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Abstract. Although biomimetic autonomous robotics relies on the mas-
sively parallel architecture of the brain, the key issue is to temporally
organize behaviour. The distributed representation of the sensory infor-
mation has to be coherently processed to generate relevant actions. In the
visual domain, we propose here a model of visual exploration of a scene
by the means of localized computations in neural populations whose ar-
chitecture allows the emergence of a coherent behaviour of sequential
scanning of salient stimuli. It has been implemented on a real robotic
platform exploring a moving and noisy scene including several identical
targets.

1 Introduction

Brain, in both humans and animals, is classically presented as a widely dis-
tributed and massively parallel architecture dedicated to information processing
whose activity is centered around both perception and action. One the one hand,
it includes multiple sensory poles able to integrate the huge sensory information
through multiple pathways in order to offer the brain a coherent and highly in-
tegrated view of world. On the other hand, it also includes several motor poles
able to coordinate the whole range of body effectors, from head to toes or from
muscles of the neck to muscles of the last knuckle of the left little toe.

Despite this huge amount of information to be processed, we are able to play
the piano (at least some of us) with both left and right hand while reading the
partition, tapping the rythm with our feet, listening to the flute accompanying
us and possibly singing the theme song. Most evidently, brain is a well organized
structure able to easily perform those kind of parallel performances.

Nonetheless, real brain performance does not lie in the parallel execution of
some uncorrelated motor programs, hoping they could ultimately express some
useful behaviour. Any motor program is generally linked to other motor programs
through perception because we, as a body, are an indivisible entity where any
action draws consequence on the whole body. If I'm walking in the street and
suddenly decide to turn my head, then I will have to adapt my walking program
in order to compensate for the subtle change in the shape of my body. In other
words, the apparent parallelism of our actions is quite an illusion and requires de
facto a high degree of coordination of motor programs. But even more striking
is the required serialization for every action like for example grasping an object:
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I cannot pretend to grasp the orange standing ahead of me without first walking
to the table where it is currently lying.

This is quite paradoxal: behaviour is carried out by a massive parallel struc-
ture whose goal is finally to coordinate and serialize several elementary action
programs. This is the key issue about the kind of performances that are presently
identified as the most challenging in biomimetic robotics. The goal of this domain
is to develop new computational models, inspired from brain functioning and to
embed them in robots to endow them with strong capacities in perception, action
and reasoning. The goal is to exploit the robot as a validation platform of brain
models, but also to adapt it to natural interactions with humans, for example
for helping disabled persons. These strategic orientations have been chosen, for
example, in the Mirrorbot european project, gathering teams from neurosciences
and computer science. Peoplebot robotic platforms are instructed, via a biolog-
ically oriented architecture, to localize objects in a room, reach them and grasp
them. Fruits have been chosen to enable simple language oriented instructions
using color, shape and size hints.

To build such technological platforms, fundamental research must be done,
particularly in computational neurosciences. The most important topic is cer-
tainly that of multimodal integration. Various perceptual flows are received by
sensors, preprocessed and sent to associative areas where they are merged in an
internal representation. The principle of internal representation is fundamental
in this neuronal approach. The robot learns by experience to extract in each per-
ceptual modality the most discriminant features together with the conditional
probalities in the multimodal domain of occurence of these features, one with
regard to the other, possibly in a different modality.

In a natural environment, features have to be extracted in very numerous
dimensions like for example, in the visual domain, motion, shape, color, texture,
etc. Multimodal learning will result in a high number of scattered representa-
tions. As an illustration, one can think of learning the consequences of eye or
body movement on the position of an item in the visual scene, learning the
correlations between some classes of words (e.g. colors, objects) and some visual
modalities (e.g. color, shape), learning to merge the proprioception of one’s hand
and its visual representation to anticipate key events in a grasping task, etc. It
is clear that in autonomous robotics, all these abilities in the perceptual, multi-
modal and sensorimotor domains are fundamental prerequisite and, accordingly,
a large amount of modeling work has been devoted to them in the past and are
still developed today.

