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Introduction
Recurrent neural networks have the capacity to exhibit complex spatio-temporal pat-
terns that can be used to produce motor patterns. The research field of reservoir
computing [2, 4] focuses on forcing recurrent networks to produce a desired read-out
output through supervised learning. In the high-gain regime, recurrent networks can
even exhibit rich and complex patterns in the absence of stimulation, but they become
chaotic, as they can not reproduce twice the same trajectory in the presence of noise
[5]. In Laje and Buonomano [3], the authors proposed a method to tame the chaos
in such networks, by training the recurrent weights to minimize the error between a
desired trajectory - spontaneously generated by the network in an initial trial - and
the current trajectory. By selectively creating stable dynamic attractors, this method
allows to benefit at the same time from the rich dynamics of a chaotic network and
from the reproducibility of a deterministic one.

Methods
The network proposed by Laje and Buonomano [3] is a pool of 800 rate-coded neurons
sparsely connected with each other with a fixed probability. They receive random
inputs from specific impulse neurons, which are only used to shortly force the network
into a deterministic state at the beginning of a trial or to perturb its state. One or
more output neurons (called read-out neurons) receive inputs from the recurrent units
and learn to produce a specific target activation through supervised learning. 60% of
the recurrent weights are plastic and evolve according to the recursive least squares
(RLS) algorithm [1], as well as all the read-out weights between the recurrent units
and the read-out ones.

The training procedure is split into three separate phases: 1) an initial trajectory is
acquired by giving an input impulse and recording the activation of all recurrent units
for a given duration in the absence of noise, 2) the recurrent weights are trained for
20 or 30 trials to reproduce this initial trajectory using RLS in the presence of noise,
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3) the read-out weights are trained for 10 trials to generate a desired pattern (e.g. a
delayed impulse, see the Results section), using the recurrent units as inputs.

The Python code for the network simulation and training is provided in the file
RecurrentNetwork.py. It is based on both the original article and the Matlab code
provided by the authors as supplementary material1. Contrary to the original code
where the network is defined as a script (obligatory with Matlab), the network is
here implemented as a Python class, allowing to reuse the same code when some
parameters change between two simulations (e.g. the number of output neurons). The
computations are mostly standard linear algebra operations on vectors and matrices,
so the network is simply defined by a set of Numpy arrays stored as attributes. This
class is then instantiated by each script reproducing the figures (Fig1.py, Fig2.py,
Fig3.py), with different inputs and/or training procedures. The rest of this section
describes the network in more details and presents the implementation.

Structure of the network
Recurrent network

The recurrent network is composed of N = 800 neurons, receiving inputs from a
variable number of input neurons Ni and sparsely connected with each other. Each
neuron’s firing rate ri(t) applies the tanh transfer function on an internal variable xi(t)
which follows a first-order linear ordinary differential equation (ODE):

τ · dxi(t)

dt
+ xi(t) =

Ni∑
j=1

W in
ij · yj(t) +

N∑
j=1

W rec
ij · rj(t) + Inoisei (t)

ri(t) = tanh(xi(t))

The weights of the input matrix W in are taken from the normal distribution, with
mean 0 and variance 1, and multiply the rates of the input neurons yj(t). The variance
of these weights does not depend on the number of inputs, as only one input neuron
is activated at the same time. The recurrent connectivity matrix W rec is sparse with
a connection probability pc = 0.1 (i.e. 64000 non-zero elements) and existing weights
are taken randomly from a normal distribution with mean 0 and variance g/

√
pc ·N ,

where g is a scaling factor. It is a well known result for sparse recurrent networks that
for high values of g, the network dynamics become chaotic. Inoisei (t) is an additive
noise, taken randomly at each time step and for each neuron from a normal distribution
with mean 0 and variance I0. I0 is chosen very small in the experiments reproduced
here (I0 = 0.001) but is enough to highlight the chaotic behavior of the recurrent
neurons (non-reproducibility between two trials).

The build() method of the Network class initializes all these elements as Numpy
arrays and stores them as attributes. For clarity, we present the code here as a regular
script:

# Input
I = np.zeros((Ni, 1))

# Recurrent population
x = np.random.uniform(-1.0, 1.0, (N, 1))
r = np.tanh(x)

1http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3753043
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# Weights between the input and recurrent units
W_in = np.random.randn(N, Ni)

# Weights between the recurrent units
W_rec = np.random.randn(N, N) * g/np.sqrt(pc*N)

# The connection pattern is sparse with p=0.1
connectivity_mask = np.random.binomial(1, pc, (N, N))
connectivity_mask[np.diag_indices(N)] = 0
W_rec *= connectivity_mask

Everything is straightforward here: population variables are vertical vectors and
weights are represented by matrices. They are initialized using Numpy’s random
library. In order to ensure the sparseness of the recurrent weights. connectivity_mask
is a binary mask of size N ∗ N with ones where synapses should exist and zeros
otherwise, generated using the binomial distribution. The diagonal is removed to
avoid self-connections. The weight matrix is a regular Numpy matrix here, but the
scipy.sparse library could have been used instead.

