
Behavioral/Cognitive
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In addition to the prefrontal cortex (PFC), the basal ganglia (BG) have been increasingly often reported to play a fundamental role in
category learning, but the circuit mechanisms mediating their interaction remain to be explored. We developed a novel neurocomputa-
tional model of category learning that particularly addresses the BG–PFC interplay. We propose that the BG bias PFC activity by removing
the inhibition of cortico–thalamo–cortical loop and thereby provide a teaching signal to guide the acquisition of category representations
in the corticocortical associations to the PFC. Our model replicates key behavioral and physiological data of macaque monkey learning a
prototype distortion task from Antzoulatos and Miller (2011). Our simulations allowed us to gain a deeper insight into the observed drop
of category selectivity in striatal neurons seen in the experimental data and in the model. The simulation results and a new analysis of the
experimental data based on the model’s predictions show that the drop in category selectivity of the striatum emerges as the variability of
responses in the striatum rises when confronting the BG with an increasingly larger number of stimuli to be classified. The neurocom-
putational model therefore provides new testable insights of systems-level brain circuits involved in category learning that may also be
generalized to better understand other cortico–BG–cortical loops.
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Introduction
The world is composed of an overwhelming number of different
objects and variants of those objects. Category formation is the

ability to extract commonalities among these diverse objects, al-
lowing us to group experiences by concepts or categories and
therefore imbuing our world with meaning. Furthermore, we can
generalize, and thus classify, stimuli that we have never seen be-
fore into a category, a property also fundamental for the emer-
gence of language.

At least two brain areas are involved in category learning: the
basal ganglia (BG) and the prefrontal cortex (PFC) (Seger and
Miller, 2010). The BG have been shown to participate in a wide
range of categorization tasks, particularly those that require im-
plicit learning via trial and error (Merchant et al., 1997; Poldrack
et al., 1999, 2001; Seger and Cincotta, 2005; Cincotta and Seger,
2007; Nomura et al., 2007; Zeithamova et al., 2008). The PFC, in
contrast, appears to hold category knowledge. Freedman et al.
(2001, 2002, 2003) found PFC neurons that became preferably
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Significance Statement

Inspired by the idea that basal ganglia (BG) teach the prefrontal cortex (PFC) to acquire category representations, we developed a
novel neurocomputational model and tested it on a task that was recently applied in monkey experiments. As an advantage over
previous models of category learning, our model allows to compare simulation data with single-cell recordings in PFC and BG. We
not only derived model predictions, but already verified a prediction to explain the observed drop in striatal category selectivity.
When testing our model with a simple, real-world face categorization task, we observed that the fast striatal learning with a
performance of 85% correct responses can teach the slower PFC learning to push the model performance up to almost 100%.

The Journal of Neuroscience, October 31, 2018 • 38(44):9551–9562 • 9551



activated by stimuli of a particular category. Also, PFC cells are
known to represent abstract rule-based categories (Wallis et al.,
2001; Wallis and Miller, 2003; Muhammad et al., 2006; Antzou-
latos and Miller, 2016).

Some studies have suggested that the BG may train the PFC to
slowly learn categories (Pasupathy and Miller, 2005; Miller and
Buschman, 2007; Seger and Miller, 2010; Antzoulatos and Miller,
2011; Hélie et al., 2015). Antzoulatos and Miller (2011) per-
formed an experiment in which monkeys were trained to classify
a large number of different abstract stimuli composed of several
dots into two possible categories. While monkeys learned this
task, neurons from the PFC and the striatum were recorded. Early
in this experiment, when there were just a few stimuli to classify,
category selectivity was strong in the striatum, but weak in the
PFC. As the task advanced, the number of possible stimuli to
classify increased and the category selectivity became weak in the
striatum and strong in the PFC (Antzoulatos and Miller, 2011).

The fact that the striatum predicted categories better in the
beginning of the experiment and the PFC later led Antzoulatos
and Miller (2011) to suggest that the BG teach the PFC to encode
categories. However, there is no obvious explanation for the ob-
served decrease in striatal category selectivity. Further, the exact
relationship between BG and PFC during category formation, for
example, the systems-level circuits that allow the BG to teach the
PFC, are not yet fully described.

To study these open questions, we here developed a neuro-
computational model and had it learn the experiment devised by
Antzoulatos and Miller (2011). Our simulations suggest that, al-
though the striatal cells decrease on average their category selec-
tivity, they typically remain selective enough to contribute to the
final category decision: the knowledge acquired by the striatal
cells can be very specific but also associated with several stim-
uli of the same category. Furthermore, our simulations predict
that the striatal category selectivity decrease is due to an increase
in the variability in the striatum cells’ category response; that is,
the striatal cells only respond to a subset of stimuli of one category
as well as to some stimuli of the other category. We support this
prediction by reanalyzing the original experimental data of Ant-
zoulatos and Miller (2011).

In addition to the task used by Antzoulatos and Miller (2011),
the model was tested on a task in which real-world face images
had to be classified. This study reveals that even an imperfect
teacher (the BG) can still train the PFC to push the model’s clas-
sification performance up to almost 100%.

Materials and Methods
Model description
Overview. Our model comprises an open cortico–BG–thalamic (CBGT)
loop that interacts with a corticocortical–thalamo– cortical pathway to
acquire category information and to produce category decisions. The two
cortical areas involved are the inferior temporal cortex (IT) and the PFC
(Fig. 1); the IT encodes stimulus information and the PFC learns to
encode category knowledge. The BG bias activity in PFC such that Heb-
bian learning of the IT–PFC connectivity is sufficient to develop
category-selective cells in PFC.

In this rate-coding model, the membrane potential of all simulated
neurons and the learning rules that determine synaptic plasticity between
neighboring neurons are controlled by differential equations.

BG. Our BG model is based on previous work (Schroll et al., 2014,
2015) and contains three BG pathways (Schroll and Hamker, 2013): the
direct (striatum¡ substantia nigra pars reticulata), hyperdirect (subtha-
lamic nucleus ¡ substantia nigra pars reticulata), and short indirect
(striatum ¡ external globus pallidus ¡ substantia nigra pars reticulata)
pathways. Each of these three BG pathways obtains the input informa-

tion from the IT and converges in the substantia nigra pars reticulata
(SNr), a BG nucleus that tonically inhibits the ventral anterior nucleus
(VA) of the thalamus.

The function of each BG pathway emerges as a learning process imple-
mented via a three-factor learning rule that considers the presynaptic
activity, the postsynaptic activity, and a dopamine (DA) signal. In our
model, this DA signal estimates a reward prediction error based on the
striatal activity at the time of reward delivery.

In the direct pathway, learning occurs in the projections between the
IT and the striatal D1 cells and between the striatal D1 cells and the SNr.
Associations between neurons in these connections become strength-
ened with DA bursts and weakened with DA dips as motivated by exper-
imental data (Shen et al., 2008; Fisher et al., 2017). Therefore, this
pathway learns to select a patch of VA neurons that are linked with the
correct category decision, in agreement with the well known GO function
of this BG pathway (Nambu et al., 2002; O’Reilly and Frank, 2006; Braak
and Del Tredici, 2008; Schroll and Hamker, 2013).