In this paper, we wish to lay emphasis on another important aspect, presently
emerging in our domain. Nowadays, tasks to be performed by the robot are in-
creasingly complex and are no longer purely associative tasks. As an illustration,
in the Mirrorbot project, we are interested in giving language instructions to the
robot like “grasp the red apple”’. Then, the robot has to observe its environment,
select red targets, differentiate the apple, move toward it and endly grasp it. To
tell it more technically, one thing is to have at disposal elementary behaviors,
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another more complicated thing is to know when to trigger the most appropriate
and inhibit the others, particularly in a real world including many distractors.
In the framework of brain understanding and multimodal application, we
investigated further the nature of the numerical computations required to im-
plement a selective attention mechanism that would be robust against both noise
and distractors. This kind of mechanism is an essential part of any robotic sys-
tem since it allows to recruit available computationnal power on a restricted area
of the perception space, allowing further processing on the interesting stimuli.
The resulting model we introduce in this paper is a widely distributed architec-
ture able to focus on a visual stimulus in the presence of a high level of noise
or distractors. Furthermore, its parallel and competitive nature gives us some
precious hints concerning the paradox of brain, behaviour and machine.

2 The Critical Role of Attention in Behaviour

Despite the massively parallel architecture of the brain, it appears that its pro-
cessing capacities are limited in several domains: sensory discrimination, motor
learning, working memory... Several neuropsychological experiments have pin-
pointed this limitation. In the visual perception domain, the fundamental ex-
periment by Treisman and Gelade [1] has drawn the distinction between two
modes of visual search: when an object has characteristics sufficiently different
from its background or other objects, it litterally "pops-out" from the scene and
the search for it is very quick and independent from the number of other ob-
jects; oppositely, when this object shares some features with distracting objects
or when it does not differ enough from its background, the search is very diffi-
cult and the time needed for it increases linearily in average with the number of
distractors. These two search behaviours are then respectively called "parallel
search" and "serial search". In the MirrorBot scenario, the parallel search could
be useful when the robot has to find an orange among other non-orange fruits:
the "orange-color" feature is sufficient for the robot to find its target. On the
contrary, if one asks the robot to find a small green lemon among big green
apples and small yellow lemons, the "green-colour" and "small size" features
are not sufficient by themselves to discrimate the green lemon: a conjunction
of the two features is needed to perform the task. With respect to the results
of Treisman and Gelade, the search would have to be serial, which means that
the small and/or green objects have to be scanned sequentially until the green
lemon is found.

Why such a limitation in the brain? Ungerleider and Mishkin [2] described
the organization of the visual cortex as being composed of two major pathways:
the ventral pathway (labelled as the "what" pathway because of its involve-
ment in visual recognition) and the dorsal pathway (labelled as the "where" or
"how" pathway because of its involvement in spatial representation and visuo-
motor transformation). Areas in the ventral pathway (composed by areas from
V1 to V2 to V4 to TEO to TE) are specific for certain visual attributes with
increasing receptive fields along this pathway: from 0.2° in V1 to 25° in TE. The
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complexity of the visual attributes encoded in these areas also increases though-
out this pathway: V1 encodes simple features like orientation or luminance in
a on-center off-surround fashion, V4 mainly encodes colour and inferotemporal
areas (IT, comprising TEO and TE) respond for complex shapes and features.
This description corresponds to a feed-forward hierarchical structure of the ven-
tral pathway where low-level areas encodes local specific features and high-level
areas encodes complex objects in a distributed and non-spatial manner. This
approach raises several problems: although it is computationnally interesting for
working memory or language purposes to have a non-spatial representation of
a visual object, what happens to this representation when several identical ob-
jects are present at the same time in the scene? As this high-level representation
in IT is supposed to be highly distributed to avoid the "grandmother neuron"
issue [3], how can the representation of several different objects be coherent and
understandable by prefrontal cortex (for example)? Moreover, the lose of the
spatial information is a problem when the recognition of a given object has to
evoke a motor response, e.g. an ocular saccade. The ventral stream can only
detect the presence of a given object, not its position, what would instead be the
role of the dorsal pathway (or occipito-parietal pathway). How is the coherence
between these two pathways ensured? These problems are known as the "binding
problem". Reynolds and Desimone [4] state that attention is a key mechanism
to solve that problem.