To perform the simulation, the ODE of the recurrent neurons is discretized using
the forward Euler method, with an implicit time step dt of 1 ms:

for t in range(duration):
x += (np.dot(W_in, I) + np.dot(W_rec, r)

+ Io * np.random.randn(N, 1) - x)/tau
r = np.tanh(x)

Read-out neurons

The read-out neurons simply sum the activity of the recurrent neurons using a matrix
W out:

zi(t) =

N∑
j=1

W out
ij · rj(t)

The read-out matrix is initialized randomly from the normal distribution with
mean 0 and variance 1/

√
N :

# Read-out population
z = np.zeros((No, 1))
# Output weights
W_out = np.random.randn(No, N) / np.sqrt(N)

The firing rate of the read-out neurons is simply the product between the weight
matrix and the rates of the recurrent neurons at each time step:

z = np.dot(W_out, r)
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Learning rule
Recursive least squares (RLS)

The particularity of the reservoir network proposed by Laje and Buonomano [3] is that
both the recurrent weights W rec and the read-out weights are trained in a supervised
manner. More precisely, in this implementation, only 60% of the recurrent neurons
have plastic weights, the 40% others keep the same weights throughout the simulation.

Learning is done using the recursive least squares (RLS) algorithm [1]. It is a
supervised error-driven learning rule, i.e. the weight changes depend on the error made
by each neuron: the difference between the firing rate of a neuron ri(t) and a desired
value Ri(t).

ei(t) = ri(t)−Ri(t)

For the recurrent neurons, the desired value is the recorded rate of that neuron
during an initial trial (to enforce the reproducibility of the trajectory). For the read-
out neurons, it is a function which we want the network to reproduce (e.g. handwriting
as in Fig. 2).

Contrary to the delta learning rule which modifies weights proportionally to the
error and to the direct input to a synapse (∆wij = −η · ei · rj), the RLS learning uses
a running estimate of the inverse correlation matrix of the inputs to each neuron:

∆wij = −ei
∑

k∈B(i)

P i
jk · rk

Each neuron i therefore stores a square matrix P i, whose size depends of the
number of weights arriving to the neuron. Read-out neurons receive synapses from
all N recurrent neurons, so the P matrix is N ∗ N . Recurrent units have a sparse
random connectivity (pc = 0.1), so each recurrent neuron stores only a 80 ∗ 80 matrix
on average. In the previous equation, B(i) represents those existing weights.

The inverse correlation matrix P is updated at each time step with the following
rule:

∆P i
jk = −

∑
m∈B(i)

∑
n∈B(i) P

i
jm · rm · rn · P i

nk

1 +
∑

m∈B(i)

∑
n∈B(i) rm · P i

mn · rn

Each matrix P i is initialized to the diagonal matrix and scaled by a factor 1/δ,
where δ is 1 in the current implementation and can be used to modify implicitly the
learning rate [6].

Implementation

Linear algebra: For an efficient implementation in Python, the previous weight-
specific update rules have to be turned into matrix/vector operations. Unfortunately,
for the recurrent units, each matrix P i has a different size (80 ∗ 80 on average), so we
will still need to iterate over all post-synaptic neurons. If we note W the vector of
weights coming to a neuron (80 on average), r the corresponding vector of firing rates
(also 80), e the error of that neuron (a scalar) and P the inverse correlation matrix
(80*80), the update rules become:

∆W = −e · P · r

∆P = − (P · r) · (P · r)T
1 + rT · P · r

In Haykin [1], it is shown that P converges towards the inverse correlation matrix
of the inputs to the neuron, plus a regularization term:
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P = (
∑
t

r(t) · rT (t)− δI)−1

However, by looking at the original Matlab code, one notices that the weight update
∆W is also normalized by the denominator of the update rule for P:

∆W = −e · P · r
1 + rT · P · r

Removing this normalization from the learning rule impairs learning completely,
so we kept this variant of the RLS rule in our implementation.

Initialization: The RLS rule is applied to both recurrent and read-out weights.
For the recurrent neurons, we need to first build a list of the actual inputs to each
neuron:

N_plastic = int(0.6*N)
W_plastic = [list(np.nonzero(connectivity_mask[i, :])[0])

for i in range(N_plastic)]

Here, only 60% of the recurrent neurons have plastic synapses, so we restrict learn-
ing to the first 480 neurons (the exact indexes are irrelevant). We use the non-zero
elements of connectivity_mask to find out which synapses actually exist.

