References
Aisa, B., Mingus, B., and O’Reilly, R. (2008). The
emergent neural modeling system. Neural Netw. 21,
1146–52. doi:10.1016/j.neunet.2008.06.016.
Alberts, J. L., Voelcker-Rehage, C., Hallahan, K., Vitek, M., Bamzai,
R., and Vitek, J. L. (2008). Bilateral subthalamic stimulation impairs
cognitive-motor performance in parkinson’s disease patients.
Brain 131, 3348–3360. doi:10.1093/brain/awn238.
Albin, R. L., and Mink, J. W. (2006). Recent advances in tourette
syndrome research. Trends Neurosci 29, 175–182. doi:10.1016/j.tins.2006.01.001.
Albin, R. L., Young, A. B., and Penney, J. B. (1989). The functional
anatomy of basal ganglia disorders. Trends Neurosci 12,
366–375.
Albus, J. S. (1971). A theory of cerebellar function. Math
Biosci, 25–61.
Alegret, M., Junqué, C., Valldeoriola, F., Vendrell, P., Pilleri, M.,
Rumià, J., et al. (2001). Effects of bilateral
subthalamic stimulation on cognitive function in parkinson disease.
Arch Neurol 58, 1223–1227.
Alexander, G. E., DeLong, M. R., and Strick, P. L. (1986). Parallel
organization of functionally segregated circuits linking the basal
ganglia and cortex. Ann Rev Neurosci 9, 357–381.
Amari, S. (1977). Dynamics of pattern formation in
lateral-inhibition type neural fields. Biol. Cybern. 27,
77–87. Available at: http://www.ncbi.nlm.nih.gov/pubmed/911931.
Ambroggi, F., Ishikawa, A., Fields, H. L., and Nicola, S. M. (2008).
Basolateral amygdala neurons facilitate
reward-seeking behavior by exciting nucleus accumbens neurons.
Neuron 59, 648–61. doi:10.1016/j.neuron.2008.07.004.
Apicella, P., Deffains, M., Ravel, S., and Legallet, E. (2009). Tonically active neurons in the striatum differentiate
between delivery and omission of expected reward in a probabilistic task
context. Eur. J. Neurosci. 30, 515–26. doi:10.1111/j.1460-9568.2009.06872.x.
Aron, A. R., and Poldrack, R. A. (2006). Cortical and subcortical
contributions to stop signal response inhibition: Role of the
subthalamic nucleus. J Neurosci 26, 2424–2433. doi:10.1523/JNEUROSCI.4682-05.2006.
Ashby, F. G., Ell, S. W., Valentin, V. V., and Casale, M. B. (2005).
FROST: A distributed neurocomputational model of working memory
maintenance. J Cogn Neurosci 17, 1728–1743.
Ashby, F. G., Ennis, J. M., and Spiering, B. J. (2007). A
neurobiological theory of automaticity in perceptual categorization.
Psychol Rev 114, 632–656. doi:10.1037/0033-295X.114.3.632.
Baddeley, A. D. (1986). Working memory. Oxford: Oxford
University Press.
Bahuguna, J., Aertsen, A., and Kumar, A. (2015). Existence and control
of go/no-go decision transition threshold in the striatum. PLoS
Comput Biol 11, e1004233. doi:10.1371/journal.pcbi.1004233.
Balcita-Pedicino, J. J., Omelchenko, N., Bell, R., and Sesack, S. R.
(2011). The inhibitory influence of the lateral
habenula on midbrain dopamine cells: ultrastructural evidence for
indirect mediation via the rostromedial mesopontine tegmental
nucleus. J. Comp. Neurol. 519, 1143–64. doi:10.1002/cne.22561.
Baldassarre, G., Mannella, F., Fiore, V. G., Redgrave, P., Gurney, K.,
and Mirolli, M. (2013). Intrinsically motivated action-outcome learning
and goal-based action recall: A system-level bio-constrained
computational model. Neural Netw 41, 168–187. doi:10.1016/j.neunet.2012.09.015.
Balleine, B. W., and Dickinson, A. (1998). Goal-directed
instrumental action: Contingency and incentive learning and their
cortical substrates. Neuropharmacology 37, 407–419.
Balsam, P. D., Drew, M. R., and Yang, C. (2002). Timing at the Start of Associative Learning.
Learn. Motiv. 33, 141–155. Available at: http://www.sciencedirect.com/science/article/pii/S002396900191104X.