Visual attention can be seen as a mechanism enhancing the processing of
interesting (understood as behaviourally relevant) locations and darkening the
rest [5, 6]. The first neural correlate of that phenomenon has been discovered by
Moran and Desimone [7] in V4 where neurons respond preferentially for a given
feature in their receptive field. When a preferred and a non-preferred stimulus
for a neuron are presented at the same time in its receptive field, the response
becomes an average between the strong response to the preferred feature and the
weak response to the non-preferred one. But when one of the two stimulus is at-
tended, the response of the neuron represents the attended stimulus alone (strong
or poor), as if the non-attended were ignored. The same kind of modulation of
neural responses by attention has been found in each map of the ventral stream
but also in the dorsal stream (area MT encoding for stimulus movement, LIP
representing stimuli in a head-centered reference frame). All these findings are
consistent with the "biased competition hypothesis" [8] which states that visual
objects compete for neural representation under top-down modulation. This top-
down modulation, perhaps via feedback connections, increases the importance
of the desired features in the competition inside a map, but also between maps,
to lead to a coherent representation of the target throughout the visual cortex.
Importantly, when a subject is asked to search for a colored target before its ap-
pearance, sustained elevation of the baseline activity of color-sensitive neurons
in V4 has been noticed, although the target had not appeared yet [9].

Another question is the origin of attention, which can be viewed as a supra-
modal cognitive mechanism, independant from perception and action [10], or
on the contrary as a consequence of the activation of circuits mediating sen-
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sorimotor transformations. This "premotor theory of attention" [11,12] implies
that covert attention (attention to extra-foveal stimuli) is the preparation of
a motor action to this stimulus, but finally inhibited. Several studies support
that theory, especially in [13,14, 15], showing that covert attention engage the
same structures than overt orienting. These structures comprise the frontal eye
field (FEF), the superior colliculus, the pulvinar nuclei of the thalamus, LIP
(also called parietal eye field) among others. FEF appears as the main source
of modulation of area LIP because of their anatomical reciprocal connections: a
sub-threshold modulation of FEF increases the discrimination of a target [16],
and although LIP encodes the position of visual stimuli in head-centered coor-
dinates, this representation is shifted before a saccade is made to its estimated
new position [17].

This strong link between action and attention has the advantage to account
for the fact that attention can be either maintained or switched under voli-
tional and behaviourally relevant control. In serial search, attention is sequen-
tially attracted to different potentially interesting locations until the correct
target is found. Which mechanism does ensure that attention can effectively
move its focus when the enlighted object is not the expected one, but stick to
it when it is found? In their seminal paper, Posner and Cohen [18] discovered
that the processing of a stimulus displayed just after attention is attracted to
its location is enhanced (what is coherent with the notion of attention), but
is decreased a certain amount of time after (around 200-300ms depending of
the task). This phenomenom called “inhibition of return” (IOR) can be inter-
preted as a mechanism ensuring that attention can not be attracted twice to
the same location in a short period of time, therefore encouraging exploring new
positions.

This quick overview of attention can be summarized by saying that atten-
tion is an integrated mechanism distributed over sensorimotor structures, whose
purpose is to help them to focus on a small number of regions in the input space
in order to achieve relevant motor behaviours. Therefore, virtually all structures
involved in behaviour have to deal with attention: for example the link between
working memory and attention has been established in [19] and [20]. Attention
is a motivated and integrated process.

3 Continuum Neural Field Theory

Even if the whole neural networks domain often draws (more or less tightly) on
biological inspiration, core mechanisms like the activation function or learning
rules often deny the inner temporal nature of neurons. They are usually designed
with no reference to time while it is perfectly known that a biological neuron
is a complex dynamic system that evolves over time together with incoming
information. If such artificial neurons can be easily manipulated and used in
classical networks such as the Multi-Layer Perceptron (MLP), Kohonen networks
or Hopfields maps, they can hardly pretend to take time into account, see [21]
for a complete review.
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In the same time, the Continuum Neural Field Theory (CNFT) has been
extensively analyzed both for the one-dimensional case [22,23,24] and for the
two-dimensional case [25] where much of the analysis is extendable to higher
dimensions. These theories explain the dynamic of pattern formation for lateral-
inhibition type homogeneous neural fields with general connections. They show
specifically that, in some conditions, continuous attractor neural networks are
able to maintain a localised bubble of activity in direct relation with the excita-
tion provided by the stimulation.