We can then initialize the P matrices for each recurrent neuron, depending on how
many weights they receive:

P = [np.identity(len(W_plastic[i]))/delta for i in range(N_plastic)]

Initializing the P matrix for the read-out neurons is easier, as they all receive
exactly N weights from the recurrent neurons:

P_out = [np.identity(N)/delta for i in range(No)]

Training: Once the P matrices are initialized to the correct value, implementing
the learning rule only consists of getting the algebraic operations right. One particu-
larity of the original Matlab code is that the learning rules are only applied every 2
time steps during the training window instead of every step. As the computations are
heavy, we kept this implementation trick which does not change much the results.

For the recurrent weights, we need to build a vector r_plastic for each neuron
that contains the firing rates of the neurons connected to it. Once we have this vector,
we can apply the RLS rule. The error is computed as a vector of shape (800, 1) (one
scalar value per recurrent unit), but in practice only used for the first N_plastic units:

# Compute the error of the recurrent neurons
error = r - target
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# Apply the RLS learning rule to the recurrent weights
for i in range(N_plastic): # for each plastic post neuron

# Get the rates from the plastic synapses only
r_plastic = r[W_plastic[i]]
# Multiply with the inverse correlation matrix P*R
PxR = np.dot(P[i], r_plastic)
# Normalization term 1 + R'*P*R
RxPxR = (1. + np.dot(r_plastic.T, PxR))
# Update the inverse correlation matrix
# P <- P - ((P*R)*(P*R)')/(1+R'*P*R)
P[i] -= np.dot(PxR, PxR.T)/RxPxR
# Learning rule W <- W - e * (P*R)/(1+R'*P*R)
W_rec[i, W_plastic[i]] -= error[i, 0] * (PxR/RxPxR)[:, 0]

The weight update uses the error of the neuron i (a scalar) and a vector corre-
sponding to (P*R)/(1+R'*P*R). The shape of W_rec[i, W_plastic[i]] is (80,) on
average, but PxR/RxPxR is (80, 1), so we need to slice this array to the correct shape
using [:, 0]. The implementation for the read-out weights is similar, except we can
use directly r instead of r_plastic in the update rules.

Training procedure
The training procedure is split into different trials, which differ from one experiment
to another (Figs 1, 2 and 3). Each trial begins with a relaxation period of t_offset
= 200 ms, followed by a brief input impulse of duration 50 ms and variable amplitude.
This impulse has the effect of bringing all recurrent neurons into a deterministic state
(due to the tanh transfer function, the rates are saturated at either +1 or -1). This
impulse is followed by a training window of variable length (in the seconds range) and
finally another relaxation period. In Figs 1 and 2, an additional impulse (duration 10
ms, smaller amplitude) can be given a certain delay after the initial impulse to test
the ability of the network to recover its acquired trajectory after learning.

In all experiments, the first trial is used to acquire an innate trajectory for the
recurrent neurons in the absence of noise (I0 is set to 0). The firing rate of all recurrent
neurons over the training window is simply recorded and stored in an array without
applying the learning rules. This innate trajectory for each recurrent neuron is used
in the following trials as the target for the RLS learning rule, this time in the presence
of noise (I0 = 0.001). The RLS learning rule itself is only applied to the recurrent
neurons during the training window, not during the impulse or the relaxation periods.
Such a learning trial is repeated 20 or 30 times depending on the experiments. Once
the recurrent weights have converged and the recurrent neurons are able to reproduce
the innate trajectory, the read-out weights are trained using a custom desired function
as target (10 trials).

Results
Fig. 1 shows that an initially chaotic network can become deterministic after training.
The target function for the single read-out neuron is a smooth impulse peaking 2 second
after the initial impulse. Before training, two successive trials do not produce similar
dynamics in the recurrent population, so the read-out neuron cannot reproduce the
desired function. However, after training, the recurrent dynamics become identical,
even in the presence of noise, allowing the read-out neuron to reproduce the target.
Moreover, a short perturbation impulse to the network given 500 ms after the initial
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impulse only transiently perturbs the network’s dynamics, which quickly recover the
learned trajectory.

Note that in the original article, the recurrent weights are trained for 20 trials, while
here we use 30 trials. Only a small percentage of initial configurations (i.e. initial value
of the connectivity matrix) converge after 20 trials. In our experiments, 30 trials allow
for an almost systematic convergence of the weights. As shown in the original article,
the longer the network is trained, the more stable the trajectories will be. During
learning, the code displays the averaged mean-square error over a learning trial to
show how well the weights have converged.

