0.4 [�0.1 0.1]

Striatum (D2) 16 x wStr ðD2Þ�Str ðD2Þ
i;j ¼ �0:3 0.4 [�0.1 0.1]

Striatum (Thal) 5 x wThal�StrðThalÞ
i;j ¼ 1:0 wStrðThalÞ�StrðThalÞ

i;j ¼ �0:3 0.4 [�0.1 0.1]

STN 16 x wSTN�STN
i;j ¼ �0:3 0.4 [�0.1 0.1]

GPe 5 x wStrðThalÞ�GPe
i;j ¼ �0:3 1.0 [�1.0 1.0]

GPi 5 x wGPe�GPi
i;j ¼ �1:5 wStrðThalÞ�GPi

i;j ¼ �0:3 2.4 [�1.0 1.0]

Thalamus 5
x if 0� x� 1
0:5þ 1

1þe
1�x
2

else

(
wGPi�Thal
i;j ¼ �1:5 wThal�Thal

i;j ¼ �0:6 1.0 [�0.1 0.1]

SNc 1 x 0.1 0.0

For each modeled brain area and nucleus, numbers of simulated neurons are given, as well as these neurons’ firing-rate transfer functions (fr(x)), hard-coded
feed-forward weights (wff), lateral weights (wlat), baseline membrane parameters (B) and uniform distributions from which random noise terms (ei, t) are drawn.
GPe, globus pallidus external segment; GPi, globus pallidus internal segment; SNc, substantia nigra pars compacta; STN, subthalamic nucleus; striatum (Thal),
striatal neurons that receive thalamic feedback.

Fig. 2. Effects of dopamine agonists and antagonists on synaptic plasticity in D1- and D2-type striatal MSNs in our model. To measure the effects of synaptic
plasticity, magnitudes of excitatory postsynaptic potentials (EPSPs) are measured both before (pre) and after (post) the induction of plasticity. EPSPs are elicited
by setting presynaptic activity to a value of 1.0 for 50 ms and recording postsynaptic activity at the end of this period. Synaptic plasticity is induced by setting
activity of a presynaptic (cortical) neuron to 1.0, activity of a postsynaptic (striatal) neuron to 0.5 and dopamine to either baseline (no drug), 0.1 points above
baseline (dopamine agonist) or 0.1 points below baseline (dopamine antagonist) for 150 ms. All other neurons in cortex and striatum are set to activities of 0.0.
Synaptic strengths are initialised with a value of 0.5. Simulations are performed 1000 times for precise estimation of all effects.
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equations are integrated via the Euler method with a time-step of
1 ms (cf. Vitay & Hamker, 2010). Membrane potentials mpost

j;t are
computed via

s � dm
post
i;t

dt
þ mpost

i;t ¼
X
j2pre

wpre�post
i; j;t � rprej;t

� �
þ Bþ ei;t; ð1Þ

where s = 10 ms is a time constant, wpre�post
i; j;t is the strength (i.e.

weight) of the synapse between presynaptic cell j and postsynaptic
cell i; rprej;t is the firing rate of presynaptic cell j, B is a baseline
membrane potential and ei,t is a random noise term drawn from a
uniform distribution as specified in Table 1.
Equation (1) does not apply to dopaminergic SNc cells, whose

membrane potentials are instead governed by

s � dm
post
i;t

dt
þ mpost

i;t ¼ Pt � Rt þ Qt �
X
j2pre

wpre�post
i; j;t � rprej;t

� � !
þ B: ð2Þ

Here, Pt is a timing-factor set to 1 whenever reward can potentially
occur and to 0 otherwise, Rt is a reward term set to (1�B) when
reward is given and to 0 otherwise and Qt is a scaling factor for
reward prediction as explained below. Equation (2) determines that

SNc activity increases above baseline rate B whenever there is more
reward (Rt) than predicted and decreases below baseline whenever
there is less reward than predicted (thus encoding reward prediction
errors). The reward prediction at time t is encoded in the total
amount of input from striatal D1 MSNs to SNc (i.e. in the sum of
products of presynaptic striatal firing rates, rprej;t , and synaptic
strengths between striatum and SNc, wpre�post

i;j;t ). Strengths of syn-
apses between D1 MSNs and SNc are learnable as specified in
Table 2 such that reward predictions may be constantly updated:
whenever SNc fires above baseline (because there is more reward
than predicted), synapses between concurrently active presynaptic
D1 MSNs and postsynaptic SNc cells become strengthened, thus
resulting in a stronger reward prediction for the future. Whenever
SNc fires below baseline rate (because there is less reward than pre-
dicted), by contrast, these connections experience LTD, resulting in
a weakened reward prediction. The scaling factor Qt is set to 1 in
the case of reward and to 10 in the case of no reward; it thus
strengthens small phasic decreases in SNc activity: in the initial
stages of learning, reward predictions are not yet strong, so positive
reward prediction errors are large, while negative reward prediction
errors are small. Without Qt, this imbalance would result in strong
phasic increases in SNc activity, but only small phasic decreases,

A B

Fig. 3. Activities recorded from a healthy randomly initialised network performing our SR task. (A) Single-cell firing rates recorded from different nuclei dur-
ing initial learning and re-learning. Lines depict firing rates of different neurons over the course of a single trial; arrows denote stimulus onset. When initial
learning is just accomplished (left subplots), stimulus presentation activates some D1 MSNs that inhibit firing of a specific GPi neuron (corresponding to the
correct motor program), while STN cells increase the activities of all other GPi neurons. In thalamus and motor cortex therefore, a specific motor program
becomes activated, which results in a specific (correct) response. During re-learning (right subplots), stimulus presentation additionally activates some D2 MSNs
of the indirect pathway that inhibit activity of a specific GPe neuron (encoding the previously correct motor program) such that the neuron’s inhibition of a spe-
cific GPi neuron is reduced and the previously correct response is inhibited. (B) Firing rates of all individual neurons of BG and thalamus averaged over the last
50 trials of the initial-learning period and the first 75 trials of the re-learning period, separately for trials in which stimuli 1, 2, 3 and 4 were presented. Bright
shadings denote high activities, while dark shadings denote low activities (where ‘white’ corresponds to firing rates of 1.5 for GPi cells and firing rates of 1.0
for all other cells and ‘black’ corresponds to firing rates of 0.0 for all cells). At the end of the initial-learning period (left subplots), each stimulus activates a dif-
ferent set of D1 MSNs (direct pathway) and STN cells (hyperdirect pathway), while D2 MSNs (indirect pathway) are not activated. D1 MSNs, via GPi, then
activate those thalamic cells that correspond with correct motor programs (i.e. cell 1 for stimulus 1, cell 2 for stimulus 2, etc.), while STN cells suppress activi-
ties of all other thalamic cells. At the beginning of re-learning (right subplots), D2 MSNs (indirect pathway) get activated upon stimulus presentation. These D2
MSNs suppress activities of those thalamic cells (via GPe and GPi) that correspond to previously correct motor programs (note that these thalamic cells still
receive some activation because of cortico-thalamic fibers). At the same time, D1 MSNs and STN cells start establishing new SR associations in line with novel
reinforcement contingencies (stimulus 1, for instance, appears to be already linked to its correct response 2).
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which would cause a tendency towards LTP in direct and
hyperdirect pathways, and towards LTD in the indirect pathway.
Because of this, random SR associations (that are routinely tried out
during learning) would be established, but could not be dismissed if
it turns out that they do not result in reward. Qt now ensures rela-
tively large decreases in SNc activity even for small negative reward
prediction errors, which is in exact accordance with empirical find-
ings (Bayer & Glimcher, 2005).
Firing rates rposti;t are derived from membrane potentials via