3.1 A Dynamic Equation for a Dynamic Neuron

We will use the notations introduced in [25] where a neuronal position is labelled
by the vector x which represents a two-component quantity designing a position
on a manifold M in bijection with [~0.5,0.5]%. The membrane potential of a
neuron at the point x and time ¢ is denoted by u(x,t) and it is assumed that
there is a lateral connection weight function w(x — x’) as a function of the
distance |x —x’|. There exists also an afferent connection weight function s(x,y)
from the position y in the manifold M’ to the point x in M. The membrane
potential u(x, t) satisfies the following equation (1):
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where f represents the mean firing rate as some function of the membrane po-
tentialu of the relevant cell{y,t) is the input to the positiory at timet in
M and h is the neuron thresholdw), is given by the equation (2).
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3.2 Some Properties of the CNFT

There are several models using population codes focusing on noise clean-up such
as in [26,27] or more general types of computation such as sensorimotor trans-
formations, feature extraction in sensory systems or multisensory integration
[28, 29, 30]. Deneve et al27] were able to show through analysis and simula-
tions that it is indeed possible to implement an ideal observer using biologically
plausible models of cortical circuitry and it comes as no surprise that this model
relies heavily on lateral interactions. We also designed a m3dflehht uses lat-

eral interactions, as proposed by the CNFT, and fall into the more general case of
recurrent network whose activity relaxes to a smooth curve peaking at a position
that depends on the encoded variabbat was analyzed as being a good imple-
mentation of a Maximum Likelihood approxima28}. [This dynamic model

of attention has been described using the Continuum Neural Field Theory that
explains attention as being an emergent property of a neural population. Using
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distributed and iterative computation, this model has been proven very robust
and able to track one static or moving target in the presence of noise with very
high intensity or in the presence of a lot of distractors, possibly more salient than
the target. The main hypothesis concerning target stimulus is that it possesses
a spatio-temporal continuity that should be observable by the model, i.e. if the
movement of the target stimulus is too fast, then the model can possibly loose
its focus. Nonetheless, this hypothesis makes sense when considering real world
robotic applications.

4 A Computational Model of Spatial Visual Attention

The first model that has been designed in [31] demonstrated why and how CNFT
can be used to attend to one moving stimulus and this model has been proven
to be extremely robust against both noise and distractors. But, what has been
considered to be a nice feature in this previous model is now viewed as a drawback
since it prevents the model from switching to another stimulus when this is
required to achieve a relevant behaviour. The natural solution to this situation
is then to actively inhibit this behaviour in order to allow the model to switch to
another stimulus. But then, the difficulty is to somehow ensure that the model
will not switch back and forth between two stimuli only. Since the ultimate goal of
the model is the active exploration of the visual scene, it needs a working memory
to be able to memorize what has been already seen and what has not. This is
even more difficult when considering camera movements that result in having any
stimulus moving on the retina image. A static working memory system would
be useless in this situation because it is generally disconnected from perception,
while for a visual exploration task the working memory system has to track
down every attended stimuli in order to prevent attending them again. There
are neurophysiological evidences [32] that inhibition of return (tightly linked
with working memory) can follow moving targets. In the following paragraphs,
we will describe the role and connectivity of each map in the model represented
in Figure 1. Even if some maps have biologically inspired names, discussing about
this plausibility is out of the scope of this paper.