In the hyperdirect pathway, learning occurs in the connections be-
tween the IT and the STN and between the STN and the SNr. Associa-
tions between neurons in these connections are also strengthened with
DA peaks and weakened with DA dips (Kreiss et al., 1996; Schroll et al.,
2012). Particularly, this pathway learns to suppress VA cells that encode
currently unrewarded responses. Therefore, both the direct and hyper-
direct pathways work together to facilitate the selection of the correct
category decision, in agreement with the well known center-surround
structure (Nambu et al., 2002).

In the indirect pathway, learning takes place in the projections be-
tween the IT and the striatal D2 cells and between the striatal D2 cells and
GPe. In contrast to the other two BG pathways, but consistent with
biological evidence (Surmeier et al., 2007; Shen et al., 2008; Fisher et al.,
2017), associations between cells of this pathway become strengthened
with DA dips and weakened with DA peaks. Therefore, this pathway
learns to suppress VA cells linked to an incorrect category decision, in
accordance with the well documented NO-GO function of this BG path-
way (Apicella et al., 1992; Mink, 1996). This pathway is particularly rel-
evant if changes in the stimulus–response associations occur.

A specific connectivity pattern is not forced on any of these plastic
projections, providing our model with high flexibility. Connections are
initialized in an all-to-all configuration with random low weights. The
connectivity pattern is then automatically shaped through plasticity. On
many previous modeling approaches of the BG, a connectivity pattern
with parallel channels (one for each action or here category) was enforced
without any clear account on how this arrangement could develop. Plas-
ticity was therefore required only on early stages of the different path-
ways. An interesting feature of having plasticity in the late stages is that

Figure 1. Outline of the components of the neurocomputational network to train the corti-
cocortical, IT–PFC connection by the BG. All adaptive connections are displayed in green color.
Although the IT–PFC connections are updated by Hebbian learning, the BG learn based on a
three factor learning rule including a reward prediction error signal (DA). We propose that the
BG bias the activity of PFC neurons that allow the PFC to learn a categorical representation.
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the knowledge acquired in the early stages of the pathways can be kept
when learning a new task, allowing relearning to be faster than the initial
learning, as shown by Schroll et al. (2012).

BG– cortex interaction. Our model includes a cortico–thalamo– corti-
cal pathway that allows the BG to teach category knowledge to the corti-
cocortical pathway from IT to PFC by biasing thalamic and, thus, PFC
activity. Once the category knowledge in the PFC is established, the PFC
can also contribute to the final category decision by means of the cortico–
thalamo– cortical pathway. Therefore, the thalamus plays a key role in
integrating the category decisions produced by both the BG and the PFC.

Category information is learned in the corticocortical connections
between the IT and the PFC by an unsupervised Hebbian learning rule
(please refer to the discussion regarding the assumption of unsupervised
learning). As the BG disinhibits the thalamus, BG will bias PFC activa-
tion, which in turn guides (DA-free) Hebbian learning in the IT–PFC
connections. The PFC cells in our model slowly learn over a large number
of stimuli to extract category representations, in agreement with ideas
suggesting that slow learning in the cortex is required to develop category
representations in the PFC (Seger and Miller, 2010). Evidence has been
found for the existence of Hebbian plasticity in corticocortical long-
range connections (Sjöström et al., 2001; Koch et al., 2013).

Experimental design and statistical analysis
Prototype distortion task. In the experiment carried out by Antzoulatos
and Miller (2011), two female monkeys performed a prototype distor-
tion task in which they learned to classify stimuli into one of two different
categories. We here reanalyzed data from this previous experiment as
explained later.

We tested our model with a very similar version of the original exper-
iment as follows. Each stimulus was composed of 7 white small squares
(7 � 7 pixels each) drawn on black background within an image of 140 �
140 pixels. Each stimulus belonged either to category A or B and was
generated from the underlying category’s prototype by shifting the seven
squares from the prototype’s coordinates randomly into nearby locations
(Fig. 2a). To mimic early visual processing up to area IT, we preprocessed
the images using Gaussian receptive fields (RFs) with an SD of 10 pixels
(cutoff at 3.5 SDs, which equals a diameter of 35 pixels) and a sampling
distance between RF centers of 15 pixels (1.5 SDs of RF size).

The set of stimuli used in each experimental run consisted of 170
stimuli per category (each generated from its category’s prototype image)
and was distributed into 8 blocks, where the stimulus set increased in size
with each block: in each block n, the set size was 2 n, equally balanced for
each category. In the first block, therefore, only 2 different stimuli were
presented. In the second block, 2 more stimuli were added to the set,
reaching a total of 4. In subsequent blocks, only the stimuli added in the
last block were kept and new stimuli were incorporated until a total of 2 n

was reached. Figure 2b illustrates the exact procedure. Each new block
began only when 16 out of the last 20 trials were successfully performed,
identical to the original experiment.

Because we aimed to focus on category learning only and did not
model any eye movement or working memory components involved in
the original animal task, we simplified the trial design by omitting the
delay period and the oculomotor response. At the beginning of each trial,
a stimulus was randomly drawn from the set of the current block and
presented to the model for 550 ms. After 50 ms, we determined the
model’s decision using a softmax rule on a set of output neurons as
follows:

Pi �
ri � �

��j�1

N
rj� � �

(1)

where Pi is the probability of choosing category i, ri is the rate of the
output neuron associated to category i, N is the number of categories, and
� � 10 �7 prevents from dividing by zero. The output neurons read our
model’s decision from the thalamic activity. Although 50 ms is a short
time period, it is large enough for the model to reach a stable response to
the presented stimulus.

In the case of a correct response, dopaminergic SNc cells were excited
for 500 ms, simulating the delivery of reward (reward period). To mean-

ingfully compare our model’s results with data from monkeys, we ran a
very large number of experimental runs (100,000), each with different
initial synaptic weights and with slightly different values of 64 model
parameters (see the mathematical model description). For each experi-
mental run, a different set of stimuli was chosen among 100 possible sets
of stimuli (each generated from two different category prototypes).

Model susceptibility to parameter variation. To study the susceptibility
of our model to modest changes in model value parameters, we com-
puted the correlation between the model performance and each of the 64
parameters modified in the 100,000 experimental runs. Each of these
correlations was computed with the Pearson correlation coefficient
(PCC) using the corrcoef numpy function and considering 100,000 data
pairs, each made up of the model performance and the parameter value
(or the absolute value of the distance between the parameter value and
the mean parameter value for a second version of the PCC) from a
different experimental run. The model performance at each experimen-
tal run was evaluated by computing the average of correct trials in the last
16 trials of the experimental run.