rposti;t ¼ fr ðmpost
i;t Þþ

� �
; ð3Þ

where ()+ defines that negative values are set to zero. Transfer func-
tions fr(x) are layer-specific as detailed in Table 1. The layers’ dif-
ferent firing rates, as depicted in Fig. 3A, were chosen to comply
with the nuclei’s different levels of tonic activity (cf. Nambu et al.,
2000; Kita & Kita, 2011).
Plasticity of cortico-thalamic synapses and of lateral synapses

within GPi is guided by two-factor Hebbian-like learning rules (i.e.

it depends upon pre- and postsynaptic activities only). Plasticity of
all other synapses, by contrast, follows three-factor learning rules
(i.e. it depends upon presynaptic activities, postsynaptic activities
and dopamine). In this more general three-factor case, learnable
weights wpre�post

i;j;t are computed via

g �dw
pre�post
i;j;t

dt
¼CT � fDAðDAt�BDAÞ �Capre�post

i;j;t �aposti;t �Capre�post
i;j;t

ð4Þ
with

aposti;t ¼ fa mpost
i;t � mMAX

� �
: ð5Þ

Here, g is a time constant as specified in Table 2, fDA(x) a transfer
function, DAt the dopamine level at time t, BDA = 0.1 the baseline
dopamine level (which is kept constant across medical conditions and
thus differs from the tonic dopamine level when simulating PD) and
Capre�post

i;j;t a postsynaptic calcium level depending on pre- and post-

Table 2. Parameters and transfer functions for computing synaptic plasticity

Connection fDA(x) = fpre(x) = fpost(x) = fa(x) = g gdec cpre cpost mMAX CT

Cortex–
striatum (D1)

2x if x[ 0

0:8x if x\0 \ ðCaCx�Str ðD1Þ
i;j;t [ 0 \ wCx�Str ðD1Þ

i;j;t [ 0Þ[
ðCaCx�Str ðD1Þ

i;j;t \0 \ wCx�Str ðD1Þ
i;j;t \0Þ

 !
0 else.

8>><
>>:

x x+ x+ 75 250 0.15 0 1 1

Cortex–
striatum
(D2)

�2x if x\0

�0:8x if x[ 0 \ ðCaCx�Str ðD2Þ
i;j;t [ 0 \ wCx�Str ðD2Þ

i;j;t [ 0Þ[
ðCaCx�Str ðD2Þ

i;j;t \0 \ wCx�Str ðD2Þ
i;j;t \0Þ

 !
0 else.

8>><
>>: x x+ x+ 75 250 0.15 0 1 1

Cortex–STN

2x if x[ 0

0:8x if x\0 \ ðCaCx�STN
i;j;t [ 0 \ wCx�STN

i;j;t [ 0Þ[
ðCaCx�STN

i;j;t \0 \ wCx�STN
i;j;t \0Þ

 !
0 else.

8><
>: x x+ x+ 75 250 0.15 0 1 1

Striatum
(D1)–GPi

2x if x[ 0
0:8x if x\0 \ CaStr�GPi

i;j;t [ 0
0 else.

(
x+ �x �(�x)+ 50 250 0 �0.15 �1 �1

STN–GPi
2x if x[ 0
0:8x if x\0 \ CaSTN�GPi

i;j;t [ 0
0 else.

(
x+ x x+ 50 250 0 �0.15 1.5 1

Striatum
(D2)–GPe

�2x if x\0
�0:8x if x[ 0 \ CaStr�GPe

i;j;t [ 0
0 else.

(
x+ �x �(�x)+ 50 250 0 �0.15 �2 �1

GPi–GPi 1 (�x)+ (�x)+/x+* x+ 1 1 0 0 0 1

Cortex–
thalamus

1 x x+ x+ 2k 1 0 0.75 0.9 1

Striatum
(D1)–SNc

x if x[ 0
3x else.

n
x+ 1 0 100k 1 0 0 0 �1

For each plastic fiber tract in our model, the parameters that determine synaptic plasticity are given. We report transfer functions for dopamine factors of our
learning rules (fDA(x)), presynaptic factors (fpre(x)), postsynaptic factors (fpost(x)) and a (fa(x)) for each of the model’s fiber tracts. Further, time constants (g and
gdec), threshold parameters of pre- and postsynaptic factors (cpre and cpost) and parameters controlling maximal desired membrane potentials (mMAX) are given.
Cortex here signifies stimulus cortex. GPe, globus pallidus external segment; GPi, globus pallidus internal segment; SNc, substantia nigra pars compacta; STN,
subthalamic nucleus.
*For this connection, calcium traces contain different transfer functions for minuend and subtrahend of Eqn 4, as specified in ‘Mathematical set-up’.
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synaptic activities as defined in Eqn 6. CT defines the connection
type and is set to 1 for glutamatergic (i.e. excitatory) and to �1 for
GABAergic (i.e. inhibitory) synapses. Glutamatergic weights are pre-
vented from decreasing below zero; GABAergic weights are pre-
vented from increasing above it. For cortico-striatal and cortico-
subthalamic fibers, as a special case, we allow synaptic strengths to
take both positive and negative values to mimic the potential function
of interneurons. aposti;t prevents connection strengths from increasing
infinitely: it increases whenever postsynaptic membrane potentials
increase above (or decrease below) a threshold defined by mMAX.
Postsynaptic calcium levels Capre�post

i;j;t are computed via

gCa � dCa
pre�post
i;j;t

dt
þ Capre�post

i;j;t ¼ fpreðrprej;t � pret � cpreÞ � fpostðrposti;t

� postt � cpostÞ
ð6Þ

with

gCa ¼ gdec if gCa � dCa
pre�post
i;j;t

dt þ Capre�post
i;j;t ¼ 0

1 else.

