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Abstract

We present here an example of incremental
learning between two computational models
dealing with different modalities: a model al-
lowing to switch spatial visual attention and a
model allowing to learn the ordinal sequence
of phonetical numbers. Their merging via a
common reward signal allows anyway to pro-
duce a cardinal counting behaviour that can
be implemented on a robot.

1. Context

The constructivist theory of learning (Piaget, 1972,
Vygotsky, 1986) states that cognitive development
relies on relatively discrete stages, where the in-
fant learns new schemes on the basis of formerly
acquired schemes in the previous stage. Two tran-
sitions between stages are of particular interest for
the neurobotics community: the acquiring of sen-
sorimotor schemes from motor reflexes; the acquir-
ing of basic language abilities like semantics from
sensorimotor schemes. In particular for the sec-
ond transition, the quite recent discovery of the so-
called ”mirror-neurons” in the premotor area F5 of
the monkey (Rizzolatti et al., 1996) (which respond
equally for the execution and the observation of an
action) has lead (Rizzolatti and Arbib, 1998) to ex-
plain the acquiring of language via the common ab-
stract representation of sensorimotor schemes be-
tween the learner and his social environment.

As this indicates that the semantics of an action
(either performed or recognized) is linked to its mo-
tor preparation, the same seems to be true with
the semantics of an object. The sensorimotor con-
tingency theory by (O’Regan and Noë, 2001) states
that seeing is not building an internal representation
of the whole visual information but rather explor-
ing via visuomotor schemes (for example saccades)
the behaviourally relevant location and ignoring the
others. A striking evidence is given by the ”change
blindness” experiments which showed how the disap-
pearance of a massive part of an image can be totally
unreported by a subject if this part were not relevant
for the understanding of the scene.

This idea of using previously acquired sensorimo-
tor schemes to learn the semantics of an action or
an object is in our view the major issue in au-
tonomous robotics: the work done by Aude Billard
(Schaal et al., 2003), Luc Steels (Steels, 2003) and
Jun Tani (Sugita and Tani, 2002) for example en-
lights the advantages of that approach compared to
classical artificial intelligence (based only on explicit
representations).

In this paper, we present an example of incremen-
tal learning of a cognitive ability (counting objects
in a scene) using a previously acquired sensorimo-
tor skill (switch of attention on salient targets). We
will first briefly describe the proposed task and then
present the two different models and their merging.

2. Numbering Objects

Interaction of a robot with its environment needs
non-linear and complex computations to achieve a
successful behaviour. In particular in natural scenes,
targets are not always unique: the task “bring me
three apples” does not specify which apples are to be
brought. In such a task, a robot would have first to
determine if there is enough apples in the scene: de-
termining the size of a set is called cardinality. When
performing the task itself, the robot has to know that
the first apple is followed by the second one and then
by the third: determining the position of an item in
a sequence is called ordinality.

The relationship between these two aspects of
numbering in developmental psychology is not yet
clear (see (Brannon and Van de Walle, 2001) for a
debate). Young infants (< 2 years) seem to have a
cardinal ability limited to 3 or 4 items called “subitiz-
ing”, but this ability only improves with the acquir-
ing of verbal counting (with counting rhymes for ex-
ample) at the age of 3.5 or 4 years. It is only when
they master the verbal sequence “one two three four
five..” that they are able to tell that four objects are
less than five. In other words, they have to make the
correspondance between the “four” word related to
the verbal sequence and the four objects in front of
them, what is a cross-modal task (between phono-
logical inputs and visual properties).

In this paper we will not consider the subitizing
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process and make the assumption that counting ob-
jects has to grow on two distinct but parallel abili-
ties: the ability to sequentially focus the interesting
objects in the visual scene and the ability to learn
the counting sequence “one two three four...”. In the
two next sections, we will briefly present biologically-
inspired computational models for these two abilities
and then show how then can be coupled to produce
cardinal comparisons.

