References

Aisa, B., Mingus, B., and O’Reilly, R. (2008). The emergent neural modeling system. Neural Netw. 21, 1146–52. doi:10.1016/j.neunet.2008.06.016.
Alberts, J. L., Voelcker-Rehage, C., Hallahan, K., Vitek, M., Bamzai, R., and Vitek, J. L. (2008). Bilateral subthalamic stimulation impairs cognitive-motor performance in parkinson’s disease patients. Brain 131, 3348–3360. doi:10.1093/brain/awn238.
Albin, R. L., and Mink, J. W. (2006). Recent advances in tourette syndrome research. Trends Neurosci 29, 175–182. doi:10.1016/j.tins.2006.01.001.
Albin, R. L., Young, A. B., and Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends Neurosci 12, 366–375.
Albus, J. S. (1971). A theory of cerebellar function. Math Biosci, 25–61.
Alegret, M., Junqué, C., Valldeoriola, F., Vendrell, P., Pilleri, M., Rumià, J., et al. (2001). Effects of bilateral subthalamic stimulation on cognitive function in parkinson disease. Arch Neurol 58, 1223–1227.
Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking the basal ganglia and cortex. Ann Rev Neurosci 9, 357–381.
Amari, S. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biol. Cybern. 27, 77–87. Available at: http://www.ncbi.nlm.nih.gov/pubmed/911931.
Ambroggi, F., Ishikawa, A., Fields, H. L., and Nicola, S. M. (2008). Basolateral amygdala neurons facilitate reward-seeking behavior by exciting nucleus accumbens neurons. Neuron 59, 648–61. doi:10.1016/j.neuron.2008.07.004.
Apicella, P., Deffains, M., Ravel, S., and Legallet, E. (2009). Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur. J. Neurosci. 30, 515–26. doi:10.1111/j.1460-9568.2009.06872.x.
Aron, A. R., and Poldrack, R. A. (2006). Cortical and subcortical contributions to stop signal response inhibition: Role of the subthalamic nucleus. J Neurosci 26, 2424–2433. doi:10.1523/JNEUROSCI.4682-05.2006.
Ashby, F. G., Ell, S. W., Valentin, V. V., and Casale, M. B. (2005). FROST: A distributed neurocomputational model of working memory maintenance. J Cogn Neurosci 17, 1728–1743.
Ashby, F. G., Ennis, J. M., and Spiering, B. J. (2007). A neurobiological theory of automaticity in perceptual categorization. Psychol Rev 114, 632–656. doi:10.1037/0033-295X.114.3.632.
Baddeley, A. D. (1986). Working memory. Oxford: Oxford University Press.
Bahuguna, J., Aertsen, A., and Kumar, A. (2015). Existence and control of go/no-go decision transition threshold in the striatum. PLoS Comput Biol 11, e1004233. doi:10.1371/journal.pcbi.1004233.
Balcita-Pedicino, J. J., Omelchenko, N., Bell, R., and Sesack, S. R. (2011). The inhibitory influence of the lateral habenula on midbrain dopamine cells: ultrastructural evidence for indirect mediation via the rostromedial mesopontine tegmental nucleus. J. Comp. Neurol. 519, 1143–64. doi:10.1002/cne.22561.
Baldassarre, G., Mannella, F., Fiore, V. G., Redgrave, P., Gurney, K., and Mirolli, M. (2013). Intrinsically motivated action-outcome learning and goal-based action recall: A system-level bio-constrained computational model. Neural Netw 41, 168–187. doi:10.1016/j.neunet.2012.09.015.
Balleine, B. W., and Dickinson, A. (1998). Goal-directed instrumental action: Contingency and incentive learning and their cortical substrates. Neuropharmacology 37, 407–419.
Balsam, P. D., Drew, M. R., and Yang, C. (2002). Timing at the Start of Associative Learning. Learn. Motiv. 33, 141–155. Available at: http://www.sciencedirect.com/science/article/pii/S002396900191104X.
Bar-Gad, I., Morris, G., and Bergman, H. (2003). Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 71, 439–473. doi:10.1016/j.pneurobio.2003.12.001.
Barto, A., Mirolli, M., and Baldassarre, G. (2013). Novelty or surprise? Front Psychol 4, 907. doi:10.3389/fpsyg.2013.00907.
Baxter, M. G., and Murray, E. A. (2002). The amygdala and reward. Nat. Rev. Neurosci. 3, 563–73. doi:10.1038/nrn875.
Beaulieu, C. (1993). Numerical data on neocortical neurons in adult rat, with special reference to the GABA population. Brain Res 609, 284–292.
Bednar, J. A. (2009). Topographica: Building and Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or NEURON Components. Front. Neuroinform. 3, 8. doi:10.3389/neuro.11.008.2009.
Beeler, J. A., Daw, N., Frazier, C. R. M., and Zhuang, X. (2010). Tonic dopamine modulates exploitation of reward learning. Front Behav Neurosci 4, 170. doi:10.3389/fnbeh.2010.00170.
Behnel, S., Bradshaw, R. W., and Seljebotn, D. S. (2009). Cython tutorial. in Proc. 8th python sci. conf., eds. G. Varoquaux, S. van der Walt, and J. Millman (Pasadena, CA USA: http://conference.scipy.org/proceedings/SciPy2009/paper_1), 4–14.
Bekolay, T., Bergstra, J., Hunsberger, E., Dewolf, T., Stewart, T. C., Rasmussen, D., et al. (2014). Nengo: a Python tool for building large-scale functional brain models. Front. Neuroinform. 7, 48. doi:10.3389/fninf.2013.00048.
Belova, M. A., Paton, J. J., Morrison, S. E., and Salzman, C. D. (2007). Expectation modulates neural responses to pleasant and aversive stimuli in primate amygdala. Neuron 55, 970–84. doi:10.1016/j.neuron.2007.08.004.
Bermudez, M. A., and Schultz, W. (2010). Reward magnitude coding in primate amygdala neurons. J. Neurophysiol. 104, 3424–32. doi:10.1152/jn.00540.2010.
Berns, G., and Sejnowski, T. (1998). A computational model of how the basal ganglia produce sequences. J Cogn Neurosci 10, 108–121.
Berridge, K. C. (2007). The debate over dopamine’s role in reward: The case for incentive salience. Psychopharmacology (Berl) 191, 391–431. doi:10.1007/s00213-006-0578-x.
Beuth, F., and Hamker, F. H. (2015). A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Vision Res. doi:10.1016/j.visres.2015.04.004.
Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the development of neuron selectivity: Orientation specificity and binocular interaction in visual cortex. J Neurosci 2, 32–48.
Bird, C. M., and Burgess, N. (2008). The hippocampus and memory: Insights from spatial processing. Nat Rev Neurosci 9, 182–194. doi:10.1038/nrn2335.
Bissière, S., Humeau, Y., and Lüthi, A. (2003). Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat. Neurosci. 6, 587–92. doi:10.1038/nn1058.
Bolam, J. P., Hanley, J. J., Booth, P. A., and Bevan, M. D. (2000). Synaptic organisation of the basal ganglia. J. Anat. 196 ( Pt 4, 527–42. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1468095\&tool=pmcentrez\&rendertype=abstract.
Booth, M. C., and Rolls, E. T. (1998). View-invariant representations of familiar objects by neurons in the inferior temporal visual cortex. Cereb Cortex 8, 510–523.
Bostan, A. C., and Strick, P. L. (2010). The cerebellum and basal ganglia are interconnected. Neuropsychol. Rev. 20, 261–70. doi:10.1007/s11065-010-9143-9.
Botvinick, M. M., Niv, Y., and Barto, A. C. (2009). Hierarchically organized behavior and its neural foundations: A reinforcement learning perspective. Cognition 113, 262–280. doi:10.1016/j.cognition.2008.08.011.
Bourdy, R., and Barrot, M. (2012). A new control center for dopaminergic systems: pulling the VTA by the tail. Trends Neurosci. 35, 681–90. doi:10.1016/j.tins.2012.06.007.
Bower, J. M., and Beeman, D. (2007). Constructing realistic neural simulations with GENESIS. Methods Mol. Biol. 401, 103–25. doi:10.1007/978-1-59745-520-6_7.
Braak, H., and Del Tredici, K. (2008). Cortico-basal ganglia-cortical circuitry in parkinson’s disease reconsidered. Exp Neurol 212, 226–229. doi:10.1016/j.expneurol.2008.04.001.
Brette, R., and Goodman, D. F. M. (2011). Vectorized algorithms for spiking neural network simulation. Neural Comput. 23, 1503–35. doi:10.1162/NECO_a_00123.
Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on GPU. Network 23, 167–82. doi:10.3109/0954898X.2012.730170.
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007). Simulation of networks of spiking neurons: a review of tools and strategies. J. Comput. Neurosci. 23, 349–98. doi:10.1007/s10827-007-0038-6.
Brischoux, F., Chakraborty, S., Brierley, D. I., and Ungless, M. A. (2009). Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. U. S. A. 106, 4894–9. doi:10.1073/pnas.0811507106.
Bromberg-Martin, E. S., and Hikosaka, O. (2011). Lateral habenula neurons signal errors in the prediction of reward information. Nat. Neurosci. 14, 1209–1216. doi:10.1038/nn.2902.
Brown, J. W., Bullock, D., and Grossberg, S. (2004). How laminar frontal cortex and basal ganglia circuits interact to control planned and reactive saccades. Neural Netw 17, 471–510. doi:10.1016/j.neunet.2003.08.006.
Brown, J., Bullock, D., and Grossberg, S. (1999). How the basal ganglia use parallel excitatory and inhibitory learning pathways to selectively respond to unexpected rewarding cues. J. Neurosci. 19, 10502–11. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10575046.
Brown, M. T. C., Tan, K. R., O’Connor, E. C., Nikonenko, I., Muller, D., and Lüscher, C. (2012). Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452–456. doi:10.1038/nature11657.
Brown, M. W., and Xiang, J. Z. (1998). Recognition memory: Neuronal substrates of the judgement of prior occurrence. Prog Neurobiol 55, 149–189.
Brunel, N., and Wang, X. J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 11, 63–85.
Buckley, M. J., and Gaffan, D. (1998). Perirhinal cortex ablation impairs visual object identification. J Neurosci 18, 2268–2275.
Buffalo, E. A., Ramus, S. J., Squire, L. R., and Zola, S. M. (2000). Perception and recognition memory in monkeys following lesions of area TE and perirhinal cortex. Learn Mem 7, 375–382.
Buffalo, E. A., Reber, P. J., and Squire, L. R. (1998). The human perirhinal cortex and recognition memory. Hippocampus 8, 330–339.
Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., and Gabrieli, J. D. E. (2002). Dissociable contributions of prefrontal and parietal cortices to response selection. Neuroimage 17, 1562–1571.
Burgess, N., Barry, C., and O’Keefe, J. (2007). An oscillatory interference model of grid cell firing. Hippocampus 17, 801–812.
Bussey, T. J., and Saksida, L. M. (2002). The organization of visual object representations: A connectionist model of effects of lesions in perirhinal cortex. Eur J Neurosci 15, 355–364.
Butz, M., Wörgötter, F., and Ooyen, A. van (2009). Activity-dependent structural plasticity. Brain Res. Rev. 60, 287–305. doi:10.1016/j.brainresrev.2008.12.023.
Cabanac, M. (1971). Physiological role of pleasure. Science 173, 1103–1107.
Calabresi, P., Mercuri, N., Stanzione, P., Stefani, A., and Bernardi, G. (1987). Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: Evidence for D1 receptor involvement. Neuroscience 20, 757–771.
Calabresi, P., Picconi, B., Tozzi, A., and Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 30, 211–9. doi:10.1016/j.tins.2007.03.001.