�
ð7Þ

Here, pret and postt are the mean activities of layers pre and post at
time t and cpre and cpost are threshold parameters. In brief, calcium
levels increase for synapses where pre- and postsynaptic cells are
concurrently active and decrease for all other synapses (cf. Schroll
et al., 2012). Transfer functions fpre(x) and fpost(x) are given in
Table 2. Equation 7 determines a gradual decay of calcium in the
absence of concurrent pre- and postsynaptic activities. Table 2
shows, for each plastic fiber tract in our model, the parameters that
determine synaptic plasticity.
Overt responses are defined probabilistically based upon motor-

cortex firing rates via a soft-max rule. Probability of response i at
time t, Pi,t, is given by

Pi;t ¼ ri;t þ hP
j2motor cortexðrj;t þ hÞ : ð8Þ

h = 10�10 prevents the denominator from becoming zero.
Random initialisations of networks apply to noise terms in Eqn 1,

drawn from uniform distributions as specified in Table 1. All learn-
able synaptic connections are initialised with strengths of zero.

Behavioral task

For our simulation studies, we trained our model on an SR task and
investigated its performance during initial learning, automatic execu-
tion and re-learning of this task. In each trial of the task, one of four
stimuli was randomly chosen and presented (Fig. 1C). Each stimulus
was assumed to consist of two features (e.g. orientation and spatial
frequency), therefore being represented in the stimulus cortex of our
model by simultaneous activation of two (out of four) cells. Fifty
milliseconds after stimulus onset, the model’s response was recorded
from motor cortex via a softmax rule as specified in ‘Mathematical
set-up’ and positive reinforcement was given in the case of a correct
response. In the re-learning task phase, reinforcement contingencies
were changed (Fig. 1D). We defined that a network had learned a
given set of SR associations when it had reached a criterion of 50
correct responses in a row. When initial learning was mastered, we
either specified that the network continued with the same set of
rewarded SR associations (automatic-performance task phase) or we
enforced a new set of rewarded SR associations by changing reward

contingencies (re-learning phase). Networks that did not reach the
initial-learning criterion within 5000 trials or both initial-learning
and re-learning criteria within a total of 10 000 trials were aban-
doned and classified as failures.

Dopamine loss and dopamine replacement

To model Parkinsonian dopamine loss, we multiplicatively lowered
SNc dopamine output to striatum and GPi. This resulted in decreases
of both tonic and phasic dopamine levels. Nigro-striatal dopamine
was lowered by 70%, nigro-pallidal dopamine by 40%. This asymme-
try is in accordance with evidence that striatal dopamine decays faster
than pallidal dopamine (Parent et al., 1990; Whone et al., 2003) and
with findings that Parkinsonian symptoms do not arise before striatal
dopamine depletion is well advanced (Moore, 2003). STN might not
significantly lose its supply at all (Pavese et al., 2011).
Dopamine replacement therapy (i.e. delivery of levodopa or dopa-

mine agonists) is a standard treatment to alleviate Parkinsonian
symptoms in humans. In the model, we implemented it by adding
constant additional dopamine inputs to all BG nuclei, thus increasing
tonic but not phasic levels. As dopamine replacement is delivered
systemically in clinical practice (i.e. orally or via infusions), we
defined that all BG nuclei received the same absolute amount of
dopamine. We tested several dopamine doses to find out how dosage
affects performance on our SR task (ranging from 12.5% to 200% of
pallidal loss, in steps of 12.5%). To test the doses’ effects on auto-
matic performance, we first trained networks on our SR task and then
simultaneously rendered them Parkinsonian and added dopamine
replacement while task performance continued. To test replacement
effects on initial-learning performance, we inflicted dopamine loss
and granted replacement directly before we started the task.

BG lesions

For both healthy and Parkinsonian networks, we investigated behav-
ioral outcomes of circumscribed lesions of striatum, STN, GPe and
GPi. Technically, we forced all output of a lesioned nucleus to zero,
i.e. damaged all of its neurons. To evaluate lesion effects on initial-
learning performance, we inflicted lesions (and dopamine loss, if
applicable) directly before the model was trained. To evaluate
effects upon re-learning performance, we first trained unlesioned
networks on the initial-learning phase of our task and then simulta-
neously inflicted lesions (and dopamine loss, if applicable) and
started the re-learning phase. To evaluate effects upon automatic
performance, we also trained unlesioned networks on the initial-
learning phase first, then inflicted dopamine loss if applicable and
finally, after an additional delay of 500 trials, inflicted the desired
lesion. We recorded overt responses for a total of 2500 trials when
measuring learning performances and for 25 000 trials when mea-
suring automatic performance.

Analyses of pathway functions and dysfunctions

To investigate pathway functions and dysfunctions, we ran 1000
randomly initialised networks on our SR task for each medical con-
dition, thus precisely estimating medians and quartiles of perfor-
mance distributions and superseding statistical tests. From each
network, we recorded overt responses, neuronal firing rates and syn-
aptic strengths. During initial learning and re-learning, these data
were recorded for each single trial, always 50 ms after stimulus
onset (i.e. at the time of response selection). During automatic per-
formance, these data were recorded only once in every ten trials to
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limit file sizes (as automatic-performance simulations were run for
25 000 trials).
To determine the average output of a fiber tract, as depicted in

Fig. 5, we first computed the product of each synapse’s strength and
its respective presynaptic activity during a particular task phase;
afterwards, we averaged across all synapses. Effect sizes (ES) of
average outputs, as depicted in Fig. 5, were then computed via

ES ¼ mean(PD)�mean(healthy)ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 � ðvarðPDÞ þ varðhealthyÞÞð Þp

:

To determine a pathway’s output on specific GPi cells, i.e. those
that encode either correct or incorrect motor programs (as depicted
in Figs 4, 7 and 8), we again computed products of synaptic
strengths and presynaptic activities, but averaged only across those
synapses that belong to the respective GPi cells (rather than across
all synapses).
To plot developments of pathway outputs, we first binned each

network’s data and only afterwards computed statistics over net-
works, so as to cope with the networks’ different learning speeds.
Binning was done as follows: for each simulated network, we
counted the number of trials n that were needed to perform a partic-
ular task phase. Then, we constructed 50 bins of which the first one
contained all data from trials 1 to n/50 (rounded up), the second all
data from trials n/50 + 1 to 2n/50 and so on. Finally, we computed
medians and quartiles for corresponding bins over all networks (i.e.
separately for the first bin over all networks, for the second bin over
all networks, and so on).