3. A Spatial Attention-Switching

Mechanism

There is no need in a robotic task to analyze ev-
ery pixel in the image grabbed by the camera of
the robot. Important targets or clues are salient
locations on the image, with respect to different
features (colour, orientation, luminosity, movement,
etc.) and at different scales. Analysing a visual scene
is then sequentially focusing these salient locations
until the correct target is found. Furthermore, the
features involved in the computation of salience can
be biased by task requirements.

In (Vitay et al., 2005), we presented a compu-
tational model of dynamical attention-switching
based on the Continuum Neural Field Theory
(Amari, 1977, Taylor, 1999), a framework of dy-
namical lateral interactions within a neural map.
Each neuron is described by a dynamical equation
which asynchronously takes into account the activ-
ity of the neighbouring neurons via a “mexican-
hat” lateral-weight function. We pinpointed
some interesting properties of that framework in
(Rougier and Vitay, 2005) like denoising and spatio-
temporal stability. Combining different neural maps
with the same dynamical equation while playing with
afferent and lateral weights, we were then able to
make emerge a sequential behaviour from this com-
pletely distributed substrate.

Figure 1: Attention Switching Architecture: empty

arrows represent excitatory connections, round ar-

rows represent inhibitory ones. For details, see

(Vitay et al., 2005).

Figure 1 shows the architecture of the proposed
system, but its description would need too much neu-
rophysiological jargon for the audience of this work-
shop. We just need to say that it is composed of four
sub-structures:

- a visual representation system fed by the saliency
image that can filters out noise and allows only one
salient location to be represented in the focus of

attention map.

- a working memory system that enables to dy-
namically remember previously focused objects.

- an inhibition mechanism which can move the fo-
cus of attention to a new salient location (with the
information given by the working memory).

- a basal-ganglia-like channel which can control the
time of the switch of attention. The key signal is a
phasic burst of dopaminergic activity in the reward

unit.

As a consequence of this distributed and dynami-
cal architecture, the serial behaviour that emerges is
the sequential focusing of the different salient points
on the image, without ever focusing twice the same
object. Moreover, the time of the switch is controlled
by the dopaminergic burst in the reward unit. We
will use that property for the counting task presented
later. This model has been successfully implemented
on a PeopleBot R© robot, whose task was to succes-
sively focus with its mobile camera a given number
of green lemons. A nice feature of this model is that
it can work either in the covert mode of attention
(without eye movement) or in the overt mode (with
eye movements, because of the dynamic updating of
the working memory with visual information).

4. A Sequence Learning Mechanism

Figure 2: Ordinality Learning Architecture: empty ar-

rows represent excitatory connections, round arrows rep-

resent inhibitory ones.

This system relies on the basal ganglia (BG) ar-
chitecture, as summarized by (Hikosaka et al., 2000)
and is directly inspired by the model made by
(Berns and Sejnowski, 1998). BG are known to be
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composed of several segregated channels, each of
which being involved in a particular functional loop
with the frontal cortex and its corresponding part of
the thalamus to achieve selection of action. Basically,
a thalamo-cortical network (bidirectional excitatory
connections) is tonically inhibited by the BG output
(here the internal segment of the Globus Pallidus
GPi). The core mechanism of BG is disinhibition,
which means that inhibition of the GPi (by the Stria-
tum or by the external part of the Globus Pallidus
GPe) disinhibits the corresponding part of the tha-
lamus, thus allowing reciprocal excitation between
the thalamus and the cortex. This mechanism has
already been used in the attention-switching system.

Without giving too much detail, there are two op-
posite pathways in the BG architecture: the direct
pathway that favorizes disinhibition and an indirect
one which prenvents disinhibition. The balance be-
tween these two pathways is ensured by the dopamin-
ergic signal produced by the Substancia Nigra pars
compacta (SNc).

This complex architecture with bidi-
rectional connections, internal loops and
dopaminergic modulation allows to learn
sequences and do selection of action
(Berns and Sejnowski, 1998, Gurney et al., 2004).
We will describe here how our model is able to learn
simple sequences like ordinal numbers (cf. Figure
2).

“zero” “one” “two” “three”

Figure 3: The distributed representation of the phoneti-

cal words ’zero’ ’one’ ’two’ ’three’ in the number map.