Calzavara, R., Mailly, P., and Haber, S. N. (2007). Relationship between the corticostriatal terminals from areas 9 and 46, and those from area 8A, dorsal and rostral premotor cortex and area 24c: An anatomical substrate for cognition to action. Eur J Neurosci 26, 2005–2024. doi:10.1111/j.1460-9568.2007.05825.x.
Carandini, M., and Heeger, D. J. (2012). Normalization as a canonical neural computation. Nat. Rev. Neurosci. 13, 51–62. doi:10.1038/nrn3136.
Cardinal, R. N., Parkinson, J. A., Hall, J., and Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 26, 321–52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12034134.
Carlson, K. D., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2014). An efficient automated parameter tuning framework for spiking neural networks. Front. Neurosci. 8, 10. doi:10.3389/fnins.2014.00010.
Carmichael, S. T., and Price, J. L. (1995). Sensory and premotor connections of the orbital and medial prefrontal cortex of macaque monkeys. J. Comp. Neurol. 363, 642–664. doi:10.1002/cne.903630409.
Carr, D. B., and Sesack, S. R. (2000). GABA-containing neurons in the rat ventral tegmental area project to the prefrontal cortex. Synapse 38, 114–23. doi:10.1002/1098-2396(200011)38:2<114::AID-SYN2>3.0.CO;2-R.
Cepeda, C., Colwell, C. S., Itri, J. N., Chandler, S. H., and Levine, M. S. (1998). Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: Contribution of calcium conductances. J Neurophysiol 79, 82–94.
Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S., and Buchwald, N. A. (1992). Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 11, 330–341.
Chadderdon, G. L., and Sporns, O. (2006). A large-scale neurocomputational model of task-oriented behavior selection and working memory in prefrontal cortex. J Cogn Neurosci 18, 242–257.
Chang, C., Crottaz-Herbette, S., and Menon, V. (2007). Temporal dynamics of basal ganglia response and connectivity during verbal working memory. Neuroimage 34, 1253–1269. doi:10.1016/j.neuroimage.2006.08.056.
Chang, J.-Y., Chen, L., Luo, F., Shi, L.-H., and Woodward, D. J. (2002). Neuronal responses in the frontal cortico-basal ganglia system during delayed matching-to-sample task: Ensemble recording in freely moving rats. Exp Brain Res 142, 67–80. doi:10.1007/s00221-001-0918-3.
Chen, J. Y., Wang, E. A., Cepeda, C., and Levine, M. S. (2013). Dopamine imbalance in huntington’s disease: A mechanism for the lack of behavioral flexibility. Front Neurosci 7, 114. doi:10.3389/fnins.2013.00114.
Cheng, K., Saleem, K. S., and Tanaka, K. (1997). Organization of corticostriatal and corticoamygdalar projections arising from the anterior inferotemporal area TE of the macaque monkey: a Phaseolus vulgaris leucoagglutinin study. J. Neurosci. 17, 7902–25. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9315910.
Chevalier, G., and Deniau, J. M. (1990). Disinhibition as a basic process in the expression of striatal functions. Trends Neurosci 13, 277–280.
Chorley, P., and Seth, A. K. (2011). Dopamine-signaled reward predictions generated by competitive excitation and inhibition in a spiking neural network model. Front. Comput. Neurosci. 5, 21. doi:10.3389/fncom.2011.00021.
Christian, K. M., and Thompson, R. F. (2003). Neural substrates of eyeblink conditioning: acquisition and retention. Learn. Mem. 10, 427–55. doi:10.1101/lm.59603.
Cohen, M. X., Bour, L., Mantione, M., Figee, M., Vink, M., Tijssen, M. A. J., et al. (2012). Top-down-directed synchrony from medial frontal cortex to nucleus accumbens during reward anticipation. Hum Brain Mapp 33, 246–252. doi:10.1002/hbm.21195.
Corbit, L. H., and Balleine, B. W. (2011). The general and outcome-specific forms of Pavlovian-instrumental transfer are differentially mediated by the nucleus accumbens core and shell. J. Neurosci. 31, 11786–94. doi:10.1523/JNEUROSCI.2711-11.2011.
Coull, J. T., Cheng, R.-K., and Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of timing. Neuropsychopharmacology 36, 3–25. doi:10.1038/npp.2010.113.
Cowell, R. A., Bussey, T. J., and Saksida, L. M. (2006). Why does brain damage impair memory? A connectionist model of object recognition memory in perirhinal cortex. J Neurosci 26, 12186–12197.
Creed, M. C., Ntamati, N. R., and Tan, K. R. (2014). VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front. Behav. Neurosci. 8, 8. doi:10.3389/fnbeh.2014.00008.
Cromwell, H. C., and Schultz, W. (2003). Effects of expectations for different reward magnitudes on neuronal activity in primate striatum. J Neurophysiol 89, 2823–2838. doi:10.1152/jn.01014.2002.
Cunningham, J. P., Gilja, V., Ryu, S. I., and Shenoy, K. V. (2009). Methods for estimating neural firing rates, and their application to brain-machine interfaces. Neural Netw. 22, 1235–46. doi:10.1016/j.neunet.2009.02.004.
Curtis, C., and D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci 7, 415–423.
D’Esposito, M., Cooney, J. W., Gazzaley, A., Gibbs, S. E. B., and Postle, B. R. (2006). Is the prefrontal cortex necessary for delay task performance? Evidence from lesion and FMRI data. J Int Neuropsychol Soc 12, 248–260. doi:10.1017/S1355617706060322.
Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the human brain. New York: Grosset/Putnam.
Darbaky, Y., Baunez, C., Arecchi, P., Legallet, E., and Apicella, P. (2005). Reward-related neuronal activity in the subthalamic nucleus of the monkey. Neuroreport 16, 1241–4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16012357.
Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et al. (2008). PyNN: A Common Interface for Neuronal Network Simulators. Front. Neuroinform. 2, 11. doi:10.3389/neuro.11.011.2008.
Daw, N. D., Courville, A. C., Tourtezky, D. S., and Touretzky, D. S. (2006). Representation and timing in theories of the dopamine system. Neural Comput. 18, 1637–77. doi:10.1162/neco.2006.18.7.1637.
Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control. Nat. Neurosci. 8, 1704–11. doi:10.1038/nn1560.
Daw, N. D., and Touretzky, D. S. (2002). Long-term reward prediction in TD models of the dopamine system. Neural Comput 14, 2567–2583.
Day, J. J., and Carelli, R. M. (2007). The nucleus accumbens and Pavlovian reward learning. Neuroscientist 13, 148–59. doi:10.1177/1073858406295854.
Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. The MIT Press Available at: http://dl.acm.org/citation.cfm?id=1205781.
Deadwyler, S. A., Hayashizaki, S., Cheer, J., and Hampson, R. E. (2004). Reward, memory and substance abuse: functional neuronal circuits in the nucleus accumbens. Neurosci. Biobehav. Rev. 27, 703–711. Available at: http://www.sciencedirect.com/science/article/pii/S0149763403001520.
Deco, G., and Rolls, E. T. (2003). Attention and working memory: A dynamical model of neuronal activity in the prefrontal cortex. Eur J Neurosci 18, 2374–2390.
Delgado, M. R., Li, J., Schiller, D., and Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363, 3787–800. doi:10.1098/rstb.2008.0161.
Delgado, M. R., Miller, M. M., Inati, S., and Phelps, E. A. (2005). An fMRI study of reward-related probability learning. Neuroimage 24, 862–873. doi:10.1016/j.neuroimage.2004.10.002.
DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13, 281–285.
DeLong, M. R., and Wichmann, T. (2007). Circuits and circuit disorders of the basal ganglia. Arch Neurol 64, 20–24. doi:10.1001/archneur.64.1.20.
Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective visual attention. Ann Rev Neurosci 18, 193–222.
Di Filippo, M., Picconi, B., Tantucci, M., Ghiglieri, V., Bagetta, V., Sgobio, C., et al. (2009). Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory. Behav Brain Res 199, 108–18.
Di Giovanni, G., and Shi, W.-X. (2009). Effects of scopolamine on dopamine neurons in the substantia nigra: Role of the pedunculopontine tegmental nucleus. Synapse 63, 673–680. doi:10.1002/syn.20650.
Dinkelbach, H. Ü., Vitay, J., Beuth, F., and Hamker, F. H. (2012). Comparison of GPU- and CPU-implementations of mean-firing rate neural networks on parallel hardware. Network 23, 212–36. doi:10.3109/0954898X.2012.739292.
Dı́az-Mataix, L., Tallot, L., and Doyère, V. (2013). The amygdala: A potential player in timing CS–US intervals. Behav. Processes. Available at: http://www.sciencedirect.com/science/article/pii/S0376635713001824.
Djurfeldt, M. (2012). The connection-set algebra–a novel formalism for the representation of connectivity structure in neuronal network models. Neuroinformatics 10, 287–304. doi:10.1007/s12021-012-9146-1.
Dormont, J. F., Condé, H., and Farin, D. (1998). The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Exp. Brain Res. 121, 401–10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9746146.
Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N. eds. (2006). Bayesian brain: Probabilistic approaches to neural coding. The MIT Press.
Doyere, V., Srebro, B., and Laroche, S. (1997). Heterosynaptic LTD and Depotentiation in the Medial Perforant Path of the Dentate Gyrus in the Freely Moving Rat. J Neurophysiol 77, 571–578. Available at: http://jn.physiology.org/content/77/2/571.long.
Doyère, V., Schafe, G. E., Sigurdsson, T., and LeDoux, J. E. (2003). Long-term potentiation in freely moving rats reveals asymmetries in thalamic and cortical inputs to the lateral amygdala. Eur. J. Neurosci. 17, 2703–15. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12823477.
Dranias, M. R., Grossberg, S., and Bullock, D. (2008). Dopaminergic and non-dopaminergic value systems in conditioning and outcome-specific revaluation. Brain Res. 1238, 239–87. doi:10.1016/j.brainres.2008.07.013.
Dreher, J.-C., Guigon, E., and Burnod, Y. (2002). A model of prefrontal cortex dopaminergic modulation during the delayed alternation task. J Cogn Neurosci 14, 853–865.
Durstewitz, D. (2004). Neural representation of interval time. Neuroreport 15, 745–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15073507.
Durstewitz, D., Kelc, M., and Güntürkün, O. (1999). A neurocomputational theory of the dopaminergic modulation of working memory functions. J Neurosci 19, 2807–2822.
Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000). Neurocomputational models of working memory. Nat Neurosci Supp 3, 1184–1191.
Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P., and Robbins, T. W. (2008). Stop-signal reaction-time task performance: Role of prefrontal cortex and subthalamic nucleus. Cereb Cortex 18, 178–188. doi:10.1093/cercor/bhm044.
Ebner, C., Schroll, H., Winther, G., Niedeggen, M., and Hamker, F. H. (2015). Open and closed cortico-subcortical loops: A neuro-computational account of access to consciousness in the distractor-induced blindness paradigm. Conscious Cogn 35, 295–307. doi:10.1016/j.concog.2015.02.007.
Ebrahimi, A., Pochet, R., and Roger, M. (1992). Topographical organization of the projections from physiologically identified areas of the motor cortex to the striatum in the rat. Neurosci Res 14, 39–60.
Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al. (2012). A large-scale model of the functioning brain. Science 338, 1202–5. doi:10.1126/science.1225266.
Elliott, R., and Dolan, R. J. (1999). Differential neural responses during performance of matching and nonmatching to sample tasks at two delay intervals. J Neurosci 19, 5066–5073.
Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2008). PyNEST: A Convenient Interface to the NEST Simulator. Front. Neuroinform. 2, 12. doi:10.3389/neuro.11.012.2008.
Everitt, B. J., Dickinson, A., and Robbins, T. W. (2001). The neuropsychological basis of addictive behaviour. Brain Res Brain Res Rev 36, 129–138.
Eyny, Y. S., and Horvitz, J. C. (2003). Opposing roles of D1 and D2 receptors in appetitive conditioning. J. Neurosci. 23, 1584–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12629161.
Featherstone, R. E., and McDonald, R. J. (2004). Dorsal striatum and stimulus-response learning: Lesions of the dorsolateral, but not dorsomedial, striatum impair acquisition of a stimulus-response-based instrumental discrimination task, while sparing conditioned place preference learning. Neuroscience 124, 23–31. doi:10.1016/j.neuroscience.2003.10.038.
Feenstra, M. G., and Botterblom, M. H. (1996). Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Res 742, 17–24.
Feenstra, M. G., Botterblom, M. H., and Mastenbroek, S. (2000). Dopamine and noradrenaline efflux in the prefrontal cortex in the light and dark period: Effects of novelty and handling and comparison to the nucleus accumbens. Neuroscience 100, 741–748.
Fiala, J. C., Grossberg, S., and Bullock, D. (1996). Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells as Substrate for Adaptive Timing of the Classically Conditioned Eye-Blink Response. J. Neurosci. 16, 3760–3774. Available at: http://www.jneurosci.org/content/16/11/3760.abstract?ijkey=697c406d79d57535ce2655e34eacf49875ac9778\&keytype2=tf\_ipsecsha.
Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009). NeMo: A Platform for Neural Modelling of Spiking Neurons Using GPUs. in 2009 20th IEEE int. Conf. Appl. Syst. Archit. process. (IEEE), 137–144. doi:10.1109/ASAP.2009.24.
Fields, H. L., Hjelmstad, G. O., Margolis, E. B., and Nicola, S. M. (2007). Ventral tegmental area neurons in learned appetitive behavior and positive reinforcement. Annu. Rev. Neurosci. 30, 289–316. doi:10.1146/annurev.neuro.30.051606.094341.
Fieres, J., Schemmel, J., and Meier, K. (2008). Realizing biological spiking network models in a configurable wafer-scale hardware system. in Neural networks, 2008. IJCNN 2008. (IEEE world congress on computational intelligence), 969–976. doi:10.1109/IJCNN.2008.4633916.
Fino, E., Glowinski, J., and Venance, L. (2005). Bidirectional activity-dependent plasticity at corticostriatal synapses. J. Neurosci. 25, 11279–87. doi:10.1523/JNEUROSCI.4476-05.2005.
Fiorillo, C. D., Newsome, W. T., and Schultz, W. (2008). The temporal precision of reward prediction in dopamine neurons. Nat. Neurosci. doi:10.1038/nn.2159.
Fiorillo, C. D., Tobler, P. N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science 299, 1898–902. doi:10.1126/science.1077349.
Flaherty, A. W., and Graybiel, A. M. (1994). Input-output organization of the sensorimotor striatum in the squirrel monkey. J Neurosci 14, 599–610.
Frank, M. J., Loughry, B., and O’Reilly, R. C. (2001). Interactions between frontal cortex and basal ganglia in working memory: A computational model. Cogn Affect Behav Neurosci 1, 137–160.
Friston, K. (2010). The free-energy principle: A unified brain theory? Nat Rev Neurosci 11, 127–138. doi:10.1038/nrn2787.
Fudge, J. L., and Haber, S. N. (2000). The central nucleus of the amygdala projection to dopamine subpopulations in primates. Neuroscience 97, 479–94. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10828531.
Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61, 331–349.
Funahashi, S., Chafee, M. V., and Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature 365, 753–6. doi:10.1038/365753a0.
Furtak, S. C., Wei, S.-M., Agster, K. L., and Burwell, R. D. (2007). Functional neuroanatomy of the parahippocampal region in the rat: The perirhinal and postrhinal cortices. Hippocampus.
Fuster, J. M., and Alexander, G. E. (1971). Neuron activity related to short-term memory. Science 173, 652–654.
Fuster, J. M., Bauer, R. H., and Jervey, J. P. (1981). Effects of cooling inferotemporal cortex on performance of visual memory tasks. Exp Neurol 71, 398–409.
Fuster, J. M., Bauer, R. H., and Jervey, J. P. (1985). Functional interactions between inferotemporal and prefrontal cortex in a cognitive task. Brain Res 330, 299–307.
Gallistel, C. R., and Gibbon, J. (2000). Time, rate, and conditioning. Psychol. Rev. 107, 289–344. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10789198.
Galtress, T., and Kirkpatrick, K. (2009). Reward value effects on timing in the peak procedure. Learn. Motiv. 40, 109–131. Available at: http://www.sciencedirect.com/science/article/pii/S0023969008000258.
Galtress, T., and Kirkpatrick, K. (2010). The role of the nucleus accumbens core in impulsive choice, timing, and reward processing. Behav. Neurosci. 124, 26–43. doi:10.1037/a0018464.
Galtress, T., Marshall, A. T., and Kirkpatrick, K. (2012). Motivation and timing: clues for modeling the reward system. Behav. Processes 90, 142–53. doi:10.1016/j.beproc.2012.02.014.
Galvan, A., and Smith, Y. (2011). The primate thalamostriatal systems: Anatomical organization, functional roles and possible involvement in parkinson’s disease. Basal Ganglia 1, 179–189. doi:10.1016/j.baga.2011.09.001.
Geisler, S., Derst, C., Veh, R. W., and Zahm, D. S. (2007). Glutamatergic afferents of the ventral tegmental area in the rat. J. Neurosci. 27, 5730–43. doi:10.1523/JNEUROSCI.0012-07.2007.
Geisler, S., and Wise, R. A. (2008). Functional implications of glutamatergic projections to the ventral tegmental area. Rev. Neurosci. 19, 227–44. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2735573\&tool=pmcentrez\&rendertype=abstract.
Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N., Monsma, F., Jr, et al. (1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429–1432.
Gerstein, G. L., and Kiang, N. Y. (1960). An approach to the quantitative analysis of electrophysiological data from single neurons. Biophys. J. 1, 15–28. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1366309&tool=pmcentrez&rendertype=abstract.
Gerstner, W., Kempter, R., Hemmen, J. L. van, and Wagner, H. (1996). A neuronal learning rule for sub-millisecond temporal coding. Nature 383, 76–81. doi:10.1038/383076a0.
Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation Tool). Scholarpedia 2, 1430. doi:10.4249/scholarpedia.1430.
Gisiger, T., and Kerszberg, M. (2006). A model for integrating elementary neural functions into delayed-response behavior. PLoS Comput Biol 2, e25.
Goldman-Rakic, P. S., Lidow, M. S., Smiley, J. F., and Williams, M. S. (1992). The anatomy of dopamine in monkey and human prefrontal cortex. J. Neural Transm. Suppl. 36, 163–77. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1527516.
Goldman-Rakic, P. S., Muly, E. C., and Williams, G. V. (2000). D1 receptors in prefrontal cells and circuits. Brain Res Rev 31, 295–301.
Goodman, D. F. M. (2010). Code generation: a strategy for neural network simulators. Neuroinformatics 8, 183–96. doi:10.1007/s12021-010-9082-x.
Goodman, D., and Brette, R. (2008). Brian: a simulator for spiking neural networks in python. Front. Neuroinform. 2, 5. doi:10.3389/neuro.11.005.2008.
Gorelova, N., Seamans, J. K., and Yang, C. R. (2002). Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 88, 3150–3166.
Goto, Y., and Grace, A. A. (2005). Dopaminergic modulation of limbic and cortical drive of nucleus accumbens in goal-directed behavior. Nat. Neurosci. 8, 805–12. doi:10.1038/nn1471.
Goulet, S., and Murray, E. A. (2001). Neural substrates of crossmodal association memory in monkeys: The amygdala versus the anterior rhinal cortex. Behav Neurosci 115, 271–284.
Grace, A. A. (1991). Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia. Neuroscience 41, 1–24.
Groshek, F., Kerfoot, E., McKenna, V., Polackwich, A. S., Gallagher, M., and Holland, P. C. (2005). Amygdala central nucleus function is necessary for learning, but not expression, of conditioned auditory orienting. Behav. Neurosci. 119, 202–12. doi:10.1037/0735-7044.119.1.202.
Grossberg, S., and Schmajuk, N. A. (1989). Neural dynamics of adaptive timing and temporal discrimination during associative learning. Neural Networks 2, 79–102. Available at: http://www.sciencedirect.com/science/article/pii/0893608089900269.
Gruber, A. J., Dayan, P., Gutkin, B. S., and Solla, S. A. (2006). Dopamine modulation in the basal ganglia locks the gate to working memory. J Comput Neurosci 20, 153–166.
Gruber, A. J., and McDonald, R. J. (2012). Context, emotion, and the strategic pursuit of goals: Interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 6, 50. doi:10.3389/fnbeh.2012.00050.
Gruber, A. J., Solla, S. A., Surmeier, D. J., and Houk, J. C. (2003). Modulation of striatal single units by expected reward: a spiny neuron model displaying dopamine-induced bistability. J. Neurophysiol. 90, 1095–114. doi:10.1152/jn.00618.2002.
Guillery, R. W., and Sherman, S. M. (2002). Thalamic relay functions and their role in corticocortical communication: Generalizations from the visual system. Neuron 33, 163–175.
Gulley, J. M., Kosobud, A. E. K., and Rebec, G. V. (2002). Behavior-related modulation of substantia nigra pars reticulata neurons in rats performing a conditioned reinforcement task. Neuroscience 111, 337–349.
Gurney, K., Prescott, T. J., and Redgrave, P. (2001a). A computational model of action selection in the basal ganglia. I. A new functional anatomy. Biol Cybern 84, 401–410.
Gurney, K., Prescott, T. J., and Redgrave, P. (2001b). A computational model of action selection in the basal ganglia. II. Analysis and simulation of behaviour. Biol Cybern 84, 411–423.
Gutnikov, S. A., Ma, Y. Y., and Gaffan, D. (1997). Temporo-frontal disconnection impairs visual-visual paired association learning but not configural learning in macaca monkeys. Eur J Neurosci 9, 1524–1529.
Haber, S. N. (2003). The primate basal ganglia: Parallel and integrative networks. J Chem Neuroanat 26, 317–330.
Haber, S. N., Fudge, J. L., and McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. J. Neurosci. 20, 2369–82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10704511.
Haber, S. N., and Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology 35, 4–26. doi:10.1038/npp.2009.129.
Hallanger, A. E., and Wainer, B. H. (1988). Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J. Comp. Neurol. 274, 483–515. doi:10.1002/cne.902740403.
Hamker, F. H. (2004a). A dynamic model of how feature cues guide spatial attention. Vision Res 44, 501–521.
Hamker, F. H. (2004b). Predictions of a model of spatial attention using sum- and max-pooling functions. Neurocomputing 56, 329–343. doi:10.1016/j.neucom.2003.09.006.
Hamker, F. H. (2005a). The emergence of attention by population-based inference and its role in distributed processing and cognitive control of vision. J Comput Vis Image Underst 100, 64–106.
Hamker, F. H. (2005b). The reentry hypothesis: The putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Cereb Cortex 15, 431–447.
Hazy, T. E., Frank, M. J., and O’Reilly, R. C. (2010). Neural mechanisms of acquired phasic dopamine responses in learning. Neurosci. Biobehav. Rev. 34, 701–20. doi:10.1016/j.neubiorev.2009.11.019.
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: Wiley.