Results

Pathway functions in healthy networks

To investigate how pathway functions evolve under normal dopa-
mine levels, we ran 1000 randomly initialised networks on our SR
task. Based on these data, we find the following pathway functions
(Fig. 4): the direct pathway, in line with its generally acknowledged
Go function (Brown et al., 2004; O’Reilly & Frank, 2006; Vitay &
Hamker, 2010), learns to facilitate correct motor programs (i.e. those
that encode rewarded responses). When reward contingencies
change, this pathway reduces its previous synaptic strengths and
instead learns to facilitate the newly correct motor programs. The
hyperdirect pathway learns to inhibit incorrect (i.e. currently unre-
warded) motor programs that compete for execution with the correct
ones; during re-learning it also readapts completely. This finding is
in line with the assumption that the hyperdirect pathway performs a
surround-inhibition of incorrect motor programs (Nambu et al.,
2002). The cortico-thalamic pathway learns to facilitate correct
motor programs, just like the direct pathway. However, plasticity
within the cortico-thalamic pathway is not modulated by dopamine.
Thus, it does not directly learn from rewards. Rather, it learns
to interconnect those cortical and thalamic neurons that are
simultaneously activated via reward-sensitive BG pathways. The
cortico-thalamic pathway develops more slowly than the direct BG
pathway, but once established provides shorter and thus faster links
between stimulus cortex and motor cortex (cf. Ashby et al., 2007).
When reward contingencies change, it does not immediately unlearn
previously correct SR associations (which might become relevant
again in the future), but rather maintains a synaptic memory of these
associations. Our model predicts that, because of the cortico-tha-
lamic pathway, BG are not required to perform well-learned SR
associations; as shown in the lower left subplot of Fig. 9, GPi
lesions (which totally eliminate BG output in our model) do not
impair behavioral performance of well-learned tasks. However, if a
conflict in automatic responding arises (i.e. when cortico-thalamic
fibers facilitate two or more motor programs simultaneously), BG
facilitation of the correct motor program remains necessary for its
execution. Thus, our model reconciles two known functions of BG:
we find them necessary both for SR learning via rewards (Seger,
2006) and for flexible performance of previously learned SR tasks
under response conflict (cf. Redgrave et al., 1999; McHaffie et al.,
2005; Leber et al., 2008). The indirect BG pathway, finally, learns
to inhibit previously correct motor programs when reward contin-
gencies change (i.e. during re-learning). Such a function is in line
with the indirect pathway’s hypothesised NoGo function that is sup-
posed to be triggered by negative reward prediction errors (Frank
et al., 2004; Frank, 2005; O’Reilly & Frank, 2006) and agrees with
evidence on its role in reversal learning (Lee et al., 2007; Jocham
et al., 2009). The indirect pathway does not get involved in inhibit-
ing motor programs outside the context of re-learning; its function
thus remains distinct from the hyperdirect pathway’s function.

Average pathway outputs are altered in Parkinsonian networks

Early theories of Parkinsonian pathway dysfunctions propose that
the direct BG pathway becomes less active in Parkinsonian
networks, while the indirect pathway gets activated more strongly
(Albin et al., 1989; DeLong, 1990); and indeed, these assumptions
have been corroborated by empirical evidence (Kravitz et al., 2010).
Our model allows us to investigate to what extent these activity
changes of direct and indirect pathways can be accounted for by
dysfunctional synaptic plasticity as resulting from dopamine loss.

Fig. 4. Pathway outputs evolve over learning in healthy networks. Subplots
depict how the outputs of the four major pathways develop along progress of
initial learning and re-learning. Separate lines within each subplot show the
evolution of pathway outputs on specific motor programs, namely those that
are correct during initial learning (correct initial), during re-learning (correct
reversal) or always incorrect. For each line, a brightly colored band depicts
how lower and upper quartiles of pathway outputs (y axis) evolve over task
progress (x axis) – as estimated from 1000 randomly initialised networks; a
black line in each band visualises the development of the median. Pathway
outputs are defined as the products of synaptic strengths and presynaptic activ-
ities, averaged across those synapses of each pathway that contribute to correct
or incorrect responses, as detailed in ‘Materials and methods’. For compari-
sons, developments of motor-cortical (M1) activities and correct-response
rates are rendered below the developments of pathway outputs, where high y
values indicate high M1 activity and high correct-response rates, respectively.
Because of variability in the networks’ learning performances, data were bin-
ned with regard to task progress as detailed in ‘Materials and methods’.
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Parkinson’s disease typically develops relatively late in life, when
all basic motor programs are already established. To mimic this in
our simulations, we first trained our networks on our SR task and
only afterwards inflicted dopamine loss by lowering SNc dopamine
output to BG nuclei. As dopamine-lesioned networks continued to
perform the previously learned task, we recorded average pathway
outputs and average neuronal activities.
Our simulations corroborate the assumptions of the above-stated

theories with regard to both direct and indirect pathways (Fig. 5): we
indeed see a reduced average output of the direct pathway in Parkin-
sonian networks, while the indirect pathway increases its average
output. These effects can thus be fully accounted for by dysfunc-
tional synaptic plasticity. As another key assumption of the above-
stated theories (Albin et al., 1989; DeLong, 1990), the imbalance of
direct and indirect pathways results in an increase in GPi firing and
in subsequently reduced activities of thalamus and motor cortex. Our
simulations again reproduce these effects: in unmedicated Parkinso-
nian networks, we find GPi activity increased by an effect size of
4.82 beyond what we record in healthy networks, while activities of
thalamus and motor cortex are decreased by effect sizes of �0.49
and �2.00, respectively (Fig. 5). Surmounting the scope of the
above-stated theories (Albin et al., 1989; DeLong, 1990), our simula-
tions predict that the average outputs of both hyperdirect and cortico-
thalamic pathways are increased in Parkinsonian networks.
Dopamine replacement (i.e. systemic delivery of levodopa or

dopamine agonists) is a standard treatment to reduce Parkinsonian
symptoms. It has been shown to improve automatic SR performance
in humans (Brown et al., 1993) but to worsen learning of new SR
associations (Jahanshahi et al., 2010). Ameliorative vs. adverse
effects depend upon replacement dosage. To simulate systemic

dopamine replacement, we additively increased dopamine levels by
equivalent absolute amounts in all BG nuclei. While this does not
compensate for the diminution of phasic dopamine signals, it does
increase tonic dopamine levels. To find a suitable dopamine dose,
we systematically simulated different doses while running the auto-
matic-performance and initial-learning phases of our task. We find
that initial-learning performance is maximally alleviated by rela-
tively low dopamine doses, while automatic performance requires
relatively high doses to be restored (Fig. 6). Such high doses, how-
ever, impair learning. We investigated the reasons for these impair-
ments in networks that received a replacement dose amounting to
187.5% of pallidal loss. As depicted in Fig. 6, learning performance
was around chance level (i.e. 20% correct responses) for this dose
of dopamine replacement. In 1000 randomly initialised networks,
we investigated the types of errors that result in such poor perfor-
mance. We observed that, on average, 99.69% of each network’s
responses (spanning trials 1–5000) could be explained by a single
set of SR associations. This means that networks quickly converged
on a set of (random) SR associations and then continued with these
associations, although their responses did not result in reward. Such
a development of random SR associations corresponds well with
empirical reports that delivery of dopamine replacement often causes
hyperkinetic symptoms in human patients (i.e. dyskinetic and/or
choreic movements; Sporer, 1991; Rascol et al., 2000). These symp-
toms can be thought of as inappropriate and highly repetitive motor
responses in situations where in fact different responses or no
response would be appropriate. Thus, our model not only explains
ameliorative effects of dopamine medication, but also adverse effects
that involve learning impairments and emergence of inappropriate
‘hyperkinetic’ SR associations.