- We first organized a neural map called number

representation map with phonological inputs repre-
senting numbers (zero, one, two, three). The hearing
of one of these numbers therefore implies the appear-
ance of a bubble of activity in the number map at
a given location on the map (Figure 3). Please note
that this coding is not compact and would not scale
to large numerosities.

- We then present successively the four numbers
to the BG model with a phasic burst of dopamine in
SNc at the time of the switch. As dopamine stands
for a kind of “reward” signal (Schultz et al., 1992),
we can justify this by saying that hearing a voice
(one’s mother’s voice for example) is intrinsically re-
warding.

- The inner dynamics of the system (not described
here) ensure that the association between the cortical
representation of a number and its follower is learned
by the connections between stn and gpe.

After learning, when some stn neurons are active
for the current number (via their cortical inputs),
they tend to excite gpe at the location of the next
number, which in turn inhibits gpi. This artificially
creates disinhibition in the thalamus that can be used
to predict the next number.

- A high tonic level of dopamine favorizes the di-
rect pathway so that the representation of the cur-
rent number in the number map is stable even with-
out any phonological input (it is mainly the same
reverbatory mechanism as in the attention-switching
system).

- A sudden depletion of dopamine leads to an ad-
vantage for the indirect pathway that predicts the
location of the next number: the cortical representa-
tion in the number map switches to the next number
without any corresponding phonological input, like a
kind of mental voice.

5. Merging the two Systems
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Figure 4: a) Timecourse of the reward signal when three

objects are presented in the visual scene. Each depletion

corresponds to a switch of focus of attention. b) Corre-

sponding image.

We briefly showed how the sequence-learning sys-
tem could learn to reproduce a phonological sequence
of numbers. After a tonic level of dopamine is applied
in SNc to start the counting task, each dopamine
depletion switches the cortical representation to the
following number. If we add a inhibitory connec-
tion from the focus map in the attention-switching
mechanism to its reward unit, the system focuses
each salient point in the image once and then stops.
The timecourse of the activity of the reward unit
is shown in Figure 4 for three objects. It is al-
most the same timecourse needed for the SNc of
the sequence-learning mechanism to reproduce the
learned sequence.

Having noticed this analogy, our idea was to link
the two systems only by their dopaminergic unit: the
reward unit of the attention-switching system be-
comes the SNc unit of the other model and then con-
trols the restitution of the learned sequence. In other
words, each time an object is focused, the current
number is incremented. At the end, when no more
salient object can be found, the sequence-learning
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system has stopped on the representation of the ex-
act number of objects in the scene. The cooperation
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Figure 5: Activity of four neurons in the number map.

From top to bottom, these neurons respond preferentially

for the words ’zero’ ’one’ ’two’ and ’three’.

between the two systems has been tested and Figure
5 shows the evolution of the activity of four neurons
on the number map when the reward activity is pro-
duced by the attention-switching mechanism. These
neurons activate sequentially at each dopamine de-
pletion so that at end of the visual search the only
neuron remaining active is the neuron representing
“three”. This works with one, two or three visual
objects, but for more objects we would just need
more neurons in the number map thanks to the dis-
tributed architecture of the system.

6. Conclusion

We presented here two computational models that
seem in a first view totally independent as they deal
with different modalities (vision and reproduction of
phonetical sequences), but that can cooperate to pro-
duce a new behaviour, namely a cardinal counting
task. Our hypothesis was that counting objects in a
scene needs to sequentially focus these objects (what
is a motor ability) and to associate this sequence
with the remembered ordinal sequence of numbers.
These two models have two separate basal ganglia
channels that communicate via a unique dopamin-
ergic unit, what is coherent with the diffuse inner-
vation of dopamine throughout the Striatum. The
first model works in real-time on a robot but for rea-
sons of computational cost the merging of the two
systems has only been tested in simulation. Never-
theless, there are some problems: the coding of num-
bers from phonological inputs is not enough compact
and stands for numbers up to ten maybe. We would
need another architecture to deal with greater num-
bers. The sequence-learning system also learns the
sequence offline (without the attention mechanism),
it would be an interesting feature if the learning oc-
cured online.
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