4.1 Architecture

Input map. The INPUT map in the model (cf. Figure 1) is a pre-processed
representation of the visual input. As our aim is not to focus on visual processing
but on motor aspects of attention, we did not modelize any local filtering nor
recognition. What we use as input in our model is a kind of “saliency map”
(see [33]) which represents in retinotopic coordinates the relative salience of the
objects present in the visual field. This may be the role of the area LIP in
monkey as discovered by Gottlieb et al. [34], but this issue is still controversial.
In the simulation, we will generate bubbles into that map of 40 x 40 units, but
we will explain in Section 4.3 how it is implemented on the robot. This map
has no dynamic behaviour, it just represents visual information. In contrast, all
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Fig. 1. The different maps of the model, with schematic connections. Red (dark) arrows

represent excitatory connections, blue (light) arrows represent inhibitory connections,
circular arrows represent lateral connections. See text for details

the following maps have dynamics like in equation 1 with mexican-hat shaped
lateral connectivity like in equation 2. Parameters will be given in Appendix.

Visual Map. The VISUAL map receives excitatory inputs from the INPUT map
with a “receptive-field”-like connection pattern that allows topology to be con-
served since the two maps have the same size. The lateral connectivity in the
VISUAL map ensures that only a limited number of bubbles of activity can emerge
anytime. As a consequence, the activity of the VISUAL map is virtually noiseless
and expresses only the most salient stimuli present within the input. If too many
stimuli are presented in the same time, then the dynamic interactions within the
map will reduce this number to the most salient stimuli only. Roughly, in the
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present architecture, this number is around seven stimuli which can be presented
simultaneously (this is mainly due to the size of the map compared to the lateral
extent of the inhibitory lateral connections).

Focus Map. The FOCUS map receives excitatory inputs from the VISUAL map
and have the same size as the VISUAL map to ensure that topology is loosely
conserved. The lateral connectivity is wider than in the VISUAL map so that only
one bubble of activity can emerge anytime. When no stimulus is present within
the input, no activity is present within the FOCUS map. With these three maps
(INpPUT, VISUAL and FOCUS), the system can track one stimulus in the input
map which will represented by only one bubble of activation in Focus. In [31]
we demonstrated that this simple system had interesting denoising and stability
properties. Now, to implement a coherent attention-switching mechanism, we
need to add a switching mechanism coupled with a working memory system. The
switching mechanism will be done by adding an inhibitory connection pattern
from a map later labelled INHIBITION. Let’s first describe the working memory
system.

FEF and WM Maps. FEF and WM maps implement a dynamic working mem-
ory system that is able to memorize stimuli that have already been focused in
the past together with the currently focused stimulus. The basic idea to perform
such a function is to reciprocally connect these two maps one with the other
where the WM map is a kind of reverbatory device that reflects FEF map activ-
ity. Outside this coupled system, the FEF map receives excitatory connections
(using gaussian receptive fields to conserve topology) from both the vISUAL and
FOCUS maps. Activity in the VISUAL map alone is not sufficient to generate ac-
tivity in FEF; it needs a consistent conjunction of activity of both VISUAL and
FOCUS to trigger some activity in FEF map. Since there is only one bubble of
activity in the focus map, the joint activation of VISUAL and FOCUS only happens
at the location of the currently focused stimulus. So, when the system starts,
several bubbles of activation appear in VISUAL map, only one emerges in FOCUS,
what allows the appearance of the same bubble in FEF map. As soon as this
bubble appears, it is transmitted to WM which starts to show activity at the
location of that bubble which in turn excites the FEF map. This is a kind of
reverbatory loop, where mutual excitation leads to sustained activity.

One critical property of this working memory system is that once this activity
has been produced, WM and FEF map are able to maintain this activity even when
the original activation from VISUAL and FOCUS disappears. For example, when
the system focuses on another stimulus, previous activation originating from the
FOCUS map vanishes to create a bubble of activity somewhere else. Nonetheless,
the previous coupled activity still remains, and a new one can be generated at
the location of the new focus of attention.

Importantly, the system is also sensitive to the visual input and thus allows
memorized stimuli to have a very dynamic behaviour since a bubble of activity
within FEF and WM tends to track the corresponding bubble of activity within
the VISUAL map. In other words, once a stimulus has been focused, it starts
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reverberating through the working memory system which can keep track of this
stimulus, even if another one is focused.