Category selectivity. To compare our model with the neurophysiolog-
ical findings reported by Antzoulatos and Miller (2011), category selec-
tivity was measured from model neurons’ activity during the display of
novel stimuli in correct trials, as previously done by the authors of the
physiological experiment. As with the experimental data, category selec-
tivity was computed within a trial-time window (size of 10 trials and 7
ms) moving in trial and time space (trial step size of 1 trial and a time step
size of 3 ms). Trial time windows with less than two trials associated to
one category were discarded. The d� sensitivity index was calculated as
follows:

d���A, �B, �A, �B� �
��A � �B�

��A
2 � �na � 1� � �B

2 � �nb � 1�

na � nb � 2

(2)

was computed for each cell within each window, where �A and �A are the
mean and SD, respectively, of the cell’s firing rates recorded in trials
where stimuli of category A were presented, �B and �B are the mean and
SD of the firing rates recorded in trials where stimuli of category B were
presented, and na and nb are the number of trials in the corresponding
window that relate to stimuli of category A and B, respectively. In the
striatum, we only considered cells of the direct (GO) pathway as these
cells are mainly responsible for selection while cells in the indirect (NO-
GO) pathway are responsible for suppression (Schroll et al., 2014).

Stimulus selectivity and category selectivity per cell. To determine
whether cells in PFC and STR become stimulus selective rather than
category selective, we applied the following procedure. At the end of each
block, learning was frozen and each stimulus seen so far in the experi-
ment was presented once to the model for 50 ms, followed by a period of
100 ms without a stimulus. The response of a cell to each presented
stimulus was computed by averaging the cell’s activity over 50 ms pre-
sentation time and normalized by its maximum response to all stimuli
within a block.

Figure 2. Image examples and block description of the prototype distortion task. a, Dot
prototype stimuli of two categories taken from one experimental run. b, Number and type of
stimuli per block. Stimuli are distinguished according to whether they are added in the previous
block or in the current block. c, Stimuli of the second block derived from the prototypes.
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We defined a stimulus selectivity index (SIstim), which measures
whether a cell is particularly tuned to a single stimulus compared with the
rest of the stimuli belonging to the same category as follows:

SIstim �
max
s � S (Rs � R� s) (3)

where s is a presented stimulus, S is the set of presented stimuli, Rs is the
cell’s response to s, and R� s is the mean cell’s response to those stimuli in S
that are different from s and belong to the same category as s.

Category selectivity (SIcat) was measured by computing the absolute
value of the difference between the cell’s mean response to stimuli of one
category and the cell’s mean response to stimuli of the other category
(i.e., the numerator of the d� sensitivity index) as follows:.

SIcat � �R� A � R� B� (4)

where R� A is the mean cell’s response to the stimuli that belong to category A
and R� B is the mean cell’s response to the stimuli that belong to category B.

We did not compute the full d� sensitivity index because we wanted
the stimulus selectivity and the category selectivity to be plotted in the
same scale. Therefore, the category selectivity was normalized in the
same way as the stimulus selectivity (via normalizing the responses of
each cell).

Only experiments that learned to criterion (in each block 16 out of 20
consecutive trials have to be correctly classified before the maximum
number of trials determined in each block is reached) were considered
for the analysis.

Face categorization task. To test the model’s performance in a real-
world classification scenario, we created an additional face categorization
task. Face pictures of George W. Bush and Bill Clinton were extracted
from videos and presented to the model for classification purposes.

All videos were taken from the YouTube Faces Database (Wolf et al.,
2011), which consists of 3425 videos of 1595 different people, down-
loaded from YouTube and manually annotated. The shortest clip dura-
tion was 48 frames, the longest clip consisted of 6070 frames, and the
average length of a video clip was 181.3 frames. For Bill Clinton, we
obtained four videos with a total of 851 frames and, for George W. Bush,
we obtained five videos with a total of 820 frames.

For each frame, the face region was detected using a Viola–Jones filter
(Viola and Jones, 2004), allowing us to extract and resize each face to a
100 � 100 grayscale image. Figure 3 shows a few examples of the resulting
face images.

To obtain high-level facial features that mimic the computation in
visual areas, we trained a neural network using the keras library (https://
keras.io/) and the Theano backend (http://deeplearning.net/software/
theano/). The training set consisted of all the images obtained from the
YouTube Faces Database except those of George W. Bush and Bill Clin-
ton, providing us with 619,455 input images of 1593 people (labels).

The neural network starts with a single convolutional layer, extracting
16 filters of size 6 � 6 and using a rectified linear transfer function
(ReLU). It is followed by a max-pooling layer over 2 � 2 units and a

dropout layer with p � 0.5. This layer feeds a fully connected layer (100
neurons, ReLU transfer function and dropout 0.5), which itself feeds a
softmax layer with 1593 neurons (one per label).

The network was trained by minimizing the categorical cross-entropy
between the true labels and the predictions using the stochastic gradient
descent method, with minibatches of 100 samples, an initial learning rate
of 0.01 decaying by 10 �6 in each epoch, and a Nesterov momentum of
0.9. After 100 epochs, the network obtained an accuracy of 99.2% on a
test set composed of 61,945 randomly selected samples (10% of the whole
data, not used for training). Finally, the high-level facial features for
category learning of Bush and Clinton images were extracted by taking
the neural activation before the last softmax layer.

Mathematical model description. The neurocomputational model was
implemented using the ANNarchy neural simulator (Vitay et al., 2015)
version 3.0. The forward Euler method had been used to numerically
solve these differential equations with a time step of 1 ms. Figure 4 shows
our model’ architecture with more detail than in Figure 1 by illustrating
the number of cells in each neural population, all of the connections in
the model, and the type of these connections.

IT. IT is composed of 100 neurons with membrane potentials that are
computed by the following:

�m �
dmj

IT�t�

dt
� mj

IT�t� � Sj (5)

where mj
IT is the membrane potential of the neuron j, �m � 10 ms is the

time constant, and Sj is the part of the preprocessed image that this
neuron receives. The firing rate rj

IT�t� is calculated by applying ( ) � to the
membrane potential, where ( ) � is a function that takes the positive part
of its argument (all negative arguments are transformed to 0)

BG. The BG model is based on the one by Schroll et al. (2014). We
again briefly describe the model and highlight the changes that we im-
plemented.

The membrane potential of all cells in the BG is defined by a leaky
integration equation as follows:

�m �
dmj�t�

dt
� mj�t� � �

pre	Ne

Ij
pre�t� � �

pre	Ny

Ij
pre�t� � Bj � 	 j�t�

(6)

where mj is the membrane potential of neuron j, �m � 10 ms is the time
constant, Bj is the baseline of the cell’s membrane potential (2.4 for the
SNr, 1.0 for the GPe and 0.4 for the other nuclei), 	j�t� is random noise
sampled from a uniform distribution in the interval [�1.0, 1.0] for the
GPe and SNr, and [�0.1, 0.1] for the other nuclei; I pre is the input from
the presynaptic neural population to neuron j, Ny is the set of presynaptic
neural populations with inhibitory synapses to neuron j, and Ne is the set
of presynaptic neural populations with excitatory synapses to neuron j.