Helie, S., Chakravarthy, S., and Moustafa, A. A. (2013). Exploring the cognitive and motor functions of the basal ganglia: An integrative review of computational cognitive neuroscience models. Front Comput Neurosci 7, 174. doi:10.3389/fncom.2013.00174.
Hershey, T., Wu, J., Weaver, P. M., Perantie, D. C., Karimi, M., Tabbal, S. D., et al. (2008). Unilateral vs. Bilateral STN DBS effects on working memory and motor function in parkinson disease. Exp Neurol 210, 402–408. doi:10.1016/j.expneurol.2007.11.011.
Hikosaka, O., Sakamoto, M., and Usui, S. (1989). Functional properties of monkey caudate neurons. III. Activities related to expectation of target and reward. J Neurophysiol 61, 814–832.
Hikosaka, O., Sesack, S. R., Lecourtier, L., and Shepard, P. D. (2008). Habenula: crossroad between the basal ganglia and the limbic system. J. Neurosci. 28, 11825–11829. doi:10.1523/JNEUROSCI.3463-08.2008.
Hines, M. L., and Carnevale, N. T. (1997). The NEURON simulation environment. Neural Comput. 9, 1179–209. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9248061.
Hirata, A., and Castro-Alamancos, M. A. (2010). Neocortex network activation and deactivation states controlled by the thalamus. J Neurophysiol 103, 1147–1157. doi:10.1152/jn.00955.2009.
Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural Comput. 9, 1735–80. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9377276.
Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of physiology 117, 500–544. doi:10.1113/jphysiol.1952.sp004764.
Holland, P. C., and Gallagher, M. (2004). Amygdala–frontal interactions and reward expectancy. Curr. Opin. Neurobiol. 14, 148–155. Available at: http://www.sciencedirect.com/science/article/pii/S095943880400039X.
Hollerman, J. R., and Schultz, W. (1998). Dopamine neurons report an error in the temporal prediction of reward during learning. Nat. Neurosci. 1, 304–9. doi:10.1038/1124.
Holroyd, C. B., and Coles, M. G. H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychol Rev 109, 679–709.
Hong, S., and Hikosaka, O. (2008). The globus pallidus sends reward-related signals to the lateral habenula. Neuron 60, 720–9. doi:10.1016/j.neuron.2008.09.035.
Hong, S., Jhou, T. C., Smith, M., Saleem, K. S., and Hikosaka, O. (2011). Negative reward signals from the lateral habenula to dopamine neurons are mediated by rostromedial tegmental nucleus in primates. J. Neurosci. 31, 11457–11471. Available at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1384-11.2011.
Horel, J. A., Pytko-Joiner, D. E., Voytko, M. L., and Salsbury, K. (1987). The performance of visual tasks while segments of the inferotemporal cortex are suppressed by cold. Behav Brain Res 23, 29–42.
Horvitz, J. C. (2000). Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96, 651–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10727783.
Horvitz, J. C. (2009). Stimulus-response and response-outcome learning mechanisms in the striatum. Behav Brain Res 199, 129–140. doi:10.1016/j.bbr.2008.12.014.
Houk, J. C., Adams, J. L., and Barto, A. G. (1995). “A model of how the basal ganglia generate and use neural signal that predict reinforcement,” in Models of information processing in the basal ganglia, eds. J. C. Houk, J. L. Davis, and D. G. Beiser (Cambridge, MA: The MIT Press).
Huang, Y. Y., and Kandel, E. R. (1995). D1/D5 receptor agonists induce a protein synthesis-dependent late potentiation in the CA1 region of the hippocampus. Proc Natl Acad Sci U S A 92, 2446–2450.
Humphries, M. D., Lepora, N., Wood, R., and Gurney, K. (2009). Capturing dopaminergic modulation and bimodal membrane behaviour of striatal medium spiny neurons in accurate, reduced models. Front. Comput. Neurosci. 3, 26. doi:10.3389/neuro.10.026.2009.
Humphries, M. D., and Prescott, T. J. (2010). The ventral basal ganglia, a selection mechanism at the crossroads of space, strategy, and reward. Prog. Neurobiol. 90, 385–417. doi:10.1016/j.pneurobio.2009.11.003.
Hurd, Y. L., Suzuki, M., and Sedvall, G. C. (2001). D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 22, 127–137.
Ibañez-Sandoval, O., Hernández, A., Florán, B., Galarraga, E., Tapia, D., Valdiosera, R., et al. (2006). Control of the subthalamic innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors. J Neurophysiol 95, 1800–1811. doi:10.1152/jn.01074.2005.
Ikemoto, S. (2010). Brain reward circuitry beyond the mesolimbic dopamine system: a neurobiological theory. Neurosci Biobehav Rev 35, 129–150. doi:10.1016/j.neubiorev.2010.02.001.
Intrator, N., and Cooper, L. N. (1992). Objective function formulation of the BCM theory of visual cortical plasticity: Statistical connections, stability conditions. Neural Networks 5, 3–17. doi:10.1016/S0893-6080(05)80003-6.
Ishikawa, M., Mu, P., Moyer, J. T., Wolf, J. A., Quock, R. M., Davies, N. M., et al. (2009). Homeostatic synapse-driven membrane plasticity in nucleus accumbens neurons. J Neurosci 29, 5820–5831. doi:10.1523/JNEUROSCI.5703-08.2009.
Ito, R., Robbins, T. W., McNaughton, B. L., and Everitt, B. J. (2006). Selective excitotoxic lesions of the hippocampus and basolateral amygdala have dissociable effects on appetitive cue and place conditioning based on path integration in a novel Y-maze procedure. Eur. J. Neurosci. 23, 3071–80. doi:10.1111/j.1460-9568.2006.04883.x.
Izhikevich, E. M. (2003). Simple model of spiking neurons. IEEE Trans. Neural Netw. 14, 1569–72. doi:10.1109/TNN.2003.820440.
Izhikevich, E. M. (2007). Solving the distal reward problem through linkage of STDP and dopamine signaling. Cereb. Cortex 17, 2443–52. doi:10.1093/cercor/bhl152.
Izquierdo, A., Wiedholz, L. M., Millstein, R. A., Yang, R. J., Bussey, T. J., Saksida, L. M., et al. (2006). Genetic and dopaminergic modulation of reversal learning in a touchscreen-based operant procedure for mice. Behav Brain Res 171, 181–188. doi:10.1016/j.bbr.2006.03.029.
Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B., and Holland, P. C. (2009). The rostromedial tegmental nucleus (RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes aversive stimuli and inhibits motor responses. Neuron 61, 786–800. doi:10.1016/j.neuron.2009.02.001.
Joel, D., Niv, Y., and Ruppin, E. (2002). Actor-critic models of the basal ganglia: New anatomical and computational perspectives. Neur Netw 15, 535–547.
Joel, D., and Weiner, I. (2000). The connections of the dopaminergic system with the striatum in rats and primates: An analysis with respect to the functional and compartmental organization of the striatum. Neuroscience 96, 451–474.
Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E., Reuter-Lorenz, P. A., et al. (1998). The role of parietal cortex in verbal working memory. J Neurosci 18, 5026–5034.
Joshua, M., Adler, A., and Bergman, H. (2009). The dynamics of dopamine in control of motor behavior. Current Opinion in Neurobiology 19, 615–620. doi:10.1016/j.conb.2009.10.001.
Joyner, D., Čertı́k, O., Meurer, A., and Granger, B. E. (2012). Open source computer algebra systems. ACM Commun. Comput. Algebr. 45, 225. doi:10.1145/2110170.2110185.
Judice-Daher, D. M., and Bueno, J. L. O. (2013). Lesions of the nucleus accumbens disrupt reinforcement omission effects in rats. Behav. Brain Res. 252, 439–43. doi:10.1016/j.bbr.2013.06.028.
Kaplan, F., and Oudeyer, P.-Y. (2007). In search of the neural circuits of intrinsic motivation. Front Neurosci 1, 225–236. doi:10.3389/neuro.01.1.1.017.2007.
Kelefouras, V., Kritikakou, A., Papadima, E., and Goutis, C. (2015). A methodology for speeding up matrix vector multiplication for single/multi-core architectures. J. Supercomput. doi:10.1007/s11227-015-1409-9.
Keramati, M., and Gutkin, B. (2013). Imbalanced decision hierarchy in addicts emerging from drug-hijacked dopamine spiraling circuit. PLoS ONE 8. doi:10.1371/journal.pone.0061489.
Khamassi, M., and Humphries, M. D. (2012). Integrating cortico-limbic-basal ganglia architectures for learning model-based and model-free navigation strategies. Front Behav Neurosci 6, 79. doi:10.3389/fnbeh.2012.00079.
Kincaid, A. E., Zheng, T., and Wilson, C. J. (1998). Connectivity and convergence of single corticostriatal axons. J Neurosci 18, 4722–4731.
Kirkpatrick, K. (2013). Interactions of timing and prediction error learning. Behav. Processes. doi:10.1016/j.beproc.2013.08.005.
Kirkpatrick, K., and Church, R. M. (2000). Stimulus and temporal cues in classical conditioning. J Exp Psychol Anim Behav Process 26, 206–219.
Kita, H., Tachibana, Y., Nambu, A., and Chiken, S. (2005). Balance of monosynaptic excitatory and disynaptic inhibitory responses of the globus pallidus induced after stimulation of the subthalamic nucleus in the monkey. J Neurosci 25, 8611–8619. doi:10.1523/JNEUROSCI.1719-05.2005.
Kita, H., Tokuno, H., and Nambu, A. (1999). Monkey globus pallidus external segment neurons projecting to the neostriatum. Neuroreport 10, 1467–1472.
Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E., Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation: Summary and meta-analysis of outcomes. Mov Disord 21 Suppl 14, S290–S304. doi:10.1002/mds.20962.
Kobayashi, Y., and Okada, K.-I. (2007). Reward prediction error computation in the pedunculopontine tegmental nucleus neurons. Ann. N. Y. Acad. Sci. 1104, 310–23. doi:10.1196/annals.1390.003.
Koch, K. W., and Fuster, J. M. (1989). Unit activity in monkey parietal cortex related to haptic perception and temporary memory. Exp Brain Res 76, 292–306.
Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., and Ono, T. (2001). Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412, 546–9. doi:10.1038/35087595.
Koo, J. W., Han, J.-S., and Kim, J. J. (2004). Selective neurotoxic lesions of basolateral and central nuclei of the amygdala produce differential effects on fear conditioning. J. Neurosci. 24, 7654–62. doi:10.1523/JNEUROSCI.1644-04.2004.
Kötter, R. (1994). Postsynaptic integration of glutamatergic and dopaminergic signals in the striatum. Prog Neurobiol 44, 163–196.
Krichmar, J. L. (2013). A neurorobotic platform to test the influence of neuromodulatory signaling on anxious and curious behavior. Front. Neurorobot. 7, 1. doi:10.3389/fnbot.2013.00001.
Krueger, K. A., and Dayan, P. (2009). Flexible shaping: How learning in small steps helps. Cognition 110, 380–394. doi:10.1016/j.cognition.2008.11.014.
Kuhn, T. S. (1962). The structure of scientific revolutions. 1st ed. University of Chicago Press.
Kumar, A., Cardanobile, S., Rotter, S., and Aertsen, A. (2011). The role of inhibition in generating and controlling parkinson’s disease oscillations in the basal ganglia. Front Syst Neurosci 5, 86. doi:10.3389/fnsys.2011.00086.
Kurzweil, R. (2005). The singularity is near. New York: Viking Books.
Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K. M., et al. (2012). Input-specific control of reward and aversion in the ventral tegmental area. Nature 491, 212–7. doi:10.1038/nature11527.
Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., and Jagust, W. J. (2009). Striatal dopamine and working memory. Cereb Cortex 19, 445–454. doi:10.1093/cercor/bhn095.
Lange, H., Thorner, G., and Hopf, A. (1976). [Morphometric-statistical structure analysis of human striatum, pallidum and nucleus su-thalamicus. III. Nucleus subthalamicus]. J Hirnforsch 17, 31–41.
Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive architectures: Research issues and challenges. Cognitive Systems Research 10, 141–160.
Lapicque, L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs traitée comme une polarisation. J. Physiol. Pathol. Gen. 9, 620–635.
Lardeux, S., Pernaud, R., Paleressompoulle, D., and Baunez, C. (2009). Beyond the reward pathway: coding reward magnitude and error in the rat subthalamic nucleus. J. Neurophysiol. 102, 2526–37. doi:10.1152/jn.91009.2008.
Lavezzi, H. N., and Zahm, D. S. (2011). The mesopontine rostromedial tegmental nucleus: an integrative modulator of the reward system. Basal Ganglia 1, 191–200. doi:10.1016/j.baga.2011.08.003.
Lawrence, A. D., Sahakian, B. J., and Robbins, T. W. (1998). Cognitive functions and corticostriatal circuits: Insights from Huntington’s disease. Trends in Cognitive Sciences 2, 379–388.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444. doi:10.1038/nature14539.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324. doi:10.1109/5.726791.
LeDoux, J. E. (2000). Emotion circuits in the brain. Annu. Rev. Neurosci. 23, 155–84. doi:10.1146/annurev.neuro.23.1.155.
Lee, B., Groman, S., London, E. D., and Jentsch, J. D. (2007). Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 32, 2125–2134. doi:10.1038/sj.npp.1301337.
Lee, D., and Chun, M. M. (2001). What are the units of visual short-term memory, objects or spatial locations? Percept Psychophys 63, 253–257.
Lee, H. J., Wheeler, D. S., and Holland, P. C. (2011). Interactions between amygdala central nucleus and the ventral tegmental area in the acquisition of conditioned cue-directed behavior in rats. Eur. J. Neurosci. 33, 1876–84. doi:10.1111/j.1460-9568.2011.07680.x.
Lehky, S. R., and Tanaka, K. (2007). Enhancement of object representations in primate perirhinal cortex during a visual working-memory task. J Neurophysiol 97, 1298–1310.
Leung, L. S., and Yim, C. Y. (1993). Rhythmic delta-frequency activities in the nucleus accumbens of anesthetized and freely moving rats. Can. J. Physiol. Pharmacol. 71, 311–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8104675.
Levy, R., Friedman, H. R., Davachi, L., and Goldman-Rakic, P. S. (1997). Differential activation of the caudate nucleus in primates performing spatial and nonspatial working memory tasks. J Neurosci 17, 3870–3882.
Levy, R., Hutchison, W. D., Lozano, A. M., and Dostrovsky, J. O. (2002). Synchronized neuronal discharge in the basal ganglia of parkinsonian patients is limited to oscillatory activity. J Neurosci 22, 2855–2861. doi:20026193.
Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A., and Owen, A. M. (2004). Striatal contributions to working memory: A functional magnetic resonance imaging study in humans. Eur J Neurosci 19, 755–760.
Linke, R., and Schwegler, H. (2000). Convergent and complementary projections of the caudal paralaminar thalamic nuclei to rat temporal and insular cortex. Cereb Cortex 10, 753–771.
Liu, Z., Richmond, B. J., Murray, E. A., Saunders, R. C., Steenrod, S., Stubblefield, B. K., et al. (2004). DNA targeting of rhinal cortex D2 receptor protein reversibly blocks learning of cues that predict reward. Proc Natl Acad Sci U S A 101, 12336–12341.
Ljungberg, T., Apicella, P., and Schultz, W. (1992). Responses of monkey dopamine neurons during learning of behavioral reactions. J. Neurophysiol. 67, 145–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1552316.
Lokwan, S. J., Overton, P. G., Berry, M. S., and Clark, D. (1999). Stimulation of the pedunculopontine tegmental nucleus in the rat produces burst firing in A9 dopaminergic neurons. Neuroscience 92, 245–54. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10392847.
Luciana, M., and Nelson, C. A. (1998). The functional emergence of prefrontally-guided working memory systems in four- to eight-year-old children. Neuropsychologia 36, 273–293.
Luck, S. J., and Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature 390, 279–281.
Ludvig, E. A., Conover, K., and Shizgal, P. (2007). The effects of reinforcer magnitude on timing in rats. J. Exp. Anal. Behav. 87, 201–18. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1832167\&tool=pmcentrez\&rendertype=abstract.
Ludvig, E. A., Sutton, R. S., and Kehoe, E. J. (2008). Stimulus representation and the timing of reward-prediction errors in models of the dopamine system. Neural Comput. 20, 3034–54. doi:10.1162/neco.2008.11-07-654.
Ludvig, E. A., Sutton, R. S., Verbeek, E., and Kehoe, E. J. (2009). A computational model of hippocampal function in trace conditioning. Adv. Neural Inf. Process. Syst. 21, 993—–1000.
Lustig, C., Matell, M. S., and Meck, W. H. (2005). Not "just" a coincidence: Frontal-striatal interactions in working memory and interval timing. Memory 3/4, 441–448. Available at: http://www.bibsonomy.org/bibtex/2ccb5a59033ebd0fad86dc4267f1547dc/brian.mingus.
Luzardo, A., Ludvig, E. A., and Rivest, F. (2013). An adaptive drift-diffusion model of interval timing dynamics. Behav. Processes 95, 90–99. Available at: http://www.sciencedirect.com/science/article/pii/S0376635713000247.
Maass, W., and Zador, A. M. (1999). Dynamic stochastic synapses as computational units. Neural Comput 11, 903–917.
Mailly, P., Charpier, S., Menetrey, A., and Deniau, J.-M. (2003). Three-dimensional organization of the recurrent axon collateral network of the substantia nigra pars reticulata neurons in the rat. J Neurosci 23, 5247–5257.
Mancall, E. L., and Brock, D. G. (2011). Gray’s clinical neuroanatomy: The anatomic basis for clinical neuroscience. Elsevier Health Sciences.
Maren, S., and Quirk, G. J. (2004). Neuronal signalling of fear memory. Nat. Rev. Neurosci. 5, 844–52. doi:10.1038/nrn1535.
Markram, H. (2006). The blue brain project. Nat Rev Neurosci 7, 153–60.
Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs. Science (80-. ). 275, 213–215. doi:10.1126/science.275.5297.213.
Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proc. Natl. Acad. Sci. 95, 5323–5328. doi:10.1073/pnas.95.9.5323.
Martin-Soelch, C., Linthicum, J., and Ernst, M. (2007). Appetitive conditioning: neural bases and implications for psychopathology. Neurosci. Biobehav. Rev. 31, 426–40. doi:10.1016/j.neubiorev.2006.11.002.
Matell, M. S., and Meck, W. H. (2000). Neuropsychological mechanisms of interval timing behavior. BioEssays 22, 94–103. Available at: http://www.bibsonomy.org/bibtex/23ff219ef9d6fd6b6214587ad1254f7ed/brian.mingus.
Matell, M. S., and Meck, W. H. (2004). Cortico-striatal circuits and interval timing: coincidence detection of oscillatory processes. Cogn. Brain Res. 21, 139–170. Available at: http://www.sciencedirect.com/science/article/pii/S0926641004001697.
Matsuda, W., Furuta, T., Nakamura, K. C., Hioki, H., Fujiyama, F., Arai, R., et al. (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci 29, 444–453. doi:10.1523/JNEUROSCI.4029-08.2009.
Matsumoto, M., and Hikosaka, O. (2007). Lateral habenula as a source of negative reward signals in dopamine neurons. Nature 447, 1111–5. doi:10.1038/nature05860.
Matsumoto, M., and Hikosaka, O. (2009). Two types of dopamine neuron distinctly convey positive and negative motivational signals. Nature 459, 837–41. doi:10.1038/nature08028.
McClure, S. M., Berns, G. S., and Montague, P. R. (2003). Temporal prediction errors in a passive learning task activate human striatum. Neuron 38, 339–46. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12718866.
McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A. (1985). Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons of the neocortex. J Neurophysiol 54, 782–806.
McDannald, M., Kerfoot, E., Gallagher, M., and Holland, P. C. (2004). Amygdala central nucleus function is necessary for learning but not expression of conditioned visual orienting. Eur. J. Neurosci. 20, 240–8. doi:10.1111/j.0953-816X.2004.03458.x.
McGinty, V. B., and Grace, A. A. (2009). Activity-dependent depression of medial prefrontal cortex inputs to accumbens neurons by the basolateral amygdala. Neuroscience 162, 1429–36. doi:10.1016/j.neuroscience.2009.05.028.
McNab, F., and Klingberg, T. (2008). Prefrontal cortex and basal ganglia control access to working memory. Nat Neurosci 11, 103–107. doi:10.1038/nn2024.
Meck, W. H. (2006). Neuroanatomical localization of an internal clock: a functional link between mesolimbic, nigrostriatal, and mesocortical dopaminergic systems. Brain Res. 1109, 93–107. doi:10.1016/j.brainres.2006.06.031.
Melchitzky, D. S., and Lewis, D. A. (2001). Dopamine transporter-immunoreactive axons in the mediodorsal thalamic nucleus of the macaque monkey. Neuroscience 103, 1033–1042.
Mena-Segovia, J., Bolam, J. P., and Magill, P. J. (2004). Pedunculopontine nucleus and basal ganglia: Distant relatives or part of the same family? Trends Neurosci 27, 585–588. doi:10.1016/j.tins.2004.07.009.
Meunier, M., Bachevalier, J., Mishkin, M., and Murray, E. A. (1993). Effects on visual recognition of combined and separate ablations of the entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci 13, 5418–5432.
Middleton, F. A., and Strick, P. L. (1996). The temporal lobe is a target of output from the basal ganglia. Proc Natl Acad Sci U S A 93, 8683–8687.
Miller, E. K., and Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24, 167–202.
Miller, E. K., Erickson, C., and Desimone, R. (1996). Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J Neurosci 16, 5154–5167.
Miller, E. K., Gochin, P. M., and Gross, C. G. (1993a). Suppression of visual responses of neurons in inferior temporal cortex of the awake macaque monkey by addition of a second stimulus. Brain Res 616, 25–29.
Miller, E. K., Li, L., and Desimone, R. (1993b). Activity of neurons in anterior inferior temporal cortex during a short-term memory task. J Neurosci 13, 1460–1478.
Minsky, M. (1968). Semantic information processing. Cambridge, MA: MIT Press.
Mirenowicz, J., and Schultz, W. (1994). Importance of unpredictability for reward responses in primate dopamine neurons. J Neurophysiol 72, 1024–1027.
Mirolli, M., Santucci, V. G., and Baldassarre, G. (2013). Phasic dopamine as a prediction error of intrinsic and extrinsic reinforcements driving both action acquisition and reward maximization: A simulated robotic study. Neural Netw 39, 40–51. doi:10.1016/j.neunet.2012.12.012.
Miyachi, S., Lu, X., Imanishi, M., Sawada, K., Nambu, A., and Takada, M. (2006). Somatotopically arranged inputs from putamen and subthalamic nucleus to primary motor cortex. Neurosci Res 56, 300–308. doi:10.1016/j.neures.2006.07.012.
Mogami, T., and Tanaka, K. (2006). Reward association affects neuronal responses to visual stimuli in macaque te and perirhinal cortices. J Neurosci 26, 6761–6770.