Switching Sub-architecture. The mechanism for switching the focus in the
FOCUS map is composed of several maps (REWARD, STRIATUM, GPI, THALAMUS
and INHIBITION). The general idea is to actively inhibit locations within the
focus map to prevent a bubble of activity from emerging at these locations. This
can be performed in cooperation with the working memory system which is able
to provide the information on which locations have already been visited.

The STRIATUM map receives weak excitatory connections from the FEF map,
which means that in the normal case no activity appears on STRIATUM map.
But when the REWARD neuron (which sends a connection to each neuron in the
STRIATUM) fires, it allows bubbles to emerge at the location they are potenti-
ated by FEF. The REWARD activity is a kind of “gating” signal which allows the
STRIATUM to reproduce or not the FEF activity.

The STRIATUM map sends inhibitory connections to the Gp1, which has the
property to be tonically active: if the GPI neurons receive no input, they will show
a great activity. They have to be inhibited by the STRIATUM to quiet down. In
turn, the GPI map sends strong inhibitory connections to the THAL map, which
means that when there is no reward activity, the THAL map is tonically inhibited
and can not show any activity. It is only when the REWARD neuron allows the
STRIATUM map to be active that the GPI map can be inhibited and therefore
the THAL map can be “disinhibited”. Note that this is not a reason for the THAL
to show activity, but it allows it to respond to excitatory signals coming from
somewhere else.

This disinhibition mechanism is very roughly inspired by the structure of the
basal ganglia, which are known as mediating selection of action [35]. It allows
more stability than direct excitation of the THAL map by FEF.

The INHIBITION map is reciprocally and excitatorily connected with the THAL
map, in the same way as FEF and WM are. But the reverbatory mechanism is
gated by the tonic inhibition of GPI on THAL. It is only when the REWARD neu-
ron fires that this reverbation can appear. INHIBITION receives weak excitatory
connections from FEF (not enough to generate activity) and sends inhibitory
connections to FOCUS. The result is that when there is no reward, the inhibitory
influence of the INHIBITION map is not sufficient to change the focus of attention
in FOCUS, but when the REWARD neuron fires, INHIBITION interacts with THAL
and shows high activity where FEF stores previously focused locations, what
prevents the competition in FOCUS to create a bubble at a previously focused
location, but rather encourages it to focus on a new location.

4.2 Simulated Behaviour

Having described the architecture of the model and the role of the different
maps, a switching sequence, where we want the model to change the focused
stimulus in favor of another unfocused one, is quite straightforward. As detailed
in Figure 2, the dynamic of the behavior is ruled both by the existing pathways
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Fig. 2. A simulated sequence of focus switching. See text for details
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between the different maps (either excitatory or inhibitory) and the dynamic of
the neurons.

The INPUT map is here clamped to display three noisy bubbles at three
different locations in the visual field, so that the network can sequentially focus
these points. In Figure 2-a), the three noisy bubbles in map INPUT are denoisified
in the VISUAL map, allowing only one bubble to emerge in the FOCUS map which
is immediately stored in FEF and wM. In Figure 2-b), a switch signal is explicitely
sent to the network via the REWARD unit, allowing the STRIATUM to be excited
at the location corresponding to the unique memorized location in the working
memory system. This striatum excitation inhibits in turn the corresponding
location within the GPI map. In Figure 2-c), the localized destabilization of the
GPI prevents it from inhibiting the thalamus at this same location and allow
the inhibition map to activate itself, still at the same location. In Figure 2-d),
the INHIBITION map is now actively inhibiting the FOCUS map at the currently
focused location. In Figure 2-e), the inhibition is now complete and another
bubble of activity starts to emerge within the FOCUS map (precise location of
the next bubble is unknown, it is only ensured that it can not be the previously
visited stimulus). In Figure 2-f), once the focus is fully activated, it triggers the
memorization of the new location while the previous one is kept in memory.