The inputs are computed as follows:

Ij
Pre�t� � �

i	Pre

wi, j � ri
Pre (7)

where wi,j(t) is the weight of the synapse between the presynaptic neuron
i and the postsynaptic neuron j, and ri

Pre�t� is the firing rate of the presyn-
aptic cell i.

Equation 7 is used to compute the impact of all the connections in our
model except for the case of the SNr lateral connections. The model
includes plasticity in connections from the striatum and the STN to the
SNr. Although uncommon, this approach gives the model a high level of
flexibility because it does not force a particular connectivity pattern, but
rather lets the network develop it by itself. Unfortunately, except for the
striatum, little is known about neural plasticity in the BG. As reviewed by
Schroll and Hamker (2013), not only the striatum, but other nuclei are
innervated by axons of DA neurons. Further, administration of the DA
precursor levodopa has been shown to affect synaptic plasticity in SNr
(Prescott et al., 2009). DA-dependent plasticity in our model SNr pre-
vents striatal cells from being hard wired to a single category, as would be
the case in previous models of BG which lack this plasticity. Further,

Figure 3. Examples of face stimuli presented to the model. The upper row of pictures corre-
spond to the category of Bill Clinton, the lower row of pictures to the category of George W.
Busch. Each picture shows a face with a particular expression and from a different perspective.
Each greyscale image has a size of 100 � 100 pixels and was obtained by applying a Viola–
Jones filter to a particular frame of a YouTube video.
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learning requires competition between cells, otherwise all neurons would
learn similar features. To implement competition in the SNr, the impact
of the SNr lateral connections is computed by multiplying the synaptic
weights by a reversal factor �1 � ri

Pre�t��� as follows:

Ij
Pre�t� � �

i	Pre

wi, j � �1 � ri
Pre�t��� � ri

Pre (8)

where the synaptic weights of the lateral connections in the SNr are
excitatory and fixed to 1. There is no direct evidence for our assumed SNr
circuitry, mainly due to a lack of studies, but our assumption agrees with
data showing that activations of the direct pathway cells in the striatum
can elicit both excitation and inhibition of SNr neurons (Hikosaka et al.,
1993; Freeze et al., 2013). Lateral connections in the striatum D1 (StrD1),
striatum D2 (StrD2), and STN are inhibitory and set to 0.3.

SNc follows an equation that produces the DA signal and is the only
part of our network that is not governed by Equation 6 as follows:

�m �
dmj

SNc�t�

dt
� mj

SNc�t� � �1 � R� � � � 10 � Ij
StrD1�t�� � R � �1

� BDA � Ij
StrD1�t��� � BDA (9)

where BDA � 0.1 is the baseline of the cell’s membrane potential, Ij
StrD1�t�

is the impact from the connections of all StrD1 cells to the SNc that learn
to represent the reward prediction at the time of the reward delivery, and
R is a term that changes depending on whether reward is delivered (set
to 1) or omitted (set to 0). The DA signal is only computed during the
reward presentation period and it encodes a reward prediction error
at the time of the reward delivery using D1 striatal neurons activity for
the prediction because these cells have been reported to be part of the
pathway that project to the dopaminergic neurons (see Vitay and
Hamker, 2014 for a more detailed model of the reward prediction
error computation).

The firing rate of all cells in our model is calculated by applying ( )� to the
membrane potential. The learning rule to update the synaptic weights from the
IT cells to the 16 StrD1 cells, 16 StrD2 cells, and 16 STN cells is as follows:

�w �
dwi, j

IT�POST�t�

dt
� fDA�DA�t� � BDA� � C � 
 j

POST�t� � ��rj
POST�t�

� r�POST�t����2 (10)

with C being the covariance term as follows:

C � �ri
IT�t� � r�

IT
�t� � �pre� � �rj

POST�t�

� r�POST�t��� (11)

fDA(x) is a function that determines how DA
influences learning (where Td � 1 for cells in
the direct and hyperdirect pathway and Td �
�1 for cells in the indirect pathway) as follows:

fDA�x�

� � �Td � 2 � x� if �Td � x� � 0
�Td � 0.8 � x� if �Td � x� 
 0U �Tc � C� � 0
0 else

(12)

and 
j the adaptive normalization variable (Tc

� 1 for excitatory connections and Tc � �1 for
inhibitory connections) as follows:

d
 j
POST�t�

dt
� 
 j

POST�t� � �Tc � mj�t�

� mMAX�� (13)

Where �w � 75 ms is the time constant. Syn-
apses are randomly initialized with a uniform
distribution in the interval [0.0, 0.3].

With DA peaks, very active StrD1 and STN cells will strengthen their
connections with the active IT cells and weaken their connections with
the rest of IT cells. With DA dips, the connections between very active
StrD1 and STN cells and active IT cells weaken. The DA learning effect is
reversed in the projections from IT to StrD2 cells. Therefore, with DA
dips, the most active StrD2 cells will strengthen their connections with
the active IT cells and weaken their connections with the rest of IT cells.
With DA peaks, the connections between very active StrD2 cells and
active IT cells weaken.

The covariance term C depends on the following parameters and vari-
ables: the firing rate of the postsynaptic cell rj

POST�t�, the mean of the firing
rates in the postsynaptic layer r�POST�t�, a threshold �pre � 0.15, the firing
rate of the IT neuron ri

IT�t�; and the mean firing rate in the IT layer r�IT�t�.
fDA(x) depends on the DA level DA(t) and the DA baseline BDA � 0.1.

The subtractive term of the right side of Equation 10 serves to saturate
the synaptic weights of a cell so that the cell’s firing rate is also bound.
Equation 13 shows that 
j

POST depends on the membrane potential of the
postsynaptic cell, mj(t), and a threshold, m MAX � 1.

The learning rule for changing the connection from the StrD1 to the
SNr, from StrD2 to GPe cells, and from STN to SNr cells is as follows:

�w �
dwi, j

PRE�POST�t�

dt
� fDA�DA�t� � BDA� �

� � C� � 
 j
POST�t� � � � C�� (14)

with the covariance term as follows:

C � Tc � �ri
PRE�t� � r�

PRE
�t��� � � � rj

POST�t� � r�POST�t� � �post�

(15)

where fDA(x) is the variable that determines how DA influences learning
via Equation 12, 
j is the adaptive normalization variable computed via
Equation 13, and �w � 50 ms is the time constant. Synapses are randomly
initialized by values taken from a uniform distribution in the interval
[0.0, 0.05].