A B C

Fig. 5. Average pathway outputs and firing rates in Parkinsonian networks. (A) Core assumptions of the theories by Albin et al. (1989) and DeLong (1990) as
summarised by Wichmann & DeLong (1996). Thin arrows denote reduced pathway outputs, thick arrows increased ones. Light gray shades denote decreased
firing rates, dark gray shades increased firing rates. The output of the direct BG pathway is reduced, while the output of the indirect pathway is increased. Fig-
ure 5A is reprinted, with minimal adaptations, from Wichman & DeLong (1996). (B and C) Simulation results for Parkinsonian networks on and off medication.
Numbers quantify differences between Parkinsonian and healthy networks in terms of effect sizes: numbers on top of arrows refer to effect sizes of average
pathway outputs, numbers on top of nuclei to effect sizes of average firing rates. Average outputs are defined as the mean products of synaptic strengths and
presynaptic activities, as detailed in ‘Materials and methods’. For BG pathways therefore, the fiber tracts that point directly to GPi show the pathways’ overall
outputs (and contain all effects of cortical outputs to striatum and STN). Note that the indirect pathway in our model consists only of the direct link from GPe
to GPi and does not contain the additional route via STN. Average pathway outputs and firing rates are computed over an interval of 10 000 trials, starting
15 000 trials after the beginning of dopamine loss. Effect sizes are computed as detailed in ‘Materials and methods’.
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Such doses of dopamine replacement as are used in clinical prac-
tice have been shown to reduce symptoms in well-trained tasks but
to impair learning performance (Brown et al., 1993; Jahanshahi
et al., 2010). These effects correspond to relatively high doses of
dopamine replacement in our model. Therefore, we used a relatively
high dopamine dose amounting to 187.5% of pallidal loss for our
simulations of pathway outputs (cf. Fig. 6). We find that such a
dose restores the average outputs of indirect and cortico-thalamic
pathways towards what we record in healthy networks (Fig. 5).
However, it greatly enhances average outputs of direct and hyperdi-
rect pathways, far beyond what we record in healthy networks
(effect sizes are 13.44 and 31.25, respectively). These results argue
against a merely restorative role of dopamine replacement, but rather
suggest that replacement establishes a new equilibrium of average
pathway outputs. The effects of dopamine treatment on pathway
outputs have not yet received much attention by empiricists; we
hope that our report motivates empiricists to scrutinise the predicted
effects.

Pathway outputs on correct and incorrect motor programs are
altered differentially in Parkinsonian networks

Our simulations allow us to investigate how far dysfunctional synap-
tic plasticity, as caused by dopamine loss, can account for differen-
tial changes in pathway outputs on correct and incorrect motor
programs (Fig. 7). Mink (1996) and Nambu (2005) have stressed
the importance of understanding such changes for comprehending
the causes of PD symptoms. Based on our simulations, we find that
the direct pathway’s facilitation of correct motor programs decays
in Parkinsonian networks (Fig. 7). This is in line with empirical evi-
dence: dopamine lesions in rats eliminate phasic decreases in GPi
firing that usually follow cortical stimulation in intact brain hemi-
spheres (Kita & Kita, 2011) – in intact brains, these phasic
decreases have been shown to be caused by the direct pathway and
have been linked to a selection of appropriate actions (Nambu et al.,
2000). For the indirect pathway, we observe an increased inhibitory
output on correct motor programs (Fig. 7). This is in line with find-
ings that dopamine lesions in rats result in an increased phasic inhi-
bition of GPe upon cortical stimulation, caused by the indirect

pathway (Kita & Kita, 2011); however, it is not yet clear if this
inhibition is indeed linked to a suppression of incorrect responses.
For the hyperdirect pathway, we observe an increased inhibitory
output on incorrect motor programs, primarily (but not exclusively)
before behavioral impairments begin. Indeed, it has been shown that
STN is hyperactive in presymptomatic Parkinsonian monkeys
(Bezard et al., 1999); moreover, dopamine loss in rats has been
shown to result in an increased response of the hyperdirect pathway
upon cortical stimulation (Kita & Kita, 2011) – this hyperdirect
pathway’s response has been linked to an inhibition of competing
(i.e. incorrect) motor programs (Nambu et al., 2000). For the cor-
tico-thalamic pathway, our model predicts a stronger facilitation of
incorrect motor programs in Parkinsonian networks (Fig. 7). This is
a behaviorally relevant dysfunction that, to our knowledge, has not
been previously described or hypothesised on. Again, we hope to
motivate empiricists to investigate if such a dysfunction in fact
exists in the brain.
Dopamine replacement (again amounting to 187.5% of pallidal

loss) mostly restores pathway outputs on correct and incorrect motor
programs towards what we record in healthy networks (Fig. 7): the
direct pathway clearly facilitates correct motor programs, the indirect
pathway does not detrimentally inhibit them and the cortico-thalamic
pathway does not detrimentally facilitate incorrect motor programs.
However, medication does not restoratively reduce the hyperdirect
pathway’s output on incorrect motor programs, but rather strength-
ens it even further. Again, this argues for a new balance of pathway
impacts in medicated Parkinsonian brains.
In the previous subsection, we showed that high dopamine medi-

cation results in the development of incorrect ‘hyperkinetic’ SR
associations. Figure 8 depicts the evolution of pathway outputs in
these hyperkinetic networks during initial learning, thus addressing
detrimental side effects of dopamine medication: none of the four
pathways learns to preferentially direct its outputs to either correct
or incorrect motor programs. Rather, pathways develop equally
strong outputs on correct and incorrect motor programs, thus ran-
domly associating stimuli to responses and showing no sign of
adaptation to reward contingencies. At the same time, M1 activity is
high, reflecting strong motor output. As expected therefore, high
levels of dopamine replacement result in the development of incor-
rect (i.e. unrewarded) responses, which are typical for dopamine-
induced dyskinesias in clinical practice.