4.3 Experimental Results on a Robotic Platform

This model is built to deal with switching and focusing spatial selective attention
on salient locations. It is not meant to modelize the whole attention network. In
particular, we did not implement the recognition pathway and feature-selective
attention because we only wanted to figure out how attention can sequentially
scan equivalent salient locations. When we wanted to test this model on our
PeopleBot robot, we therefore chose to consider identical targets, for example
green lemons, which are artificially made salient for the system.

b)

Fig. 3. Experimental environment: a) the PeopleBot is disposed in front of a table with
three green lemons. b) The image grabbed by the camera
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a) b)

Fig. 4. a) A gaussian filter around the green colour (H=80 S=50 in HSV coordinates) is
applied to the image to simulate the fact that green objects are attended. b) Activation
in INPUT map

The experimental environment is the following (see Figure 3): we put the
PeopleBot in front of three green lemons lying on a table. At start, the camera
is directed somewhere on the table with each fruit somewhere in its viewfield.
The task for the system is to sequentially gaze (by moving its mobile camera)
at the three targets while never looking twice the same fruit, even if the fruits
are moved during the experiment.

To make the fruits artificially salient, we applied a gaussian filter on the
image centered on the average color of a green lemon (H=80 S=50 in HSV
coordinates). This results in three noisy patches of activation (between 0 and
1) in the transformed image (see Figure 4). These activations then feed the
INPUT map to be represented by a smaller set of neurons (here 40 x 40). As the
original image had a size of 640 x 480, each neuron in the INPUT map represents
something like 12 x 12 pixels. This representation is very noisy at this stage, but
the denoising properties of the dynamical lateral interactions in the VISUAL map
allow to have bubble-shaped activities centered on the fruit.

The output of the system is a motor command to the mobile camera in order
to gaze at the currently attended object (ie have it at the center of the camera).
It is obtained by decoding the position of the unique bubble of activation in
the FOCUS map in [—0.5,0.5]? and by linearily transforming this position into a
differential command to the effectors of the camera. This motor mapping is quite
obvious but dependent on the type of mobile camera, so we will not describe it
here. One important thing to notice here is that this command is differential,
i.e. just a little percentage of the displacement needed to go to the target is
actuated, then the network is updated with a new image and so on. We will
discuss this limitation later.
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Fig. 5. Some snapshots of the sequence executed by the robot when trying to sequen-
tially gaze at three green lemons. First, the robot initially looks at somewhere on the
table. Then it gazes successively at fruit 1 and fruit 2. While fixating fruit 2, even if
someone exchanges fruit 1 and the third not previously focused fruit, the robot will
fixate the third “novel” fruit

The switching sequence there is the same as in Section 4.2, the only difference
being the motor outputs. The user still has to send the switching signal by
“clamping” the reward unit to its maximal value for one step, and leaving it
decay with its own dynamic.

An example of behaviour of the model is given in Figure 5. The center of
gaze of the camera is first directed somewhere on the table. The model ran-
domly decides to focus its attention on the bottom-right fruit (let’s understand
“randomly” as “depending on the noise in the input image, the initial state of the
network and so on”) and step-by-step moves the camera to it. When the camera
is on it, the user can decide whenever he wants to focus another fruit by clamping
the reward neuron (in a biologically relevant scenario, the system would have to
learn that he could obtain more reward by switching its focus and therefore make
the reward neuron fire) which inhibits the currently focused object. The focus
of attention then moves to one of the two remaining fruits (here the bottom-left
one), what makes the camera gaze at it. At this point, the “working memory”
system contains the current and the past focused fruits. If the user clamps again
the reward unit, the new focused location will obligatorily be on the third fruit,
even if one slowly exchanges the locations of the first and the third fruit, because
the representations in the working memory are updated by perception.

5 Conclusion

Despite a massively distributed architecture, the model we presented is able to
accurately switch between available stimuli in spite of noise present at several
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levels, fruit positions, distance of the robot from the table, lightening conditions,
etc. The resulting serialization of the behavior is a direct consequence of both
the dynamic of neurons and the existence of dedicated pathways between differ-
ent maps. What is important to understand is that any neuron in any map at
any time is always computing its activity from the available information it can
perceive via both afferent and lateral connections. The point is that there is no
such thing as a concept of layer, an order of evaluation nor a central executive
(either at the level of maps or at the level of the whole model). This is quite a
critical feature since it somehow demonstrates that the resulting and apparent
serialization of behavior in this model is a simple emergent property of the whole
architecture and consequently, there is no need of this famous central supervisor
to temporally organize elementary actions.