The additive term on the left side of Equation 14 ensures that, during
peaks of DA, the most active StrD1 cells will strengthen their connections
with the less active SNr cell and weaken their connections with the other
SNr cell and the most active STN cells will strengthen their connections

Figure 4. Detailed outline of the components of the neurocomputational network. The number of cells that each neural
population has is shown at the bottom left corner of each population box. The reward prediction error signal used by the BG to learn
is generated at SNc. StrThal, Striatum with thalamic afferents.
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with the most active SNr cell and weaken their connections with the other
SNr cell. With DA dips, the most active StrD1 cells will weaken their
connections with the less active SNr cell and the most active STN cells will
strengthen their connections with the less active SNr cell.

In the case of the StrD2–GPe projections, the DA learning effect is the
opposite of the DA effect in the StrD1–SNr projections. With DA dips,
the most active StrD2 cells will strengthen their connections with the less
active GPe cell and weaken their connections with the other GPe cell.
With DA peaks, most active StrD2 cells will weaken their connections
with the less active GPe cell.

C depends on the following parameters and variables: a threshold
�post � 0.15, the firing rate of the presynaptic neuron rj

PRE�t�, the mean of
the firing rates in the presynaptic layer r�PRE�t�, the firing rate of the
postsynaptic cell rj

POST�t�, and the mean of the firing rates in the postsyn-
aptic layer r�POST�t�.

The threshold of 
j
POST is m MAX � 1 for the StrD1-SNr connections,

m MAX � 2.6 for the STN-SNr connections, and m MAX � 2 for the StrD2-
GPe connections. The SNr and GPe also receive thalamic feedback which
is provided by direct connections from the VA to a subpopulation of
striatal cells (StrThal in Fig. 4), that in turn project to both the GPe and
the SNr. These projections help to stabilize the BG decision by enhancing
the inhibition of the selected category in the SNr. This stabilization allows
to reliably notify the BG pathways which category decision should be
reinforced when a DA peak is generated (Brown et al., 2004). The con-
nections from the StrThal to the SNr and GPe are set to 0.3, from the VA
to the StrThal to 1, and the lateral connections in StrThal to 0.3.

The connections from the StrD1 cells to the SNc cell are updated by
Equations 16 and 17 as follows:

�w �
dwi, j

StrD1�SNc�t�

dt
� gDA � �DA�t� � BDA�

� �ri
StrD1�t� � r�

StrD1
�t��� (16)

with

gDA � �1 if reward
3 if no reward (17)

where �w � 100,000 ms is the time constant, rj
StrD1�t� is the firing rate of

the neuron j in the StrD1 layer, r�StrD1�t� is the mean of the firing rates in
the StrD1 layer, gDA is a parameter that scales the effect of DA dips and
peaks in learning; DA(t) is the DA level, and BDA is the baseline of the DA
level. Therefore, peaks in DA will strengthen the connections between the
SNc cell and the most active StrD1 cells and dips will weaken these
connections.

Finally, we summarize the difference between our model and the one
by Schroll et al. (2014). Because our examples required only two catego-
ries to learn, our SNr and GPe are composed of two cells instead of four.
As a result, the synaptic values of the SNr lateral connections are fixed to
1.0 instead of being plastic. The synaptic values of the plastic connections
in the model are randomly initialized from a uniform distribution; in-
stead, Schroll et al. (2014) initialized these synaptic weights to zero. The
projections from the IT to the BG input nuclei are only excitatory in our
model. In contrast, Schroll et al. (2014) allowed these synaptic weights to
switch their character between excitatory and inhibitory during learning.
Learning in the present model does not rely on calcium traces imple-
mented in the previous model because they are not required for the
purposes of this study. The learning rules from the IT to the BG input
nuclei have been slightly changed (in the subtractive term of the learning
rules). Finally, the time constant of the IT membrane potential, the
m MAX for the STN–SNr connections and the fixed weights of wSNr-VA

were modified.
Cortico-thalamic architecture. The membrane potential mj of the 2 VA

and the 16 PFC cells is computed by the Equations 6 and 7 with a time
constant of 10 ms, the random noise is generated from a uniform distri-
bution in the interval [�0.05, 0.05] for the PFC and in [�0.0001, 0.0001]
for the VA, and the baseline is 0 for both populations. The firing rate is
calculated by applying ( ) � to the membrane potential.

The connectivity between PFC and VA is fixed and ensures that a PFC
cell can only obtain its input from a single VA cell to avoid any overlap.
The number of PFC cells connected to a VA cell is balanced equally. The
weight values are defined as follows: w VA-PFC, w PFC-VA, and w PFC-PFC are
fixed with values 0.35, 0.15, and 0.1 respectively. w IT-PFC are randomly
initialized with a uniform distribution in the interval [0.2, 0.4] and mod-
ified by the following learning rule:

�w �
dwi, j

IT�PFC�t�

dt
� �ri

IT�t� � r�
IT

�t� � �pre� � �rj
PFC�t� � r�PFC�t���

� 
 j
PFC�t� � ��rj

PFC�t� � r�PFC�t����2 � wi, j
IT�PFC�t� (18)

where �w � 15,000 ms; �pre � 0.15, and 
j
PFC�t� is the variable that

contributes to the dynamic synaptic saturation (Eq. 13), with threshold
m MAX � 3.5.

In the most active PFC cells, the synapse will be strengthened if the
presynaptic cell’s firing rate is above the population mean and will be
weakened otherwise. The subtractive term on the right side of Equation
18 ensures dynamic synaptic saturation as in the Oja’s learning rule (Oja,
1982).

Variation of 64 model parameters. Each of the 100,000 simulations was
performed with different values for 64 model parameters. The value of
each of these parameters was randomly selected from a uniform distri-
bution in the interval between 	10% of the parameter’s value previously
specified in the mathematical model description. The 64 model param-
eters are as follows: the membrane potential’s baseline for the different
neural populations, the membrane potential’s noise for the different
populations, the time constant of the different learning rules, the m MAX

of each learning rule, the �pre of each learning rule, the scaling factor for
DA peaks and the scaling factor for DA dips in the fDA(x) of each projec-
tion, the scaling factor for the reward prediction signal when reward is
not delivered, the value of gDA when reward is not delivered, and the
synaptic weights of the different fixed connections.

Results
Simulation results
To meaningfully compare our model’s results with physiological
and biological data and, at the same time, test the robustness of
our model, we ran 100,000 category learning experiments, each
with randomly generated initial synaptic weights and with ran-
domly generated values for 64 model parameters. Each of these
parameters’ values was randomly determined from a uniform
distribution in an interval between plus/minus 10% of its value
specified in the Materials and Methods section (base value). With
a total of 100,000 of these experimental runs, we consider a large
number of variations for the 64 model value parameters. Fur-
ther, we used some variability in the learning task by choosing
for each experimental run a different set of stimuli among 100
possible sets of stimuli, each generated from two different
category prototypes.