Bar-Gad, I., Morris, G., and Bergman, H. (2003). Information processing,
dimensionality reduction and reinforcement learning in the basal
ganglia. Prog Neurobiol 71, 439–473. doi:10.1016/j.pneurobio.2003.12.001.
Barto, A., Mirolli, M., and Baldassarre, G. (2013). Novelty or surprise?
Front Psychol 4, 907. doi:10.3389/fpsyg.2013.00907.
Baxter, M. G., and Murray, E. A. (2002). The
amygdala and reward. Nat. Rev. Neurosci. 3, 563–73.
doi:10.1038/nrn875.
Beaulieu, C. (1993). Numerical data on neocortical neurons in adult rat,
with special reference to the GABA population. Brain
Res 609, 284–292.
Bednar, J. A. (2009). Topographica: Building and
Analyzing Map-Level Simulations from Python, C/C++, MATLAB, NEST, or
NEURON Components. Front. Neuroinform. 3, 8. doi:10.3389/neuro.11.008.2009.
Beeler, J. A., Daw, N., Frazier, C. R. M., and Zhuang, X. (2010). Tonic
dopamine modulates exploitation of reward learning. Front Behav
Neurosci 4, 170. doi:10.3389/fnbeh.2010.00170.
Behnel, S., Bradshaw, R. W., and Seljebotn, D. S. (2009). Cython tutorial. in Proc. 8th python sci.
conf., eds. G. Varoquaux, S. van der Walt, and J. Millman
(Pasadena, CA USA: http://conference.scipy.org/proceedings/SciPy2009/paper_1),
4–14.
Bekolay, T., Bergstra, J., Hunsberger, E., Dewolf, T., Stewart, T. C.,
Rasmussen, D., et al. (2014). Nengo: a Python tool
for building large-scale functional brain models. Front.
Neuroinform. 7, 48. doi:10.3389/fninf.2013.00048.
Belova, M. A., Paton, J. J., Morrison, S. E., and Salzman, C. D. (2007).
Expectation modulates neural responses to pleasant
and aversive stimuli in primate amygdala. Neuron 55,
970–84. doi:10.1016/j.neuron.2007.08.004.
Bermudez, M. A., and Schultz, W. (2010). Reward
magnitude coding in primate amygdala neurons. J.
Neurophysiol. 104, 3424–32. doi:10.1152/jn.00540.2010.
Berns, G., and Sejnowski, T. (1998). A computational model of how the
basal ganglia produce sequences. J Cogn Neurosci 10, 108–121.
Berridge, K. C. (2007). The debate over dopamine’s role in reward: The
case for incentive salience. Psychopharmacology (Berl) 191,
391–431. doi:10.1007/s00213-006-0578-x.
Beuth, F., and Hamker, F. H. (2015). A mechanistic
cortical microcircuit of attention for amplification, normalization and
suppression. Vision Res. doi:10.1016/j.visres.2015.04.004.
Bienenstock, E. L., Cooper, L. N., and Munro, P. W. (1982). Theory for the
development of neuron selectivity: Orientation specificity and binocular
interaction in visual cortex. J Neurosci 2, 32–48.
Bird, C. M., and Burgess, N. (2008). The hippocampus and memory:
Insights from spatial processing. Nat Rev Neurosci 9, 182–194.
doi:10.1038/nrn2335.
Bissière, S., Humeau, Y., and Lüthi, A. (2003). Dopamine gates LTP induction in lateral amygdala by
suppressing feedforward inhibition. Nat. Neurosci. 6,
587–92. doi:10.1038/nn1058.
Bolam, J. P., Hanley, J. J., Booth, P. A., and Bevan, M. D. (2000).
Synaptic organisation of the basal ganglia.
J. Anat. 196 ( Pt 4, 527–42. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1468095\&tool=pmcentrez\&rendertype=abstract.
Booth, M. C., and Rolls, E. T. (1998). View-invariant representations of
familiar objects by neurons in the inferior temporal visual cortex.
Cereb Cortex 8, 510–523.
Bostan, A. C., and Strick, P. L. (2010). The
cerebellum and basal ganglia are interconnected.
Neuropsychol. Rev. 20, 261–70. doi:10.1007/s11065-010-9143-9.
Botvinick, M. M., Niv, Y., and Barto, A. C. (2009). Hierarchically
organized behavior and its neural foundations: A reinforcement learning
perspective. Cognition 113, 262–280. doi:10.1016/j.cognition.2008.08.011.