Nevertheless, the model presents a major drawback which is the speed at
which the camera can change its gaze to a target: the network has to be updated
after a camera displacement of approximatively 5° so that the spatial proximity
of a fruit on the image before and after a movement of the camera can be in-
terpreted by the network as the representation of the same object. This is quite
incoherent with the major mode of eye movement, namely saccades, as opposed
to this “pursuit” mode which can not be achieved under voluntary control: pur-
suit eye movements are only reflexive. To implement saccades, we would need
an anticipation mechanism that could foresee what would be the estimated po-
sition of a memorized object after a saccade is made. Such a mechanism has
been discovered in area LIP of the monkey by [17] where head-centered visual
representations are remapped before the execution of a saccade, perhaps via
corollary motor plans from FEF. Ongoing work is addressing this difficult prob-
lem by implementing a mechanism whose aim is to predict (to some extents) the
consequences of a saccade on the visual input.
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Appendix

Dynamic of the Neurons

Each neuron loc in a map computes a numerical differential equation given by
equation 3, which is a numerized version of equation 1:

1
actioe(t + 1) = o(actioe(t) + = - (—(actioc(t) — baseline)
T

3
_|_é . (Z Wep - aCtqop () + Zwlat - actiqr(t)))) - ®

aff lat
where:
0 ifx<O,
olz)=<1 ifx>1, (4)
r else.

and 7 is the ime constant of the equintn, o is a wdghting factor for external
influences, affis a neuron from another map a#at is a neuron from the same
map.

All maps have the values 7 = 1 and a = 13 except the REWARD map where
T = 15.

The dze and baselne activities of the dfferent maps areigenin the folloing
table:
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Map Size Baseline
VISUAL 40*40 0.0
FOCUS 40*40 -0.05

FEF 40*40 -0.2

WM 40*40 0.0

INHIBITION| 40*40 -0.1
THAL 20*20 0.0
GPI 20*20 0.8
STRIATUM | 40*40 -0.5
REWARD 1*1 0.0

Connections Intra-map and Inter-map

The lateral weight from neuron lat to neuron loc is:

dist(loc,lat)? dist(loc,lat)?

Wigp = Ae™ a2 — Be™ 2 with A, B,a,b € ®*Tand loc # lat . (5)

where dist(loc, lat) is the distance between lat and loc in terms of neuronal
distance on the map (1 for the nearest neighbour).

In the case of a “receptive field>like connection between two maps, the afferent
weight from neuron aff to neuron loc is:

dist (loc,aff)?

Wo = Ae a2 with A,a € R* . (6)
The connections in the model are described in the following table:

Source Map|Destination Map Type A a B b
INPUT VISUAL receptive-field| 2.0 2.0 - -

VISUAL VISUAL lateral 2.5 2.0 1.0 4.0
VISUAL FOCUS receptive-field| 0.25 2.0 - -

FOCUS FOCUS lateral 1.7 4.0 0.65 | 17.0

VISUAL FEF receptive-field| 0.25 2.0 - -
FOCUS FEF receptive-field| 0.2 2.0 - -

FEF FEF lateral 2.5 2.0 1.0 4.0
FEF WM receptive-field| 2.35 1.5 - -
WM FEF receptive-field| 2.4 1.5 - -
FEF INHIBITION  |receptive-field| 0.25 | 2.5 - -
INHIBITION FOCUS receptive-field| -0.2 3.5 - -

INHIBITION INHIBITION lateral 2.5 2.0 1.0 4.0
INHIBITION THAL receptive-field| 3.0 1.5 - -
THAL INHIBITION  |receptive-field| 3.0 1.5 - -
FEF STRIATUM |receptive-field| 0.5 2.5 - -

STRIATUM STRIATUM lateral 2.5 2.0 1.0 4.0
STRIATUM GPI receptive-field| -2.5 2.5 - -
GPI THAL receptive-field| -1.5 1.0 - -
REWARD STRIATUM one-to-all 8.0 - - -
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