An experiment was considered successful when, within 65
trials per block, 16 out of 20 consecutive trials were correct in
each block. The model successfully executes 82,639 out of
100,000 experiments (82.639%), a proportion slightly better than
that of monkeys (Antzoulatos and Miller, 2011): 19 of 24
(79.166%). Further, the model shows a similar learning perfor-
mance across the paradigm than that of monkeys (Fig. 5): ini-
tially, the model randomly selects a category (50% correct
performance); the performance gradually improves from the first
block to the fourth block; and, from the fifth block on, the per-
formance saturates at 
96.5%.

The PCC between each of the 64 parameters and the model’s
performance (computed for each experimental run as the per-
centage of correct trials in the 16 last trials) is very low: between
�0.035 and 0.041, indicating that the model tolerates modest

9556 • J. Neurosci., October 31, 2018 • 38(44):9551–9562 Villagrasa et al. • Category Learning in Cortex and Basal Ganglia



changes in any of the specified model value parameters. When the
PCC considered the absolute values of the perturbations produced
in each parameter base value instead of the values of each parameter,
correlations are even smaller: between �0.01 and 0.01.

Importantly, our model reproduces the key neurophysiologi-
cal findings of Antzoulatos and Miller (2011): at the beginning of
the paradigm, striatal cells are strongly category selective and
PFC cells are weakly category selective, whereas PFC cells later
become highly category selective and striatal cells weakly category
selective (Fig. 6).

In the following, we used the model as a tool to better under-
stand this key finding. When analyzing each cell’s category and
stimulus selectivity over 100 simulations (with fixed model pa-
rameters), we see that PFC and striatal cells show a different
selectivity profile (Fig. 7). Throughout the paradigm, there are
striatal cells that are stimulus selective and striatal cells that are
category selective, indicating that striatal cells encode both spe-
cific and abstract knowledge. Importantly, this result shows
that, although the striatum d� sensitivity is reduced late in the
experiment, there are striatal cells involved in category learn-
ing throughout the whole experiment. PFC cells, in contrast,
increase their category selectivity across blocks whereas their
stimulus selectivity remains low throughout the paradigm,
supporting that these cells encode generalized, categorical
knowledge.

Three example striatal cells illustrate different response
characteristics to stimuli of both categories (Fig. 8). The first
cell exclusively responds to stimuli of one category throughout
the experiment, but from block IV onwards, it does not re-

Figure 5. Model performance across blocks for categorizing novel stimuli averaged from
82,639 experiments. Because each block had a minimum of 16 trials (due to the criterion to
succeed in a block), we analyzed only the first 16 trials per block. Applying a sliding three-trial
window, we then measured the percentage of correct trials for each relevant trial across the all
successful experiments (black line) and the corresponding SEM. The obtained SEMs are too
small to be shown in this plot (smaller than 0.002) due to the large number of experiments
considered in this analysis.

Figure 6. Mean d� sensitivity index for category selectivity of neurons in the model’s PFC and
striatum. Horizontal and vertical axes refer to time and trials, respectively. The first phase
represents the first two blocks, the second phase the next two blocks, and the last phase the last
four blocks. Only successful experiments (82,639 experiments) and successful trials of novel
stimuli were considered in this analysis. The analyzed data spread across a time interval span-
ning from cue onset to reward onset. Each phase includes only its first 16 trials (i.e., seven trial
windows). Different values for the 64 model parameters were set at the beginning of each
experimental run.

Figure 7. Category and stimulus selectivity for each model cell in the striatum (red dots) and
in the PFC (blue dots) in all successful experiments. Both selectivities were measured at the end
of each block as outlined in the Materials and Methods section. The first block was omitted
because there was only one stimulus per category, so stimulus selectivity could not be com-
puted. A maximum category selectivity of 1 indicates that the corresponding cell responds
maximally to all stimuli of one category and becomes inactive for the stimuli from the other
category. Maximum stimulus selectivity, in contrast, indicates that the corresponding cell re-
sponds to a single stimulus with maximum activity, but that it remains inactive for the rest of the
stimuli from the same category. Although the category selectivity in the PFC clearly increases
with each block,the category selectivity in the striatum does not and cells stay stimulus selec-
tive. The mean category and the mean stimulus selectivity of the PFC and STR cells is shown at
each axis by a blue and red triangle, respectively. Error bars indicate the SD.
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spond to all stimuli of its preferred cat-
egory. Therefore, its category responses
become more variable within the set of
stimuli of the preferred category. The
second cell switches its category selec-
tivity. Furthermore, the variability of
this cell’s category response is higher in
the last blocks than in the first blocks. A
third cell responds to stimuli of one cat-
egory in the first blocks, but becomes
selective to stimuli of the other category
in the later blocks as well. Therefore,
this cell loses its category selectivity and
appears to become selective to input
patterns common to both categories.

When we analyze the response char-
acteristics across all cells, we observe
that the distance between the mean re-
sponse to the preferred category �P and
the mean response to the nonpreferred
category �N reduces after the first phase
due to a reduction in �P and a small
increase in �N (Fig. 9a). However, the
mean response to the preferred category
stays much higher than the one to the
nonpreferred category in all three dif-
ferent phases of the experiment, show-
ing that striatal cells have on average a
clearly preferred category throughout
the experiment. Therefore, a cell re-
sponding to both categories (Fig. 8) is
not the typical case.

The increase in the SD of the response
to the preferred category �P and the SD of
the response to the nonpreferred category
�N (Fig. 9b) confirms our observations of
the example cells in that the striatal re-
sponse to category information becomes
more variable after the first phase of the
experiment.

Because these results suggest that the
decrease in �P � �N is due to an increase
in the variability of the category response, our model predicts that
the decrease of the d� sensitivity index is primarily the result of an
increase in the variability of the category response.

We next explored why the decrease in striatal category selec-
tivity and the accompanying increase in variability occurred. As a
first hypothesis, we reasoned that, as PFC category selectivity
increases with learning, striatal category selectivity becomes less
required for successful task performance and is therefore un-
learned because the neural activity in the striatum may not be the
cause of the final decision. To test this hypothesis, we ran 100
additional simulations with our model, but we now blocked
learning in the PFC so that the BG were performing the experi-
ment alone. However, the striatal d� sensitivity index abruptly
decreases after the first phase and stays at a low level in the next
two phases, qualitatively very similar to the full model, thus rul-
ing out that the decrease in striatal category selectivity occurs due
to a PFC dominance in later blocks.

As another hypothesis, we tested whether, as task performance
increases, DA peaks (i.e., positive reward prediction errors) in the
model stop appearing, which would impair further learning in
the striatum. However, DA peaks are only reduced to 43% on

average, enough to still produce large synaptic changes in the
striatum.