Bourdy, R., and Barrot, M. (2012). A new control
center for dopaminergic systems: pulling the VTA by the tail.
Trends Neurosci. 35, 681–90. doi:10.1016/j.tins.2012.06.007.
Bower, J. M., and Beeman, D. (2007). Constructing
realistic neural simulations with GENESIS. Methods Mol.
Biol. 401, 103–25. doi:10.1007/978-1-59745-520-6_7.
Braak, H., and Del Tredici, K. (2008). Cortico-basal ganglia-cortical
circuitry in parkinson’s disease reconsidered. Exp Neurol 212,
226–229. doi:10.1016/j.expneurol.2008.04.001.
Brette, R., and Goodman, D. F. M. (2011). Vectorized algorithms for spiking neural network
simulation. Neural Comput. 23, 1503–35. doi:10.1162/NECO_a_00123.
Brette, R., and Goodman, D. F. M. (2012). Simulating spiking neural networks on GPU.
Network 23, 167–82. doi:10.3109/0954898X.2012.730170.
Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.
M., et al. (2007). Simulation of networks of
spiking neurons: a review of tools and strategies. J. Comput.
Neurosci. 23, 349–98. doi:10.1007/s10827-007-0038-6.
Brischoux, F., Chakraborty, S., Brierley, D. I., and Ungless, M. A.
(2009). Phasic excitation of dopamine neurons in
ventral VTA by noxious stimuli. Proc. Natl. Acad. Sci. U. S.
A. 106, 4894–9. doi:10.1073/pnas.0811507106.
Bromberg-Martin, E. S., and Hikosaka, O. (2011). Lateral habenula neurons signal errors in the prediction
of reward information. Nat. Neurosci. 14, 1209–1216.
doi:10.1038/nn.2902.
Brown, J. W., Bullock, D., and Grossberg, S. (2004). How laminar frontal
cortex and basal ganglia circuits interact to control planned and
reactive saccades. Neural Netw 17, 471–510. doi:10.1016/j.neunet.2003.08.006.
Brown, J., Bullock, D., and Grossberg, S. (1999). How the basal ganglia use parallel excitatory and
inhibitory learning pathways to selectively respond to unexpected
rewarding cues. J. Neurosci. 19, 10502–11. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/10575046.
Brown, M. T. C., Tan, K. R., O’Connor, E. C., Nikonenko, I., Muller, D.,
and Lüscher, C. (2012). Ventral tegmental area GABA projections pause
accumbal cholinergic interneurons to enhance associative learning.
Nature 492, 452–456. doi:10.1038/nature11657.
Brown, M. W., and Xiang, J. Z. (1998). Recognition memory: Neuronal
substrates of the judgement of prior occurrence. Prog Neurobiol
55, 149–189.
Brunel, N., and Wang, X. J. (2001). Effects of neuromodulation in a
cortical network model of object working memory dominated by recurrent
inhibition. J Comput Neurosci 11, 63–85.
Buckley, M. J., and Gaffan, D. (1998). Perirhinal cortex ablation
impairs visual object identification. J Neurosci 18, 2268–2275.
Buffalo, E. A., Ramus, S. J., Squire, L. R., and Zola, S. M. (2000).
Perception and recognition memory in monkeys following lesions of area
TE and perirhinal cortex. Learn Mem 7, 375–382.
Buffalo, E. A., Reber, P. J., and Squire, L. R. (1998). The human
perirhinal cortex and recognition memory. Hippocampus 8,
330–339.
Bunge, S. A., Hazeltine, E., Scanlon, M. D., Rosen, A. C., and Gabrieli,
J. D. E. (2002). Dissociable
contributions of prefrontal and parietal cortices to response
selection. Neuroimage 17, 1562–1571.
Burgess, N., Barry, C., and O’Keefe, J. (2007). An oscillatory
interference model of grid cell firing. Hippocampus 17,
801–812.
Bussey, T. J., and Saksida, L. M. (2002). The organization of visual
object representations: A connectionist model of effects of lesions in
perirhinal cortex. Eur J Neurosci 15, 355–364.
Butz, M., Wörgötter, F., and Ooyen, A. van (2009). Activity-dependent structural plasticity.
Brain Res. Rev. 60, 287–305. doi:10.1016/j.brainresrev.2008.12.023.