Model tests: behavioral outcomes of BG lesions

Lesions of BG nuclei allow us to study network performance with
one or more pathways eliminated. The behavioral outcomes of such
lesions have been investigated extensively in empirical studies. By
simulating lesions of BG nuclei in our neuro-computational model
and by comparing the behavioral outcomes of these lesions with
empirical findings, we scrutinise the validity of our modeling
assumptions. For lesions of striatum, STN, globus pallidus externus
(GPe) and GPi, we each ran 100 randomly initialised networks on
our three task phases, i.e. initial learning, automatic performance
and re-learning (Fig. 9).
Empirically, lesions of dorsal striatum have been shown to slow

down initial learning of SR associations in rats, while STN lesions
do not have such an effect (Featherstone & McDonald, 2004; El
Massioui et al., 2007). Moreover, striatal lesions in cats have been
shown to result in impairments in performing a well-learned
Go–NoGo task (Aldridge et al., 1997). Our simulations reproduce
striatal lesions to impair both learning and automatic performance
(Fig. 9, compare first and second row of the first column of

Fig. 6. Effects of dopamine replacement on behavioral performance in Par-
kinsonian networks. Average correct-response rates in both the automatic-
performance phase (asterisks) and the initial-learning phase (crosses) of our
task are shown for several simulated dopamine doses. While automatic per-
formance requires relatively high doses of dopamine to be restored, learning
performance drops with higher dopamine doses. For each simulated dose and
task phase, 100 randomly initialised networks are run. Replacement doses
are reported relative to the amount of dopamine loss in the pallidum (which
differs from the amount of striatal dopamine loss as detailed in ‘Materials
and methods’).
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subplots); STN lesions are reproduced to not result in any learning
impairments. Lesions of dorsal globus pallidus in rats (i.e. the rodent
equivalent of GPe) have been empirically shown to specifically dis-
rupt reversal performance in a visual discrimination task, but not
acquisition performance and well-learned performance (Evenden
et al., 1989). Our simulations reproduce these effects (Fig. 9).
Lesions of entopeduncular nucleus in rats (i.e. the rodent equivalent
of GPi) have been shown to impair initial-learning and re-learning
performances in a reinforcement-based T-maze task (Sarkisov et al.,
2003). However, GPi lesions have been reported to result in little or
no response-time changes in a well-trained (i.e. automatic) SR task
in monkeys (Horak & Anderson, 1984; increases in movement times
were, however, reported). In our simulations, we indeed find GPi
lesions to severely impair initial-learning and re-learning perfor-
mances, while automatic performance is spared.
In Parkinsonian humans, both SR learning and habitual perfor-

mances are severely impaired, even in the absence of any additional
lesions of striatum, STN, GPe or GPi (Maddox et al., 2005; Wu &
Hallett, 2005). Our simulations reproduce these effects (Fig. 9, com-
pare first and second column of the top row of subplots). For therapeu-
tic reasons, BG lesions have been empirically well explored in PD:
GPi pallidotomy (i.e. a lesion of GPi) is still commonly performed in
humans suffering from advanced PD. This lesion improves perfor-
mance in well-learned, everyday movements (Lozano et al., 1995) but
impairs feedback-based learning (Sage et al., 2003). To see if our
model reproduces these findings, we lesioned GPi in Parkinsonian net-
works and again investigated learning performances and automatic
performance. And indeed, we find GPi pallidotomy to almost perfectly
restore automatic performance, while it heavily impairs initial-learning
and re-learning performances (Fig. 9; compare top and bottom rows
of the second column of subplots). More recently, STN has received
attention as a target site for therapeutic lesions as well (Su et al.,
2003; Alvarez et al., 2008). In our simulations, however, STN lesions
do not significantly influence automatic performance in unmedicated

Fig. 8. Development of pathway outputs over the initial-learning period of
our task (5000 trials) in Parkinsonian networks that receive a replacement
dose amounting to 187.5% of pallidal dopamine loss. Subplots show how
the outputs of the four major pathways evolve. Separate lines within each
subplot show the evolution of pathway outputs on correct and incorrect
motor programs. For each line, a brightly colored band depicts how lower
and upper quartiles of pathway outputs (y axis) evolve over task progress
(x axis) – as estimated from 1000 randomly initialised networks; a black
line in each band visualises the development of the median. Pathway out-
puts are defined as average products of synaptic strengths and presynaptic
activities, as detailed in ‘Materials and methods’. For comparisons, develop-
ments of motor-cortical (M1) activities and correct-response rates are ren-
dered below the developments of pathway outputs, where high y values
indicate high M1 activity and high correct-response rates, respectively. The
subplots’ y-axes are locked to those in Fig. 4, allowing for direct compari-
sons; x-axes, however, are not comparable between Figures, as the dopa-
mine-replaced networks shown here were run for 5000 trials (as none of
them reached the initial-learning criterion), while networks in Fig. 4 were
stopped after reaching the criterion.

Fig. 7. Pathway outputs on correct and incorrect motor programs in Parkinsonian networks. Subplots depict developments of pathway outputs over the progress
of automatic SR performance, separately for the four modeled pathways and for healthy and Parkinsonian networks (the latter on and off medication). Plotted
developments start after the initial-learning criterion is reached and continue for 25 000 trials of automatic performance: separate lines within each subplot show
the evolution of pathway outputs on correct and incorrect motor programs. For each line, a brightly colored band depicts how lower and upper quartiles of path-
way outputs (y axis) evolve over task progress (x axis) – as estimated from 1000 randomly initialised networks; a black line in each band visualises the develop-
ment of the median. Pathway outputs are defined as average products of synaptic strengths and presynaptic activities, as detailed in ‘Materials and methods’.
For comparisons, developments of motor-cortical (M1) activities and correct-response rates are rendered below the developments of pathway outputs, where
high y values indicate high M1 activity and high correct-response rates, respectively. Pathway outputs were measured every ten trials; dopamine replacement
amounts to 187.5% of pallidal dopamine loss. Scalings of the y axes are equivalent for all medical conditions of each pathway, allowing for direct comparisons;
comparisons between pathways, however, are not valid because of different scalings.
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Parkinsonian networks. Thus, our simulations do not reproduce find-
ings of ameliorative effects of STN lesions in unmedicated Parkinso-
nian monkeys (Bergman et al., 1990). For medicated networks,
however, we find that STN lesions do have effects, which depend
upon dopamine dosage: with relatively low dopamine doses, STN
lesions impair automatic performance, while they improve it with
higher doses (Fig. 9; compare first and third row of the third column
of subplots). Thus, our simulations suggest that a combination of
dopaminergic medication and STN lesions might produce better out-
comes than any of these treatments alone. Moreover, we observe that
STN lesions produce the smallest impairments in learning perfor-
mance of all simulated lesion sites. For striatal lesions, we find some
improvements in automatic performance. However, we are not aware
of any systematic empirical study reporting the effects of striatal
lesions in PD. For GPe lesions, we observe impairments in automatic
performance in medicated Parkinsonian networks; moreover, GPe
lesions cause impairments in learning performances in both medicated
and unmedicated Parkinsonian networks. Thus, our simulations agree
with findings that GPe is no a good target for therapeutic lesions
(Zhang et al., 2006).