Next, we tested whether the increase of the variability in the
striatal category response and therefore the decrease of the striatal
category selectivity is produced by the learning of a large diversity
of stimuli. To test this idea, we ran 100 simulations with the full
model performing a new prototype distortion task in which the
diversity of exposed stimuli is large and constant from the begin-
ning of the task. Rather than subdividing the prototype distortion
task into blocks with increasing numbers of stimuli across blocks,
any stimulus from the whole repertoire of stimuli available per
experiment could be presented in each trial. We now observed a
low striatal category selectivity from the beginning of the exper-
iment (Fig. 10) and no drop in the selectivity index. Because PFC
category selectivity rises to high values, the BG still teach PFC cells
to develop category representations, indicating that the BG are
involved in the categorization task. Therefore, this result sup-
ports that the decrease in the d� sensitivity index is due to the fast
learning of a large diversity of exposed stimuli, which makes it
impossible for the striatal cells to acquire complete category rep-
resentations and to respond to all stimuli of the preferred cate-

a b

c d

e f

Figure 8. Firing rates of three typical striatal cells plotted across all trials of one experimental run subdivided for presentation of
stimuli from category A (left subplots) and category B (right subplots). The seven vertical lines indicate borders between the eight
blocks (I, II, III, IV, V, VII, and VIII). a, firing rate of cell 1 across the trials that present a stimuli of category A in one experimental run.
b, firing rate of cell 1 across the trials that present a stimuli of category B in the same experimental run. c and d show the same as
a and b but for cell 2. e and f show the same as a and b but for cell 3. The 64 model parameters were set to their base values.
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gory. Therefore, the fact that the d� sensitivity index in this
revised experiment is low from the beginning discards a PFC
dominance in the category decision and an omission of DA peaks
as reasons for the low striatal category selectivity because both
effects occur later in the experiment.

To further explore BG and PFC interactions, we compared the
performance of the full model with the performance of the BG
and the PFC alone in a slightly more challenging, real-world cat-
egory learning task. In each of the 2500 trials of this task, an image
randomly selected from 1671 images of Bill Clinton and George
W. Bush (extracted from YouTube videos and therefore varying
in perspective and facial expressions) was presented to the model
for classification purposes. To mimic early visual perception up
to area IT, we used a convolutional network trained on other
faces to transform each image into a 100-dimensional vector rep-
resenting the high-level facial features of the corresponding im-
age (see Materials and Methods). To adapt the model to these
new inputs, two small changes were implemented. First, slower
learning in the PFC (�w � 100,000 ms) was required to guarantee
that the common patterns among inputs of a category were ex-
tracted. Second, the presynaptic threshold in the PFC learning
rule was set to �pre � 0.0 to ensure that all relevant features of the
input space were learned. Surprisingly, the BG model alone
achieves a much weaker performance than the full model and the
PFC alone (Fig. 11). The BG and the full model very soon reach
85%. Whereas the full model slowly improves its performance,
finally achieving a level of 97.4%, the BG alone lack further im-
provement and their performance fluctuates at 
85%. The per-
formance of the PFC alone, with 95.6% of correct responses after
the training of the full model, is only 1.8% lower than the full
model’s performance. Therefore, with a difference in perfor-
mance between the full model and the BG alone of 
12.2% and a
difference in performance between the PFC alone and the BG
alone of 
10.4%, we can corroborate the relevant role of the PFC

in pushing the categorization performance to high levels with
complex input stimuli. We have also found that Hebbian learning
alone is not enough to reach a high performance on the task.

To ensure that the slow learning in the PFC is key for
pushing the categorization performance of the full model
above the BG categorization performance, we compared the
categorization performance of five full model configurations

a b

Figure 9. Model prediction with respect to the individual components of the d� sensitivity
index of the striatum. The values are computed at the last trial time bin of each phase and from
the same simulation recordings used to obtain the STR d� sensitivity index in Figure 6. a, Mean
response to the preferred category (dots in magenta line, �P) and to the nonpreferred category
(dots in green line, �N) per phase. The preferred category is the category for which each STR cell
responds on average most strongly in each single trial time window. b, Mean SD of the response
to the preferred category (dots in magenta line, �P) and to the nonpreferred category (dots in
green line, �N) per phase.

Figure 10. Averaged d� sensitivity index across trials and time for the PFC and the striatal
activities recorded in a prototype distortion task without blocks. Horizontal and vertical axes
refer to trials and time, respectively. The subplots on the left and right side belong to PFC and
striatal recordings, respectively. Only successful experiments and successful trials of novel stim-
uli were considered in this analysis. The analyzed data spread across a time interval spanning
from cue onset to reward onset. The 64 model parameters were set to their base values in all
considered simulations.

Figure 11. Across-trial performance of the full model (dark red line) and the BG-alone model
(dark blue line) across the 2500 trials of the task with real-world face stimuli. For each of the
2500 trials, performance was averaged across 100 experimental runs. Moreover, SEMs were
computed (filling color around the lines). A 25-trial window was used to smooth the plot. The
black dot in the final trial represents the mean performance of the PFC alone in an extra set of
1000 trials performed at the end of the 2500 trials across 100 experimental runs. The corre-
sponding SEM is 0.00065, too small for being shown in the plot as the dot’s error bar. The 64
model parameters were set to their base values in all considered simulations.
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each with different learning speed in the
PFC. Categorization performance was
here evaluated across 100 runs on the
category learning task of faces. Figure
12a illustrates that the full model’s per-
formance increases as the speed in the
PFC learning rule decreases, confirming
the principal role of the slow learning in
the PFC for achieving high categoriza-
tion performance.

To determine whether slow learning
alone can be sufficient, we ran the BG
alone with slow learning in an additional
region of the striatum. However, the BG
with slow learning reach a significantly
lower performance (
17.4% lower) than
the full model (Fig. 13). Also, to study the
effect of additional basal– ganglio– corti-
cal connections seen in vivo, we added to
our model the well known connection
from the PFC to the STR (Ferry et al.,
2000). Figure 13 shows that this version of
the model does not alter the performance
previously achieved by our full model, in-
dicating that this connection does not
have a relevant effect on the simulated
task.

Physiological results
Even though the striatum d� sensitivity index abruptly decreases
after the first phase, our model predicts that on average, the stri-
atal cells remain selective for a preferred category, but their re-
sponse to category information becomes more variable (Fig. 9).
To test these predictions empirically, we went back to the original
monkey data. In accordance with our simulation results, the
monkey data shows that the mean response to the preferred cat-
egory �P weakly decreases after the first phase and that the mean
response to the nonpreferred category �N slightly increases after
the first phase (Fig. 14a). Most importantly, �P is significantly
higher than �N in the three phases, confirming that, although the
striatum d� sensitivity index shows a large decrease, the striatal
cells show a preferred categorical response in the course of the
experiment.

In agreement with our model, the monkey data show that
both the variability of the striatal response to the preferred cate-
gory �P and the variability of the striatal response to the nonpre-
ferred category �N increases after the first phase, while �P is
higher than �N (Fig. 14b).