Momiyama, T., Sim, J. A., and Brown, D. A. (1996). Dopamine D1-like receptor-mediated presynaptic inhibition of excitatory transmission onto rat magnocellular basal forebrain neurones. J Physiol 495 ( Pt 1), 97–106.
Mongillo, G., Amit, D. J., and Brunel, N. (2003). Retrospective and prospective persistent activity induced by hebbian learning in a recurrent cortical network. Eur J Neurosci 18, 2011–2024.
Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. J. Neurosci. 16, 1936–47. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8774460.
Morita, M., and Suemitsu, A. (2002). Computational modeling of pair-association memory in inferior temporal cortex. Brain Res Cogn Brain Res 13, 169–178.
Morris, R. W., and Bouton, M. E. (2006). Effect of unconditioned stimulus magnitude on the emergence of conditioned responding. J. Exp. Psychol. Anim. Behav. Process. 32, 371–85. doi:10.1037/0097-7403.32.4.371.
Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007). Exact subthreshold integration with continuous spike times in discrete-time neural network simulations. Neural Comput. 19, 47–79. doi:10.1162/neco.2007.19.1.47.
Muller, J. F., Mascagni, F., and McDonald, A. J. (2007). Postsynaptic targets of somatostatin-containing interneurons in the rat basolateral amygdala. J. Comp. Neurol. 500, 513–529. doi:10.1002/cne.21185.
Murray, E. A. (2007). The amygdala, reward and emotion. Trends Cogn. Sci. 11, 489–97. doi:10.1016/j.tics.2007.08.013.
Murray, E. A., Gaffan, D., and Mishkin, M. (1993). Neural substrates of visual stimulus-stimulus association in rhesus monkeys. J Neurosci 13, 4549–4561.
Murray, E. A., and Richmond, B. J. (2001). Role of perirhinal cortex in object perception, memory, and associations. Curr Opin Neurobiol 11, 188–193.
Murray, and Bussey (1999). Perceptual-mnemonic functions of the perirhinal cortex. Trends Cogn Sci 3, 142–151.
Mushiake, H., and Strick, P. L. (1995). Pallidal neuron activity during sequential arm movements. J Neurophysiol 74, 2754–2758.
Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: a GPU-based framework for simulating cortically-organized networks. Cambridge, MA: MIT-CSAIL-TR-2010-013 / CBCL-286, Massachusetts Institute of Technology.
N’guyen, S., Thurat, C., and Girard, B. (2014). Saccade learning with concurrent cortical and subcortical basal ganglia loops. Front Comput Neurosci 8, 48. doi:10.3389/fncom.2014.00048.
Nakahara, H., Doya, K., and Hikosaka, O. (2001). Parallel cortico-basal ganglia mechanisms for acquisition and execution of visuomotor sequences - a computational approach. J Cogn Neurosci 13, 626–647.
Nakamura, K., and Kubota, K. (1995). Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J Neurophysiol 74, 162–178.
Nakamura, K., Matsumoto, K., Mikami, A., and Kubota, K. (1994). Visual response properties of single neurons in the temporal pole of behaving monkeys. J Neurophysiol 71, 1206–1221.
Nakamura, K., and Ono, T. (1986). Lateral hypothalamus neuron involvement in integration of natural and artificial rewards and cue signals. J. Neurophysiol. 55, 163–81. Available at: http://www.ncbi.nlm.nih.gov/pubmed/3512788.
Nambu, A. (2011). Somatotopic organization of the primate basal ganglia. Front Neuroanat 5, 26. doi:10.3389/fnana.2011.00026.
Nambu, A., Kaneda, K., Tokuno, H., and Takada, M. (2002). Organization of corticostriatal motor inputs in monkey putamen. J Neurophysiol 88, 1830–1842.
Nawrot, M., Aertsen, A., and Rotter, S. (1999). Single-trial estimation of neuronal firing rates: from single-neuron spike trains to population activity. J. Neurosci. Methods 94, 81–92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10638817.
Naya, Y., Yoshida, M., Takeda, M., Fujimichi, R., and Miyashita, Y. (2003). Delay-period activities in two subdivisions of monkey inferotemporal cortex during pair association memory task. Eur J Neurosci 18, 2915–2918.
Nicola, S. M. (2007). The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology (Berl). 191, 521–50. doi:10.1007/s00213-006-0510-4.
Nicola, S. M., Surmeier, J., and Malenka, R. C. (2000). Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 23, 185–215.
Nishijo, H., Hori, E., Tazumi, T., and Ono, T. (2008). Neural correlates to both emotion and cognitive functions in the monkey amygdala. Behav. Brain Res. 188, 14–23. doi:10.1016/j.bbr.2007.10.013.
Nishijo, H., Ono, T., Uwano, T., Kondoh, T., and Torii, K. (2000). Hypothalamic and amygdalar neuronal responses to various tastant solutions during ingestive behavior in rats. J. Nutr. 130, 954S–9S. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10736360.
Niv, Y., Daw, N. D., Joel, D., and Dayan, P. (2007). Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology (Berl). 191, 507–20. doi:10.1007/s00213-006-0502-4.
Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network models. PLoS Comput. Biol. 5, e1000456. doi:10.1371/journal.pcbi.1000456.
O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., and Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron 38, 329–37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12718865.
O’Donnell, P., and Grace, A. A. (1995). Synaptic interactions among excitatory afferents to nucleus accumbens neurons: hippocampal gating of prefrontal cortical input. J. Neurosci. 15, 3622–39. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7751934.
O’Reilly, R. C., and Frank, M. J. (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput. 18, 283–328. doi:10.1162/089976606775093909.
O’Reilly, R. C., Frank, M. J., Hazy, T. E., and Watz, B. (2007). PVLV: The primary value and learned value pavlovian learning algorithm. Behav Neurosci 121, 31–49.
Obeso, J. A., Rodriguez-Oroz, M. C., Javier Blesa, F., and Guridi, J. (2006). The globus pallidus pars externa and parkinson’s disease. Ready for prime time? Exp Neurol 202, 1–7. doi:10.1016/j.expneurol.2006.07.004.
Ohbayashi, M., Ohki, K., and Miyashita, Y. (2003). Conversion of working memory to motor sequence in the monkey premotor cortex. Science 301, 233–236.
Oja, E. (1982). A simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–73. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7153672.
Olshausen, B. A., and Field, D. J. (1997). Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Res 37, 3311–3325.
Ono, T., Nishijo, H., and Uwano, T. (1995). Amygdala role in conditioned associative learning. Prog. Neurobiol. 46, 401–422. Available at: http://www.sciencedirect.com/science/article/pii/030100829500008J.
Oprisan, S. A., and Buhusi, C. V. (2011). Modeling pharmacological clock and memory patterns of interval timing in a striatal beat-frequency model with realistic, noisy neurons. Front. Integr. Neurosci. 5, 52. doi:10.3389/fnint.2011.00052.
Oudeyer, P.-Y., and Kaplan, F. (2007). What is intrinsic motivation? A typology of computational approaches. Front Neurorobot 1, 6. doi:10.3389/neuro.12.006.2007.
Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P., Carpenter, T. A., et al. (1999). Redefining the functional organization of working memory processes within human lateral prefrontal cortex. Eur J Neurosci 11, 567–574.
Packard, M. G., and Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annu Rev Neurosci 25, 563–593. doi:10.1146/annurev.neuro.25.112701.142937.
Pan, W.-X., and Hyland, B. I. (2005). Pedunculopontine tegmental nucleus controls conditioned responses of midbrain dopamine neurons in behaving rats. J. Neurosci. 25, 4725–32. doi:10.1523/JNEUROSCI.0277-05.2005.
Pan, W.-X., Schmidt, R., Wickens, J. R., and Hyland, B. I. (2005). Dopamine cells respond to predicted events during classical conditioning: Evidence for eligibility traces in the reward-learning network. J Neurosci 25, 6235–6242. doi:10.1523/JNEUROSCI.1478-05.2005.
Pape, H.-C., and Pare, D. (2010). Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol. Rev. 90, 419–63. doi:10.1152/physrev.00037.2009.
Parent, A., and Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20, 91–127.
Parent, A., and Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20, 128–54.
Parker, A., Eacott, M. J., and Gaffan, D. (1997). The recognition memory deficit caused by mediodorsal thalamic lesion in non-human primates: A comparison with rhinal cortex lesion. Eur J Neurosci 9, 2423–2431.
Partiot, A., Vérin, M., Pillon, B., Teixeira-Ferreira, C., Agid, Y., and Dubois, B. (1996). Delayed response tasks in basal ganglia lesions in man: Further evidence for a striato-frontal cooperation in behavioural adaptation. Neuropsychologia 34, 709–721.
Pennartz, C. M. (1995). The ascending neuromodulatory systems in learning by reinforcement: Comparing computational conjectures with experimental findings. Brain Res Brain Res Rev 21, 219–245.
Petrides, M. (2000). Dissociable roles of mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual working memory. J Neurosci 20, 7496–7503.
Pihlajamäki, M., Tanila, H., Hänninen, T., Könönen, M., Mikkonen, M., Jalkanen, V., et al. (2003). Encoding of novel picture pairs activates the perirhinal cortex: An fMRI study. Hippocampus 13, 67–80.
Plenz, D., and Aertsen, A. (1996). Neural dynamics in cortex-striatum co-cultures–i. Anatomy and electrophysiology of neuronal cell types. Neuroscience 70, 861–891.
Plenz, D., and Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature 400, 677–682. doi:10.1038/23281.
Pozo, K., and Goda, Y. (2010). Unraveling mechanisms of homeostatic synaptic plasticity. Neuron 66, 337–351. doi:10.1016/j.neuron.2010.04.028.
Price, T. F., Peterson, C. K., and Harmon-Jones, E. (2012). The emotive neuroscience of embodiment. Motivation and Emotion 36, 27–37. doi:10.1007/s11031-011-9258-1.
Ranganath, C. (2006). Working memory for visual objects: Complementary roles of inferior temporal, medial temporal, and prefrontal cortex. Neurosci 139, 277–289.
Ranganath, C., Cohen, M. X., Dam, C., and D’Esposito, M. (2004). Inferior temporal, prefrontal, and hippocampal contributions to visual working memory maintenance and associative memory retrieval. J Neurosci 24, 3917–3925.
Ranganath, C., and D’Esposito, M. (2005). Directing the mind’s eye: Prefrontal, inferior and medial temporal mechanisms for visual working memory. Curr Opin Neurobiol 15, 175–182.
Rao, R. P. N. (2010). Decision making under uncertainty: a neural model based on partially observable markov decision processes. Front. Comput. Neurosci. 4, 146. doi:10.3389/fncom.2010.00146.
Rast, A., Galluppi, F., Davies, S., Plana, L., Patterson, C., Sharp, T., et al. (2011). Concurrent heterogeneous neural model simulation on real-time neuromimetic hardware. Neural Networks 24, 961–978. doi:http://dx.doi.org/10.1016/j.neunet.2011.06.014.
Raybuck, J. D., and Lattal, K. M. (2013). Bridging the interval: Theory and Neurobiology of Trace Conditioning. Behav. Processes. doi:10.1016/j.beproc.2013.08.016.
Redgrave, P., and Gurney, K. (2006). The short-latency dopamine signal: A role in discovering novel actions? Nat Rev Neurosci 7, 967–975.
Redgrave, P., Gurney, K., and Reynolds, J. (2008). What is reinforced by phasic dopamine signals? Brain Res. Rev. 58, 322–39. doi:10.1016/j.brainresrev.2007.10.007.
Redgrave, P., Prescott, T. J., and Gurney, K. (1999). Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 22, 146–151.
Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy, S., Bergman, H., et al. (2010). Goal-directed and habitual control in the basal ganglia: Implications for parkinson’s disease. Nat Rev Neurosci 11, 760–772. doi:10.1038/nrn2915.
Rempel-Clower, N. L., and Barbas, H. (2000). The laminar pattern of connections between prefrontal and anterior temporal cortices in the rhesus monkey is related to cortical structure and function. Cereb Cortex 10, 851–865.
Repovs, G., and Baddeley, A. (2006). The multi-component model of working memory: Explorations in experimental cognitive psychology. Neuroscience 139, 5–21. doi:10.1016/j.neuroscience.2005.12.061.
Reutimann, J., Yakovlev, V., Fusi, S., and Senn, W. (2004). Climbing neuronal activity as an event-based cortical representation of time. J. Neurosci. 24, 3295–303. doi:10.1523/JNEUROSCI.4098-03.2004.
Reynolds, J. N. J., and Wickens, J. R. (2002). Dopamine-dependent plasticity of corticostriatal synapses. Neural Networks 15, 507–521. Available at: http://www.sciencedirect.com/science/article/pii/S089360800200045X.
Reynolds, J. N., Hyland, B. I., and Wickens, J. R. (2001). A cellular mechanism of reward-related learning. Nature 413, 67–70. doi:10.1038/35092560.
Reynolds, J. N., and Wickens, J. R. (2000). Substantia nigra dopamine regulates synaptic plasticity and membrane potential fluctuations in the rat neostriatum, in vivo. Neuroscience 99, 199–203.
Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–25. doi:10.1038/14819.
Rivest, F., Kalaska, J. F., and Bengio, Y. (2010). Alternative time representation in dopamine models. J. Comput. Neurosci. 28, 107–30. doi:10.1007/s10827-009-0191-1.
Rivest, F., Kalaska, J. F., and Bengio, Y. (2013). Conditioning and time representation in long short-term memory networks. Biol. Cybern. doi:10.1007/s00422-013-0575-1.
Robbins, T. W., and Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and motivation. Curr. Opin. Neurobiol. 6, 228–36. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8725965.
Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias, R., Bezard, E., et al. (2009). Initial clinical manifestations of parkinson’s disease: Features and pathophysiological mechanisms. Lancet Neurol 8, 1128–1139. doi:10.1016/S1474-4422(09)70293-5.
Rolls, E. T. (2000). Hippocampo-cortical and cortico-cortical backprojections. Hippocampus 10, 380–388.
Rolls, E., and Deco, G. (2001). Computational neuroscience of vision. Oxford Univ. Press.
Romanski, L. M. (2007). Representation and integration of auditory and visual stimuli in the primate ventral lateral prefrontal cortex. Cereb Cortex 17 Suppl 1, i61–i69. doi:10.1093/cercor/bhm099.
Rose, J., Schmidt, R., Grabemann, M., and Güntürkün, O. (2009). Theory meets pigeons: the influence of reward-magnitude on discrimination-learning. Behav. Brain Res. 198, 125–9. doi:10.1016/j.bbr.2008.10.038.
Rossum, M. C. W. van, and Turrigiano, G. G. (2001). Correlation based learning from spike timing dependent plasticity. Neurocomputing 38-40, 409–415.
Rougier, N. P. (2009). Implicit and explicit representations. Neural Netw 22, 155–160. doi:10.1016/j.neunet.2009.01.008.
Rougier, N. P., and Fix, J. (2012). DANA: distributed numerical and adaptive modelling framework. Network 23, 237–53. doi:10.3109/0954898X.2012.721573.
Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., and O’Reilly, R. C. (2005). Prefrontal cortex and flexible cognitive control: Rules without symbols. Proc Natl Acad Sci U S A 102, 7338–7343. doi:10.1073/pnas.0502455102.
Rougier, N. P., and Vitay, J. (2006). Emergence of attention within a neural population. Neur Netw 19, 573–581.
Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., and Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory? Science 288, 1656–1660.
Rueda-Orozco, P. E., Mendoza, E., Hernandez, R., Aceves, J. J., Ibanez-Sandoval, O., Galarraga, E., et al. (2009). Diversity in long-term synaptic plasticity at inhibitory synapses of striatal spiny neurons. Learn Mem 16, 474–478. doi:10.1101/lm.1439909.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). “Learning internal representations by error propagation,” in Parallel distributed processing: Explorations in the microstructure of cognition, eds. D. E. Rumelhart and J. L. McClelland (Cambridge, MA: MIT Press), 318–362.
Sah, P., Faber, E. S. L., Lopez De Armentia, M., and Power, J. (2003). The amygdaloid complex: anatomy and physiology. Physiol. Rev. 83, 803–34. doi:10.1152/physrev.00002.2003.
Sakai, K., and Miyashita, Y. (1991). Neural organization for the long-term memory of paired associates. Nature 354, 152–155. doi:10.1038/354152a0.
Samejima, K., and Doya, K. (2007). Multiple representations of belief states and action values in corticobasal ganglia loops. Ann. N. Y. Acad. Sci. 1104, 213–28. doi:10.1196/annals.1390.024.
Sánchez-González, M. A., Garcı́a-Cabezas, M. A., Rico, B., and Cavada, C. (2005). The primate thalamus is a key target for brain dopamine. J Neurosci 25, 6076–6083. doi:10.1523/JNEUROSCI.0968-05.2005.
Schiller, J., Major, G., Koester, H. J., and Schiller, Y. (2000). NMDA spikes in basal dendrites of cortical pyramidal neurons. Nature 404, 285–289.
Schroll, H., Beste, C., and Hamker, F. H. (2015). Combined lesions of direct and indirect basal ganglia pathways but not changes in dopamine levels explain learning deficits in patients with huntington’s disease. Eur J Neurosci 41, 1227–1244. doi:10.1111/ejn.12868.
Schroll, H., Vitay, J., and Hamker, F. H. (2012). Working memory and response selection: a computational account of interactions among cortico-basalganglio-thalamic loops. Neural Netw. 26, 59–74. doi:10.1016/j.neunet.2011.10.008.
Schroll, H., Vitay, J., and Hamker, F. H. (2014). Dysfunctional and compensatory synaptic plasticity in Parkinson’s disease. Eur. J. Neurosci. 39, 688–702. doi:10.1111/ejn.12434.
Schultz, W. (1998). Predictive reward signal of dopamine neurons. J Neurophysiol 80, 1–27.
Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and conditioned stimuli during successive steps of learning a delayed response task. J. Neurosci. 13, 900–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8441015.
Schultz, W., Apicella, P., Scarnati, E., and Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to the expectation of reward. J. Neurosci. 12, 4595–610. Available at: http://www.ncbi.nlm.nih.gov/pubmed/1464759.
Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction and reward. Science 275, 1593–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9054347.
Seamans, J. K., and Yang, C. R. (2004). The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog. Neurobiol. 74, 1–58. doi:10.1016/j.pneurobio.2004.05.006.
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and Brain Sciences 3, 417–424.
Seger, C. A. (2008). How do the basal ganglia contribute to categorization? Their roles in generalization, response selection, and learning via feedback. Neurosci Biobehav Rev 32, 265–278. doi:10.1016/j.neubiorev.2007.07.010.
Seger, C. A., and Spiering, B. J. (2011). A critical review of habit learning and the basal ganglia. Front Syst Neurosci 5, 66. doi:10.3389/fnsys.2011.00066.
Selemon, L. D., and Goldman-Rakic, P. S. (1985). Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5, 776–794.
Semba, K., and Fibiger, H. C. (1992). Afferent connections of the laterodorsal and the pedunculopontine tegmental nuclei in the rat: a retro- and antero-grade transport and immunohistochemical study. J. Comp. Neurol. 323, 387–410. doi:10.1002/cne.903230307.
Sesack, S. R., and Grace, A. A. (2010). Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35, 27–47. doi:10.1038/npp.2009.93.
Shen, W., Flajolet, M., Greengard, P., and Surmeier, D. J. (2008). Dichotomous dopaminergic control of striatal synaptic plasticity. Science 321, 848–51. doi:10.1126/science.1160575.
Shimokawa, T., and Shinomoto, S. (2009). Estimating instantaneous irregularity of neuronal firing. Neural Comput. 21, 1931–51. doi:10.1162/neco.2009.08-08-841.
Simen, P., Balci, F., Souza, L. de, Cohen, J. D., and Holmes, P. (2011). A model of interval timing by neural integration. J. Neurosci. 31, 9238–53. doi:10.1523/JNEUROSCI.3121-10.2011.
Singh, T., McDannald, M. A., Takahashi, Y. K., Haney, R. Z., Cooch, N. K., Lucantonio, F., et al. (2011). The role of the nucleus accumbens in knowing when to respond. Learn. Mem. 18, 85–7. doi:10.1101/lm.2008111.
Skinner, B. F. (1938). The behavior of organisms. New York: Appleton-Century-Crofts.
Smith, A., Li, M., Becker, S., and Kapur, S. (2006). Dopamine, prediction error and associative learning: A model-based account. Network 17, 61–84. doi:10.1080/09548980500361624.
Smith, J. D., Redford, J. S., Gent, L. C., and Washburn, D. A. (2005). Visual search and the collapse of categorization. J Exp Psychol Gen 134, 443–460.
Smith, K. S., Tindell, A. J., Aldridge, J. W., and Berridge, K. C. (2009). Ventral pallidum roles in reward and motivation. Behav. Brain Res. 196, 155–167. doi:10.1016/j.bbr.2008.09.038.
Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–26. doi:10.1038/78829.
Sporns, O., and Alexander, W. H. (2002). Neuromodulation and plasticity in an autonomous robot. Neural Netw. 15, 761–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12371525.
Spratling, M. W. (1999). Pre-synaptic lateral inhibition provides a better architecture for self-organizing neural networks. Network 10, 285–301.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958.
Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014). Equation-oriented specification of neural models for simulations. Front. Neuroinform. 8, 6. doi:10.3389/fninf.2014.00006.
Stocco, A., Lebiere, C., and Anderson, J. R. (2010). Conditional routing of information to the cortex: A model of the basal ganglia’s role in cognitive coordination. Psychol Rev 117, 541–574. doi:10.1037/a0019077.
Stopper, C. M., and Floresco, S. B. (2011). Contributions of the nucleus accumbens and its subregions to different aspects of risk-based decision making. Cogn. Affect. Behav. Neurosci. 11, 97–112. doi:10.3758/s13415-010-0015-9.
Suri, R. E., and Schultz, W. (1999). A neural network model with dopamine-like reinforcement signal that learns a spatial delayed response task. Neuroscience 91, 871–90.
Suri, R. E., and Schultz, W. (2001). Temporal difference model reproduces anticipatory neural activity. Neural Comput. 13, 841–62. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11255572.
Surmeier, D. J., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 30, 228–235. doi:10.1016/j.tins.2007.03.008.
Sutton, R. (1988). Learning to predict by the methods of temporal differences. Machine Learning 3, 9–44. doi:10.1007/BF00115009.
Sutton, R. S., and Barto, A. G. (1981). Toward a modern theory of adaptive networks: expectation and prediction. Psychol. Rev. 88, 135–70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7291377.
Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT press.
Suzuki, T., Miura, M., Nishimura, K., and Aosaki, T. (2001). Dopamine-dependent synaptic plasticity in the striatal cholinergic interneurons. J Neurosci 21, 6492–6501.
Suzuki, W. A., and Amaral, D. G. (1994). Perirhinal and parahippocampal cortices of the macaque monkey: Cortical afferents. J Comp Neurol 350, 497–533.
Suzuki, W. A., Miller, E. K., and Desimone, R. (1997). Object and place memory in the macaque entorhinal cortex. J Neurophysiol 78, 1062–1081.