Cabanac, M. (1971). Physiological role of
pleasure. Science 173, 1103–1107.
Calabresi, P., Mercuri, N., Stanzione, P., Stefani, A., and Bernardi, G.
(1987). Intracellular studies on the dopamine-induced firing inhibition
of neostriatal neurons in vitro: Evidence for D1 receptor involvement.
Neuroscience 20, 757–771.
Calabresi, P., Picconi, B., Tozzi, A., and Di Filippo, M. (2007). Dopamine-mediated regulation of corticostriatal synaptic
plasticity. Trends Neurosci. 30, 211–9. doi:10.1016/j.tins.2007.03.001.
Calzavara, R., Mailly, P., and Haber, S. N. (2007). Relationship between
the corticostriatal terminals from areas 9 and 46, and those from area
8A, dorsal and rostral premotor cortex and area 24c: An anatomical
substrate for cognition to action. Eur J Neurosci 26,
2005–2024. doi:10.1111/j.1460-9568.2007.05825.x.
Carandini, M., and Heeger, D. J. (2012). Normalization as a canonical neural computation.
Nat. Rev. Neurosci. 13, 51–62. doi:10.1038/nrn3136.
Cardinal, R. N., Parkinson, J. A., Hall, J., and Everitt, B. J. (2002).
Emotion and motivation: the role of the amygdala,
ventral striatum, and prefrontal cortex. Neurosci. Biobehav.
Rev. 26, 321–52. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12034134.
Carlson, K. D., Nageswaran, J. M., Dutt, N., and Krichmar, J. L. (2014).
An efficient automated parameter tuning framework
for spiking neural networks. Front. Neurosci. 8, 10.
doi:10.3389/fnins.2014.00010.
Carmichael, S. T., and Price, J. L. (1995). Sensory
and premotor connections of the orbital and medial prefrontal cortex of
macaque monkeys. J. Comp. Neurol. 363, 642–664. doi:10.1002/cne.903630409.
Carr, D. B., and Sesack, S. R. (2000). GABA-containing neurons in the rat ventral tegmental area
project to the prefrontal cortex. Synapse 38, 114–23.
doi:10.1002/1098-2396(200011)38:2<114::AID-SYN2>3.0.CO;2-R.
Cepeda, C., Colwell, C. S., Itri, J. N., Chandler, S. H., and Levine, M.
S. (1998). Dopaminergic
modulation of NMDA-induced whole cell currents in neostriatal neurons in
slices: Contribution of calcium conductances. J
Neurophysiol 79, 82–94.
Cepeda, C., Radisavljevic, Z., Peacock, W., Levine, M. S., and Buchwald,
N. A. (1992). Differential modulation by dopamine of responses evoked by
excitatory amino acids in human cortex. Synapse 11, 330–341.
Chadderdon, G. L., and Sporns, O. (2006). A large-scale
neurocomputational model of task-oriented behavior selection and working
memory in prefrontal cortex. J Cogn Neurosci 18, 242–257.
Chang, C., Crottaz-Herbette, S., and Menon, V. (2007). Temporal dynamics
of basal ganglia response and connectivity during verbal working memory.
Neuroimage 34, 1253–1269. doi:10.1016/j.neuroimage.2006.08.056.
Chang, J.-Y., Chen, L., Luo, F., Shi, L.-H., and Woodward, D. J. (2002).
Neuronal responses in the frontal cortico-basal ganglia system during
delayed matching-to-sample task: Ensemble recording in freely moving
rats. Exp Brain Res 142, 67–80. doi:10.1007/s00221-001-0918-3.
Chen, J. Y., Wang, E. A., Cepeda, C., and Levine, M. S. (2013). Dopamine
imbalance in huntington’s disease: A mechanism for the lack of
behavioral flexibility. Front Neurosci 7, 114. doi:10.3389/fnins.2013.00114.
Cheng, K., Saleem, K. S., and Tanaka, K. (1997). Organization of corticostriatal and corticoamygdalar
projections arising from the anterior inferotemporal area TE of the
macaque monkey: a Phaseolus vulgaris leucoagglutinin study.
J. Neurosci. 17, 7902–25. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9315910.
Chevalier, G., and Deniau, J. M. (1990). Disinhibition as a
basic process in the expression of striatal functions. Trends
Neurosci 13, 277–280.
Chorley, P., and Seth, A. K. (2011). Dopamine-signaled reward predictions generated by
competitive excitation and inhibition in a spiking neural network
model. Front. Comput. Neurosci. 5, 21. doi:10.3389/fncom.2011.00021.