Robustness of model performance against parameter changes

To show the robustness of our model against parameter changes, we
randomly varied all fixed model parameters of CBGT pathways and

re-ran the three phases of our task for a healthy unlesioned model.
We randomly drew ten different sets of parameters that differed
from the set reported in Tables 1 and 2. Varied parameters included
all fixed synaptic weights w, all baseline membrane potentials
B (except the baseline of SNc dopamine neurons, which do not
belong to CBGT pathways), all error distributions e, all time con-
stants g and gdec, all threshold parameters c and all maximum
membrane potentials mmax. For each set of parameters, we randomly
picked each parameter from a uniform distribution with the bound-
aries [�10% + 10%] of the parameter’s original value. Values were
rounded to achieve a precision of two decimal points (except for
time constants which were rounded to nearest integers). Parameters
with a value of 0 were left at 0.
We ran 100 networks for each set of parameters and for each of

our three task phases. In accordance with the results depicted in
Fig. 9, initial learning and re-learning were run for 5000 trials and
automatic performance for 25 000 trials.
On average, the networks scored 94.6% correct responses for ini-

tial learning (compared with 92.4% for the original set of parame-
ters, as reported in Tables 1 and 2), 99.86% correct responses for
automatic performance (compared with 100%) and 95.2% for
re-learning (compared with 91.5%). If anything therefore, the varied
parameters resulted in better model performance than our reported
set, demonstrating the model’s independence of particular parameter
choices.

Fig. 9. Behavioral outcomes of focal lesions in
BG. Subplots depict initial-learning performance,
automatic performance and re-learning perfor-
mance for unlesioned networks and networks
with lesions of striatum, STN, GPe and GPi.
Estimated from 100 randomly initialised networks
each, bars depict upper quartiles, lower quartiles
and medians of correct-response rates. Initial
learning and re-learning were evaluated for 2500
trials each, automatic performance for 25 000 tri-
als as detailed in ‘Materials and methods’. For
medicated Parkinsonian networks, three dopamine
doses were evaluated, one chosen relatively low
(i.e. as 87.5% of pallidal loss; black bars) such
that both learning and automatic performance
were suitably alleviated (cf. Fig. 9), one chosen
intermediate (i.e. as 125% of pallidal loss; med-
ium gray bars) and the third chosen relatively
high (i.e. as 187.5% of pallidal loss; light gray
bars) such that automatic performance was fully
restored but learning was strongly impaired.
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Discussion

Via neuro-computational simulations, we showed that dysfunctional
synaptic plasticity, as resulting from dopamine loss, can account for
the emergence of hypokinetic symptoms in unmedicated PD and
hyperkinetic symptoms in medicated PD. In line with previous
theories of BG pathway dysfunctions in PD (Albin et al., 1989;
DeLong, 1990), we found that dopamine loss results in an average
increase in activity of the indirect BG pathway and an average
decrease in activity of the direct pathway. However, our simulations
suggest that these average changes are not decisive for the emer-
gence of behavioral impairments. They rather predict that, to fully
explain how dopamine loss results in motor impairments, pathway
outputs that target correct motor programs and those that target
incorrect motor programs have to be analysed separately.

Model predictions

Specifically, our simulations predict that the direct pathway facili-
tates correct motor programs less actively in unmedicated Parkinso-
nian networks than in healthy networks, while the indirect pathway
inhibits these correct motor programs more strongly. This prediction
can be investigated empirically: an empiricist may want to record a
large number of GPi neurons in the healthy and Parkinsonian brain
hemispheres of hemi-Parkinsonian animals while these animals per-
form a simple SR task. By additionally recording activities from
STN and striatum, the empiricist may want to find out which BG
pathways trigger particular increases or decreases in GPi firing (cf.
Kita & Kita, 2011). According to the prediction, the direct pathway
should inhibit GPi neurons less strongly in Parkinsonian than in
healthy hemispheres. Moreover, the indirect pathway should excite
GPi neurons more strongly, but only those that also receive input
from the direct pathway during the same response. Furthermore, our
simulations predict that the hyperdirect pathway inhibits incorrect
motor programs more actively in Parkinsonian networks. Thus, the
empiricist should observe that the hyperdirect pathway excites GPi
neurons more strongly, but only those that do not receive input from
the direct pathway during the same response. Thereby, our model
predicts that the sets of neurons that are targeted more strongly by
indirect vs. hyperdirect pathways in Parkinsonian brains do not
overlap. To the best of our knowledge no other model has made
such a prediction before.
On a more general level, our simulations predict that PD patients

experience increased response conflict when performing SR tasks.
This is the case because correct motor programs are facilitated less
reliably in Parkinsonian networks and are even actively suppressed.
Even if response selection is still reliable enough to produce correct
overt responses, neuronal markers of conflict should be observable
in brain recordings, like the anterior N2b or the NE in EEG record-
ings (cf. Yeung et al., 2004). We recently acquired some evidence
for this prediction (Verleger et al., 2013).
As to dopamine replacement, our simulations predict that it

results in a new balance of average pathway outputs rather than in
restoration of non-Parkinsonian states. In particular, our simulations
predict an enhanced average output of the hyperdirect pathway,
resulting from a stronger inhibition of incorrect (but not correct)
motor programs. Behaviorally, dopamine replacement is predicted to
restore well-trained SR performance only when high doses are
delivered, while such high doses should cause learning impairments
(Fig. 6); low doses, by contrast, are predicted to alleviate learning.
To test these predictions, an empiricist could first train animals on
an SR task, then lesion their dopamine neurons, administer a high

or low dose of levodopa and finally have the animals again perform
either the previously learned set of SR associations or an entirely
new set.

Comparisons with previous theories and computational models

Our simulations corroborate theories that propose firing-rate changes
as causes of motor impairments in PD (e.g. Albin et al., 1989;
DeLong, 1990; Nambu, 2005). However, they also suggest that pre-
vious theories might require some revisions and extensions. Most
importantly, our simulations stress the importance of synaptic plas-
ticity in mediating between dopamine loss and the emergence of
behavioral symptoms. While some effects of dopamine loss on syn-
aptic plasticity have been simulated with previous models (e.g.
Frank, 2005; Stocco et al., 2010), they have not previously been
simulated and analysed in similar detail. Moreover, our simulations
highlight the importance of the cortico-thalamic pathway, not
included in previous theories of Parkinsonian pathway dysfunctions.
A strengthening of synapses in this cortico-thalamic pathway during
automatic performance can explain the seemingly paradox findings
that lesions of GPi alleviate Parkinsonian symptoms but do not
much impair healthy animals’ performance in well-trained tasks.
Recently, theories of aberrant oscillatory activity in BG have

received much attention (e.g. Engel & Fries, 2010; Jenkinson &
Brown, 2011). While these theories have motivated many empirical
studies, they are not yet specific about the mechanisms via which
dopamine loss results in oscillatory changes and, more importantly,
about how oscillatory changes cause motor impairments. Theories of
pathway dysfunctions, in contrast (e.g. Mink, 1996; Nambu, 2005),
can already well describe causalities between dopamine loss and the
emergence of Parkinsonian symptoms.
While there have been previous computational models of dopa-