Tachibana, Y., and Hikosaka, O. (2012). The primate ventral pallidum encodes expected reward value and regulates motor action. Neuron 76, 826–37. doi:10.1016/j.neuron.2012.09.030.
Takada, M., Tokuno, H., Nambu, A., and Inase, M. (1998). Corticostriatal projections from the somatic motor areas of the frontal cortex in the macaque monkey: Segregation versus overlap of input zones from the primary motor cortex, the supplementary motor area, and the premotor cortex. Exp Brain Res 120, 114–128.
Takeda, M., Naya, Y., Fujimichi, R., Takeuchi, D., and Miyashita, Y. (2005). Active maintenance of associative mnemonic signal in monkey inferior temporal cortex. Neuron 48, 839–848. doi:10.1016/j.neuron.2005.09.028.
Tan, C. O., and Bullock, D. (2008). A local circuit model of learned striatal and dopamine cell responses under probabilistic schedules of reward. J. Neurosci. 28, 10062–74. doi:10.1523/JNEUROSCI.0259-08.2008.
Tanaka, K. (2000). Mechanisms of visual object recognition studied in monkeys. Spat. Vis. 13, 147–63. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11198228.
Tanimura, Y., King, M. A., Williams, D. K., and Lewis, M. H. (2011). Development of repetitive behavior in a mouse model: Roles of indirect and striosomal basal ganglia pathways. Int J Dev Neurosci 29, 461–467. doi:10.1016/j.ijdevneu.2011.02.004.
Taylor, J. G. (1999). Neural bubble dynamics in two dimensions: foundations. Biol Cyb 80, 393–409.
Taylor, K. I., Moss, H. E., Stamatakis, E. A., and Tyler, L. K. (2006). Binding crossmodal object features in perirhinal cortex. Proc Natl Acad Sci U S A 103, 8239–8244.
Tepper, J. M., Wilson, C. J., and Koós, T. (2008). Feedforward and feedback inhibition in neostriatal GABAergic spiny neurons. Brain Res Rev 58, 272–281. doi:10.1016/j.brainresrev.2007.10.008.
Thibeault, C. M., Hoang, R. V., and F. C., H. (2011). A Novel Multi-GPU Neural Simulator. in 3rd int. Conf. Bioinforma. Comput. Biol. (BICoB 2011) (New Orleans, LA: ISCA), 146–151.
Thompson, R. F., and Steinmetz, J. E. (2009). The role of the cerebellum in classical conditioning of discrete behavioral responses. Neuroscience 162, 732–55. doi:10.1016/j.neuroscience.2009.01.041.
Thorndike, E. L. (1911). Animal intelligence: Experimental studies. Macmillan.
Tindell, A. J., Berridge, K. C., and Aldridge, J. W. (2004). Ventral pallidal representation of pavlovian cues and reward: population and rate codes. J. Neurosci. 24, 1058–69. doi:10.1523/JNEUROSCI.1437-03.2004.
Tobler, P. N., Fiorillo, C. D., and Schultz, W. (2005). Adaptive coding of reward value by dopamine neurons. Science 307, 1642–5. doi:10.1126/science.1105370.
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I., and Miyashita, Y. (1999). Top-down signal from prefrontal cortex in executive control of memory retrieval. Nature 401, 699–703.
Turrigiano, G. G. (2008). The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 135, 422–35. doi:10.1016/j.cell.2008.10.008.
Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5, 97–107.
Tye, K. M., Cone, J. J., Schairer, W. W., and Janak, P. H. (2010). Amygdala neural encoding of the absence of reward during extinction. J. Neurosci. 30, 116–25. doi:10.1523/JNEUROSCI.4240-09.2010.
Ungerleider, L. G., and Mishkin, M. (1982). “Two cortical visual systems,” in Analysis of visual behavior, eds. D. J. Ingle, M. A. Goodale, and R. J. W. Mansfield (Cambridge, MA: The MIT Press), 549–586.
Usuda, I., Tanaka, K., and Chiba, T. (1998). Efferent projections of the nucleus accumbens in the rat with special reference to subdivision of the nucleus: biotinylated dextran amine study. Brain Res. 797, 73–93. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9630528.
Uttal, W. R. (2015). Macroneural theories in cognitive neuroscience. Psychology Press.
van der Meulen, J. A. J., Joosten, R. N. J. M. A., de Bruin, J. P. C., and Feenstra, M. G. P. (2007). Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex 17, 1444–1453. doi:10.1093/cercor/bhl057.
Velik, R. (2012). AI reloaded: Objectives, potentials, and challenges of the novel field of brain-like artificial intelligence. BRAIN. Broad Research in Artificial Intelligence and Neuroscience 3.
Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., and Arnsten, A. F. T. (2007). Inverted-u dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 10, 376–384. doi:10.1038/nn1846.
Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: A code generation approach to neural simulations on parallel hardware. Front Neuroinform 9, 19. doi:10.3389/fninf.2015.00019.
Vitay, J., and Hamker, F. H. (2008). Sustained activities and retrieval in a computational model of the perirhinal cortex. J. Cogn. Neurosci. 20, 1993–2005. doi:10.1162/jocn.2008.20147.
Vitay, J., and Hamker, F. H. (2010). A computational model of Basal Ganglia and its role in memory retrieval in rewarded visual memory tasks. Front. Comput. Neurosci. 4. doi:10.3389/fncom.2010.00013.
Vitay, J., and Hamker, F. H. (2014). Timing and expectation of reward: A neuro-computational model of the afferents to the ventral tegmental area. Front Neurorobot 8, 4. doi:10.3389/fnbot.2014.00004.
Vogels, T. P., and Abbott, L. F. (2005). Signal propagation and logic gating in networks of integrate-and-fire neurons. J. Neurosci. 25, 10786–95. doi:10.1523/JNEUROSCI.3508-05.2005.
Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T. W., and Pennartz, C. M. A. (2004). Putting a spin on the dorsal-ventral divide of the striatum. Trends Neurosci 27, 468–474. doi:10.1016/j.tins.2004.06.006.
Walker, A. G., and Steinmetz, J. E. (2008). Hippocampal lesions in rats differentially affect long- and short-trace eyeblink conditioning. Physiol. Behav. 93, 570–8. doi:10.1016/j.physbeh.2007.10.018.
Walt, S. van der, Colbert, S. C., and Varoquaux, G. (2011). The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 13, 22–30. doi:10.1109/MCSE.2011.37.
Wan, H., Aggleton, J. P., and Brown, M. W. (1999). Different contributions of the hippocampus and perirhinal cortex to recognition memory. J Neurosci 19, 1142–1148.
Wang, X.-J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron 36, 955–68. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12467598.
Watanabe, Y., and Funahashi, S. (2004). Neuronal activity throughout the primate mediodorsal nucleus of the thalamus during oculomotor delayed-responses. II. Activity encoding visual versus motor signal. J Neurophysiol 92, 1756–1769. doi:10.1152/jn.00995.2003.
Webster, M. J., Bachevalier, J., and Ungerleider, L. G. (1994). Connections of inferior temporal areas TEO and TE with parietal and frontal cortex in macaque monkeys. Cereb Cortex 4, 470–483.
Wickens, J. R., and Oorshcot, D. E. (2000). “Neuronal dynamics and surround inhibition in the neostriatum: A possible connection,” in Brain dynamics and the striatal complex, eds. R. Miller and J. R. Wickens (Australia: Harwood Academic Publishers), 141--150.
Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel, J. (2007). Optimization of sparse matrix-vector multiplication on emerging multicore platforms. in Proc. 2007 ACM/IEEE conf. Supercomput. - SC ’07 (New York, New York, USA: ACM Press), 1. doi:10.1145/1362622.1362674.
Wiltschut, J., and Hamker, F. H. (2009). Efficient coding correlates with spatial frequency tuning in a model of V1 receptive field organization. Vis Neurosci 26, 21–34. doi:10.1017/S0952523808080966.
Winn, P. (2006). How best to consider the structure and function of the pedunculopontine tegmental nucleus: Evidence from animal studies. J Neurol Sci 248, 234–250. doi:10.1016/j.jns.2006.05.036.
Winstanley, C. A., Baunez, C., Theobald, D. E. H., and Robbins, T. W. (2005). Lesions to the subthalamic nucleus decrease impulsive choice but impair autoshaping in rats: the importance of the basal ganglia in Pavlovian conditioning and impulse control. Eur. J. Neurosci. 21, 3107–16. doi:10.1111/j.1460-9568.2005.04143.x.
Witt, K., Pulkowski, U., Herzog, J., Lorenz, D., Hamel, W., Deuschl, G., et al. (2004). Deep brain stimulation of the subthalamic nucleus improves cognitive flexibility but impairs response inhibition in parkinson disease. Arch Neurol 61, 697–700. doi:10.1001/archneur.61.5.697.
Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D., Benoit-Marand, M., O’Donnell, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment to oscillations in a computational model of the nucleus accumbens medium spiny projection neuron. J. Neurosci. 25, 9080–95. doi:10.1523/JNEUROSCI.2220-05.2005.
Wolf, M. E., Sun, X., Mangiavacchi, S., and Chao, S. Z. (2004). Psychomotor stimulants and neuronal plasticity. Neuropharmacology 47 Suppl 1, 61–79. doi:10.1016/j.neuropharm.2004.07.006.
Woodman, G. F., and Luck, S. J. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? J Exp Psychol Hum Percept Perform 33, 363–377. doi:10.1037/0096-1523.33.2.363.
Wu, G.-Y., Yao, J., Hu, B., Zhang, H.-M., Li, Y.-D., Li, X., et al. (2013). Reevaluating the role of the hippocampus in delay eyeblink conditioning. PLoS One 8, e71249. doi:10.1371/journal.pone.0071249.
Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., and Donoghue, J. P. (2004). Modeling and decoding motor cortical activity using a switching Kalman filter. IEEE Trans. Biomed. Eng. 51, 933–42. doi:10.1109/TBME.2004.826666.
Yang, C. R., and Seamans, J. K. (1996). Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: Modulation of dendritic-somatic signal integration. J Neurosci 16, 1922–1935.
Yin, H. H., Knowlton, B. J., and Balleine, B. W. (2004). Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 19, 181–189.
Yoshioka, M., Matsumoto, M., Togashi, H., and Saito, H. (1996). Effect of conditioned fear stress on dopamine release in the rat prefrontal cortex. Neurosci Lett 209, 201–203.
Zahm, D. S., and Heimer, L. (1990). Two transpallidal pathways originating in the rat nucleus accumbens. J. Comp. Neurol. 302, 437–46. doi:10.1002/cne.903020302.
Zahrt, J., Taylor, J. R., Mathew, R. G., and Arnsten, A. F. (1997). Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 17, 8528–8535.
Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a maintainable Cython-based interface for the NEST simulator. Front. Neuroinform. 8, 23. doi:10.3389/fninf.2014.00023.
Zenke, F., and Gerstner, W. (2014). Limits to high-speed simulations of spiking neural networks using general-purpose computers. Front. Neuroinform. 8, 76. doi:10.3389/fninf.2014.00076.
Zheng, T., and Wilson, C. J. (2002). Corticostriatal combinatorics: The implications of corticostriatal axonal arborizations. J Neurophysiol 87, 1007–1017.
Zirnsak, M., Beuth, F., and Hamker, F. H. (2011). Split of spatial attention as predicted by a systems-level model of visual attention. Eur. J. Neurosci. 33, 2035–45. doi:10.1111/j.1460-9568.2011.07718.x.
Zola-Morgan, S., Squire, L. R., Amaral, D. G., and Suzuki, W. A. (1989). Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 9, 4355–4370.