Christian, K. M., and Thompson, R. F. (2003). Neural substrates of eyeblink conditioning: acquisition
and retention. Learn. Mem. 10, 427–55. doi:10.1101/lm.59603.
Cohen, M. X., Bour, L., Mantione, M., Figee, M., Vink, M., Tijssen, M.
A. J., et al. (2012). Top-down-directed synchrony
from medial frontal cortex to nucleus accumbens during reward
anticipation. Hum Brain Mapp 33, 246–252. doi:10.1002/hbm.21195.
Corbit, L. H., and Balleine, B. W. (2011). The
general and outcome-specific forms of Pavlovian-instrumental transfer
are differentially mediated by the nucleus accumbens core and
shell. J. Neurosci. 31, 11786–94. doi:10.1523/JNEUROSCI.2711-11.2011.
Coull, J. T., Cheng, R.-K., and Meck, W. H. (2011). Neuroanatomical and neurochemical substrates of
timing. Neuropsychopharmacology 36, 3–25. doi:10.1038/npp.2010.113.
Cowell, R. A., Bussey, T. J., and Saksida, L. M. (2006). Why does brain
damage impair memory? A connectionist model of object
recognition memory in perirhinal cortex. J Neurosci 26,
12186–12197.
Creed, M. C., Ntamati, N. R., and Tan, K. R. (2014). VTA GABA neurons
modulate specific learning behaviors through the control of dopamine and
cholinergic systems. Front. Behav. Neurosci. 8, 8. doi:10.3389/fnbeh.2014.00008.
Cromwell, H. C., and Schultz, W. (2003). Effects of expectations for
different reward magnitudes on neuronal activity in primate striatum.
J Neurophysiol 89, 2823–2838. doi:10.1152/jn.01014.2002.
Cunningham, J. P., Gilja, V., Ryu, S. I., and Shenoy, K. V. (2009).
Methods for estimating neural firing rates, and
their application to brain-machine interfaces. Neural
Netw. 22, 1235–46. doi:10.1016/j.neunet.2009.02.004.
Curtis, C., and D’Esposito, M. (2003). Persistent activity in the
prefrontal cortex during working memory. Trends Cogn Sci 7,
415–423.
D’Esposito, M., Cooney, J. W., Gazzaley, A., Gibbs, S. E. B., and
Postle, B. R. (2006). Is the prefrontal cortex necessary for delay task
performance? Evidence from lesion and FMRI
data. J Int Neuropsychol Soc 12, 248–260. doi:10.1017/S1355617706060322.
Damasio, A. R. (1994). Descartes’ error: Emotion, reason and the
human brain. New York: Grosset/Putnam.
Darbaky, Y., Baunez, C., Arecchi, P., Legallet, E., and Apicella, P.
(2005). Reward-related neuronal activity in the
subthalamic nucleus of the monkey. Neuroreport 16,
1241–4. Available at: http://www.ncbi.nlm.nih.gov/pubmed/16012357.
Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E.,
Pecevski, D., et al. (2008). PyNN: A Common
Interface for Neuronal Network Simulators. Front.
Neuroinform. 2, 11. doi:10.3389/neuro.11.011.2008.
Daw, N. D., Courville, A. C., Tourtezky, D. S., and Touretzky, D. S.
(2006). Representation and timing in theories of
the dopamine system. Neural Comput. 18, 1637–77. doi:10.1162/neco.2006.18.7.1637.
Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal and
dorsolateral striatal systems for behavioral control. Nat.
Neurosci. 8, 1704–11. doi:10.1038/nn1560.
Daw, N. D., and Touretzky, D. S. (2002). Long-term reward prediction in
TD models of the dopamine system. Neural Comput 14, 2567–2583.
Day, J. J., and Carelli, R. M. (2007). The nucleus
accumbens and Pavlovian reward learning. Neuroscientist
13, 148–59. doi:10.1177/1073858406295854.
Dayan, P., and Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical
Modeling of Neural Systems. The MIT Press Available at: http://dl.acm.org/citation.cfm?id=1205781.
Deadwyler, S. A., Hayashizaki, S., Cheer, J., and Hampson, R. E. (2004).
Reward, memory and substance abuse: functional
neuronal circuits in the nucleus accumbens. Neurosci.