Discussion
We introduced a new neurocomputational model of category
learning to investigate interactions of BG and PFC. Although it is
known that the PFC receives a dopaminergic input, although less
than the striatum (Seger and Miller, 2010), its phasic properties
are less pronounced due to the very slow decay of DA in PFC as
reviewed by Lapish et al. (2007). Lapish et al. (2007) suggested
that the corelease of glutamate from DA neurons may serve as a
temporally precise signal to allow PFC neurons to switch between
different modes that affect local network dynamics. However,
how such DA-dependent states may subserve reinforcement
learning of corticocortical connections has not been discussed.
Therefore, we take the conservative assumption that corticocor-
tical connections follow a Hebbian learning rule. However, Heb-

bian learning is insufficient for categorizing complex input
stimuli at high performance levels. Therefore, the PFC requires
teaching signals to guide learning toward useful representations
at an intermediate level between perception and action. We here
explored the hypothesis that the BG modulate the cortico–
thalamo– cortical loop and thus provide the PFC with the re-
quired task related information. Unlike the mesocortical DAergic
signal, the BG teaching signal provides no reward related infor-
mation to the PFC. It supplies the PFC with a desired response for

a

b

Figure 12. Effect of different PFC learning speeds on the full model’s performance in the learning task with real-world
faces images. a, �STR is the time constant of the learning rule in the striatum and was equal to 75 ms. �PFC is the time
constant of the learning rule in the PFC and its different values here studied were 75, 975, 33375, 66675, and 100000 ms.
Each red dot shows the mean performance across 100 experimental runs at the last trial (trial 2500). Error bars indicate the
corresponding SEMs. b, Example (for each different condition) of PFC weight trajectory (red line) and STR weight trajectory
(blue line) across the trials of one experimental run. The weight value was normalized via dividing by the maximum weight
value of the recorded PFC and STR cells. In all considered simulations, the 64 model parameters were set to their base values
except for the learning rule time constant in the PFC, which was set to the value specified by each condition.

Figure 13. Across-trial performance of the full model (dark red line), the full model
with an extra connection from the PFC to the STR (dark blue line), and a model with the
slow learning in the STR instead of the PFC (gold line) across the 2500 trials of the task with
real-world face stimuli. For each of the 2500 trials, performance was averaged across 100
experimental runs. SEMs are also shown (filling color around the lines). A 25-trial window
was used to smooth the plot. The 64 model parameters were set to their base values in all
considered simulations. The small model sketch summarizes the main difference between
the three models.
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the current input as estimated by the BG. Interestingly, the
“teacher” can display a much lower performance than the “stu-
dent” (Fig. 11). Due to the slow learning of the corticocortical
connections (here, IT–PFC), occasionally wrong decisions
transferred by the BG are tolerated. The BG with 85% correct
performance will still teach the PFC to push the model’s per-
formance up to almost 100%. Potential benefits of combined
fast and slow learners have been laid out in the context of
memory consolidation based on models of the cortex and hip-
pocampus (McClelland et al., 1995; O’Reilly and Rudy, 2000),
but although the main ideas are intuitive, clear model demon-
strations have been rare since then. Our simulation results
underline these previous ideas, here with respect to BG–PFC
interactions, and clearly demonstrate the additional advan-
tage of a slow learning system that complements fast learners,
which is required for survival.

As our model replicates key behavioral and physiological data
of macaque monkeys performing a prototype distortion task
(Antzoulatos and Miller, 2011), our model provides some confi-
dence to allow us to further delineate the potential mechanistic
causes behind the observation that striatal neural activity is ini-
tially a good predictor of stimulus category, whereas this category
selectivity declines as the number of stimuli to classify increases.
Our simulations suggest that the drop in striatal category selec-
tivity does not relate to a disengagement of the striatum in cate-
gory learning: the striatal cells’ response to category information
exhibits, on average, a strong preference to one category through-
out the whole experiment, indicating that striatal cells can ac-
quire category knowledge when learning to classify a large
number of stimuli. Importantly, our model predicts that the de-
crease in the category selectivity of striatal cells occurs due to an
increase in the variability of the category response. We tested and
confirmed this model prediction by reanalyzing the original
monkey data obtained by Antzoulatos and Miller (2011). The

large number of simulations (100,000), each performed with dif-
ferent model value parameters, ensures that the results are robust
to modest changes in these parameters. The model does not show
significant susceptibility to changes in any of these parameters.

Our results may advance the field of computational models of
category learning, which already has a long tradition. Category
learning models with a more psychological focus typically tend to
abstract from details of brain computation and focus mainly on a
replication of behavioral data in different category learning tasks
such as prototype, probabilistic, rule-based, and information–
integration categorization tasks (for review, see Richler and
Palmeri, 2014). Most recent neurocomputational models of cat-
egory learning focus on the role of the ventral visual pathway, but
typically simplify at the level of category decision by relying on
mechanisms of supervised learning to link feature and object
information to categories (Serre, 2016). However, Cantwell et al.
(2017) also emphasized the role of the BG in category learning by
merging a model of visual object processing with a model of
procedural learning based on the direct pathway of the BG. Al-
though this is interesting, their model has been directed to learn
correct stimulus–response associations and to match the perfor-
mance of human behavioral data in category learning; it did not
focus on the formation of category representations in PFC and
likewise has not been used to explain electrophysiological data
such as those from the study of Antzoulatos and Miller (2011).
Our model demonstrates that the PFC can be trained by the BG to
develop useful internal representations for completing a proto-
type distortion and a simple, but real-world face categorization
task. Because this learning is generic, it may also provide the basis
of other category learning tasks, although some of them may
recruit additional or slightly different brain areas (Seger and
Miller, 2010; Richler and Palmeri, 2014) and may therefore re-
quire more complex models.

Because the BG form multiple loops with most parts of cortex
(Alexander et al., 1986; Haber, 2003), our model could provide an
inspiration for the organization of other loops as well. A further
challenging and unanswered question is how different cortical
areas connect with each other across loops. The organization of
connections in early sensory areas may be approximately well
explained by Hebbian learning. Corticocortical areas further
downstream likely require error signals and fast learning BG cir-
cuits to bias cortex in a meaningful way so that brain circuits
self-organize to find solutions that allow the organism to survive,
reproduce, and evolve. Hélie et al. (2015) already suggested that
the BG are required for learning such corticocortical associations.
Our study provides an example of how this may actually work
and may offer a blueprint for the organization of other cortico-
cortical associations.
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Sjöström PJ, Turrigiano GG, Nelson SB (2001) Rate, timing, and coopera-
tivity jointly determine cortical synaptic plasticity. Neuron 32:1149 –
1164. CrossRef Medline

Surmeier DJ, Ding J, Day M, Wang Z, Shen W (2007) D1 and d2
dopamine-receptor modulation of striatal glutamatergic signaling
in striatal medium spiny neurons. Trends Neurosci 30:228 –235.
CrossRef Medline

Viola P, Jones MJ (2004) Robust real-time face detection. Int J Comput Vis
57:137–154. CrossRef

Vitay J, Hamker FH (2014) Timing and expectation of reward: a neurocom-
putational model of the afferents to the ventral tegmental area. Front
Neurorobot 8:4. CrossRef Medline
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