Figure 1: Complexity without chaos. Top: Temporal evolution of the firing rates of some
recurrent neurons during the innate trajectory. Left: The innate trajectory (blue) superposed with
a new noisy trial (red) before training. Right: The same after training. The top panel depicts the
firing rate of 3 randomly chosen neurons, the middle one the firing rate of the read-out neuron,
the bottom one the firing rate of the read-out neuron when a perturbation impulse is given 500
ms after the initial impulse.

Fig. 2 shows that using two read-out neurons, the network can robustly learn
trajectories in the 2D space, such as written words (“chaos” and “neuron”) acquired
as sequences of points. The setup was similar as for Fig. 1, although 4 input neurons
were used (2 per word: one for the initial impulse, one for the perturbation) and
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2 read-out ones (x and y axes of the word). The training window was different for
the two words (1.322 and 1.234 s respectively). As in the original paper, the scaling
factor g was chosen smaller than in the previous experiment (1.5 instead of 1.8) to
accelerate training: the network is less chaotic and it becomes easier to find values
for the recurrent weights that lead to stable trajectories. Using g = 1.8 would require
more training trials. Despite the complexity of the target output, the network is able
to robustly learn the two trajectories. Perturbations (of small amplitude) during the
sequence reproduction only briefly impair the trajectory.

Figure 2: Generation and stability of complex spatiotemporal motor patterns. Left and
right: two different trajectories in the read-out space learned by the same network. Top: without
perturbation. Bottom: with perturbation. Each figure is the superposition of 5 different test trials,
showing the robustness of the trajectories to initial conditions and perturbations. Equidistant time
points are represented as blue circles.

Fig. 3 investigates the timing capacity of the recurrent network, i.e. the maximal
duration of the target function that can be successfully learned by the network in a
limited number of trials (here 20). For this experiment, the target function is chosen
analog to Fig. 1: a flat function (value of 0.2) with a Gaussian peak after a certain
duration. The position of the peak within the training window is systematically varied
from 250 ms to 8 s, what primarily influences the total duration of a trial. The exact
shape of the output function is not very important: only the length of the training
window actually matters as we want the recurrent units to exhibit stable trajectories
long enough. Other functions with the same total duration would lead to similar
results.

For each duration, 10 randomly initialized networks were trained on the corre-
sponding target function with the same protocol as in Fig. 1, and the correctness of
the read-out activity in a test trial after learning is measured using the Pearson corre-
lation coefficient R2. We observe that durations smaller than 4 seconds are perfectly
learned by all networks, while this performance decreases (with a high variance) for
longer durations. Longer durations actually necessitate more training trials to allow
the convergence of the recurrent weights (the read-out weights are not difficult to train
as long as the recurrent neurons are stable).

Note that the protocol differs slightly from the original one: in Laje and Buonomano
[3], the same 10 initial networks were used to learn the different durations, while here
10 new networks are re-created every time. This may explain why in our results
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learning a duration of 8 seconds leads to a better performance than for 7 seconds
(luckier initializations). As running the simulations for this figure already took three
days on a standard computer, we decided not to correct the learning protocol and
leave the figure as is.

Figure 3: Improved “timing” capacity. A peak of variable duration (as in Fig. 1) is learned by
different networks. The fit between the target and the reproduction is measured using the Pearson
correlation coefficient between the two time series. The reproduction capacity decreases with the
duration of the training window, suggesting a limited timing capacity for a single network.

The rest of the figures in Laje and Buonomano [3] focuses on a more specific analysis
of the computational properties of the model (effect of noise, Lyapunov exponents,
distribution of weights…). As the match between the reproduction and the original
model is already high on the three first figures, we did not perform those experiments.

Conclusion
The reproduction of the model proposed by Laje and Buonomano [3] was successful.
Although the original article is already quite detailed and self-explanatory, the fact
that the authors released the original Matlab code on Pubmed Central allowed to
resolve some small ambiguities and speed up the reproduction process:

1. The initialization of the inverse correlation matrices P to the identity matrix is
not specified in the manuscript, only in the original code.

2. The RLS learning rule is described in a weight-specific way (∆wij), but Numpy
(as well as Matlab) is much more efficient when using matrix/vector operations.
Having the code already in this format saved a lot of time and mistakes.

3. In the implementation, the weight change is again normalized by 1 + rT · P · r,
which is not mentioned in the article. As the network does not converge without
this normalization, the re-implementation would not have been possible.

4. The amplitude of the perturbations in Figs. 1 and 2 was not specified in the
article nor in the code. The reproduction uses wild guesses for theses values.
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This highlights the importance of open-sourcing the implementation of computa-
tional models for a correct reproducibility. As reproducibility is the most important
quality of a computational model, this suggests that all national funding agencies
should require their researchers to provide freely their articles (as the NIH does with
PMC) together with the corresponding data (whether it is recordings or source code)
in order to encourage the development of high-quality science.
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