mine depletion in BG (e.g. Frank et al., 2004; Frank, 2005; Humph-
ries et al., 2006; Guthrie et al., 2009; Stocco et al., 2010; Moustafa
& Gluck, 2011), most of these have been used for different aims
than our model. Rather than for investigating aberrant connectivity
in CBGT pathways in detail, they have been used for reproducing
Parkinsonian behavioral dysfunctions (Guthrie et al., 2009; Stocco
et al., 2010; Moustafa & Gluck, 2011) or neuronal firing patterns
and oscillations (Humphries et al., 2006). Only Frank (2005) put an
emphasis on dysfunctions of BG pathways. In his model, bursts in
dopamine increase the responses of Go units in the direct pathway
and suppress the responses of NoGo units in the indirect pathway,
thereby guiding learning of response selection. Dopamine dips result
in opposite effects. In PD, phasic increases and decreases in dopa-
mine are reduced according to Frank (2005). This results in a less
strong preference for either pathway. Our model, by contrast, pre-
dicts that the indirect pathway outweighs the direct pathway in PD.
In the ‘Model predictions’ section, we suggest an empirical test of
our model’s prediction.
An intriguing prediction of Frank’s (2005) model was confirmed

by Frank et al. (2004): they showed that Parkinsonian patients off
medication are better at learning to avoid negative outcomes than
at learning to approach positive outcomes, while patients on medi-
cation show opposite effects. While Frank et al. (2004) and Frank
(2005) confined their model to direct and indirect BG pathways,
Frank (2006) extended this model to include also the hyperdirect
pathway. According to his assumptions, the hyperdirect pathway
prevents premature responding in the case of decision conflict.
This function differs from the surround-inhibition function pre-
dicted by our simulations. However, these functions may not be
incompatible.
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Frank et al. (2007) showed that Frank’s (2006) extended model
correctly predicts that STN deep brain stimulation (DBS) impairs
Parkinson’s disease patients in slowing down their responses in situ-
ations of high decision conflict. In all of the above-cited studies,
Frank and co-workers allowed dopamine-modulated learning only in
the striatum and thus pre-specified other connections. By our
approach of exploring synaptic plasticity and therefore minimizing
pre-wiring of connectivity, we take a new and different perspective.

Limitations

As a limitation of simulation results in general, their validity always
depends upon the validity of the underlying model’s assumptions.
As a plus, however, computational models allow complete insights
into their firing rates and synaptic connectivities. Such a complete
analysis is not yet possible in the brain because of its enormous
number of neurons and synapses. Thus, computational modeling
offers a unique tool for performing a fully systemic analysis of
Parkinsonian pathophysiology (cf. Bar-Gad & Bergman, 2001).
Our model, moreover, does not allow us to investigate aberrant

oscillations in BG. While it is well established that Parkinsonian
symptoms are closely linked to an increased power of beta oscilla-
tions in BG (K€uhn et al., 2006, 2009), the mechanisms via which
these oscillations emerge from dopamine loss and via which they
produce hypokinesia remain largely unclear. Some computational
studies have tried to unveil these mechanisms (van Albada et al.,
2009; Holgado et al., 2010; Kumar et al., 2011; McCarthy et al.,
2011), but the diversity of their results does not clarify the issues in
particular. Thus, we decided against modeling oscillatory activity.
To our mind, a simple reproduction of oscillations without establish-
ing a close link to their functions or dysfunctions would not broaden
the explanatory scope of our model. Moreover, by excluding poten-
tial generators of oscillations (i.e. reciprocal connections between
STN and GPe and the extremely complex striatal micro-circuit), we
were able to focus on our key question of how the effects of dopa-
mine loss on synaptic plasticity result in imbalances of BG path-
ways. While more detailed models are always desirable when trying
to ‘re-engineer the brain’, they are often less suitable for addressing
specific empirical issues. With high levels of detail, moreover, it
becomes hard to construct systems-level models that can produce
overt behavior. Indeed, the few models that in detail implement the
striatal micro-circuit (Tan & Bullock, 2008; Humphries et al., 2009,
2010) do not implement the remaining cortico-BG-thalamic circuit
in detail and are not able to produce overt response behavior. We
acknowledge that we did not build a full model of BG circuitry
because of our decision to not implement the striatal microcircuit,
the reciprocal connections between STN and GPe and the connec-
tions from GPe to striatum as well as some other minor projections.
Inclusion of these fiber tracts would allow for interactions between
pathways and might thus result in additional or more complex path-
way functions. Additional studies are necessary to investigate such
effects.
Moreover, we decided against modeling the effects of DBS. Over

the last decade, DBS has become a standard treatment to alleviate
Parkinsonian symptoms in humans (Lozano et al., 2002). However,
it remains to be clarified how DBS achieves its effects. Tentative
evidence suggests that STN DBS might work by silencing STN neu-
rons, thus being vaguely comparable to a lesion of STN (Gradinaru
et al., 2009); and indeed, we did simulate STN lesions in our
model. However, as long as it remains speculative in how far
lesions and DBS differ, we felt uncomfortable trying to simulate the
effects of DBS on CBGT pathways.

Finally, we did not model any effects of dopamine on the instan-
taneous responsiveness of striatal MSNs. Previous computational
models of BG (e.g. Frank et al., 2004; Frank, 2005, 2006) assume
that dopamine immediately excites striatal D1 MSNs of the direct
pathway and inhibits striatal D2 MSNs of the indirect pathway.
Indeed, there is empirical evidence pointing towards the existence
of immediate dopaminergic effects on striatal ion-channel conduc-
tances (Calabresi et al., 1987; Lin et al., 1996; Maurice et al.,
2004). It remains to be clarified, however, if dopamine in fact
immediately excites the direct and inhibits the indirect pathway
(Calabresi et al., 2007). Similarly, it needs to be shown to what
extent immediate effects of dopamine on ion-channel conductance
fulfill a behaviorally relevant function on their own or to what
extent they might in some way support the effects of dopamine on
long-term plasticity. As our results and conclusions are focused on
the effects of dopamine on synaptic plasticity (and the pathway
imbalances resulting from this), we think it a valid assumption to
not implement any dopaminergic effects on the instantaneous
responsiveness of striatal MSNs.

Conclusion

Our simulations suggest that dysfunctional synaptic plasticity in BG
pathways can explain how dopamine loss causes motor impairments.
Our simulations predict that synapse-specific changes in BG path-
ways are more important for determining PD motor impairments
than changes in average pathway outputs. Dopamine replacement
therapy is predicted to induce a new equilibrium of average pathway
outputs and new patterns of connectivity, rather than to simply resur-
rect non-Parkinsonian connectivity. Our model shows how synaptic
plasticity in the cortico-thalamic pathway can resolve puzzling para-
doxes associated with the outcomes of stereotaxic GPi lesions. Over-
all, our model suggests that dysfunctional synaptic plasticity is a
major cause of Parkinsonian symptoms, thus calling for a re-concep-
tualisation of Parkinsonian pathophysiology. It motivates additional
computational and empirical research to investigate to what extent
dysfunctional synaptic plasticity might interact with immediate
effects of dopamine loss on neuronal firing towards the emergence
of PD symptoms.
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