Biobehav. Rev. 27, 703–711. Available at: http://www.sciencedirect.com/science/article/pii/S0149763403001520.
Deco, G., and Rolls, E. T. (2003). Attention and working memory: A
dynamical model of neuronal activity in the prefrontal cortex. Eur J
Neurosci 18, 2374–2390.
Delgado, M. R., Li, J., Schiller, D., and Phelps, E. A. (2008). The role of the striatum in aversive learning and
aversive prediction errors. Philos. Trans. R. Soc. Lond. B.
Biol. Sci. 363, 3787–800. doi:10.1098/rstb.2008.0161.
Delgado, M. R., Miller, M. M., Inati, S., and Phelps, E. A. (2005). An
fMRI study of reward-related probability learning. Neuroimage
24, 862–873. doi:10.1016/j.neuroimage.2004.10.002.
DeLong, M. R. (1990). Primate models of
movement disorders of basal ganglia origin. Trends Neurosci
13, 281–285.
DeLong, M. R., and Wichmann, T. (2007). Circuits and circuit disorders
of the basal ganglia. Arch Neurol 64, 20–24. doi:10.1001/archneur.64.1.20.
Desimone, R., and Duncan, J. (1995). Neural mechanisms of selective
visual attention. Ann Rev Neurosci 18, 193–222.
Di Filippo, M., Picconi, B., Tantucci, M., Ghiglieri, V., Bagetta, V.,
Sgobio, C., et al. (2009). Short-term and long-term plasticity at
corticostriatal synapses: Implications for learning and memory.
Behav Brain Res 199, 108–18.
Di Giovanni, G., and Shi, W.-X. (2009). Effects of scopolamine on
dopamine neurons in the substantia nigra: Role of the pedunculopontine
tegmental nucleus. Synapse 63, 673–680. doi:10.1002/syn.20650.
Dinkelbach, H. Ü., Vitay, J., Beuth, F., and Hamker, F. H. (2012). Comparison of GPU- and CPU-implementations of mean-firing
rate neural networks on parallel hardware. Network 23,
212–36. doi:10.3109/0954898X.2012.739292.
Dı́az-Mataix, L., Tallot, L., and Doyère, V. (2013). The amygdala: A potential player in timing CS–US
intervals. Behav. Processes. Available at: http://www.sciencedirect.com/science/article/pii/S0376635713001824.
Djurfeldt, M. (2012). The connection-set algebra–a
novel formalism for the representation of connectivity structure in
neuronal network models. Neuroinformatics 10, 287–304.
doi:10.1007/s12021-012-9146-1.
Dormont, J. F., Condé, H., and Farin, D. (1998). The role of the pedunculopontine tegmental nucleus in
relation to conditioned motor performance in the cat. I.
Context-dependent and reinforcement-related single unit activity.
Exp. Brain Res. 121, 401–10. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9746146.
Doya, K., Ishii, S., Pouget, A., and Rao, R. P. N. eds. (2006).
Bayesian brain: Probabilistic approaches to neural coding. The
MIT Press.
Doyere, V., Srebro, B., and Laroche, S. (1997). Heterosynaptic LTD and Depotentiation in the Medial
Perforant Path of the Dentate Gyrus in the Freely Moving Rat.
J Neurophysiol 77, 571–578. Available at: http://jn.physiology.org/content/77/2/571.long.
Doyère, V., Schafe, G. E., Sigurdsson, T., and LeDoux, J. E. (2003).
Long-term potentiation in freely moving rats
reveals asymmetries in thalamic and cortical inputs to the lateral
amygdala. Eur. J. Neurosci. 17, 2703–15. Available at:
http://www.ncbi.nlm.nih.gov/pubmed/12823477.
Dranias, M. R., Grossberg, S., and Bullock, D. (2008). Dopaminergic and non-dopaminergic value systems in
conditioning and outcome-specific revaluation. Brain
Res. 1238, 239–87. doi:10.1016/j.brainres.2008.07.013.
Dreher, J.-C., Guigon, E., and Burnod, Y. (2002). A model of prefrontal
cortex dopaminergic modulation during the delayed alternation task.
J Cogn Neurosci 14, 853–865.
Durstewitz, D. (2004). Neural representation of
interval time. Neuroreport 15, 745–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/15073507.
Durstewitz, D., Kelc, M., and Güntürkün, O. (1999). A neurocomputational
theory of the dopaminergic modulation of working memory functions. J
Neurosci 19, 2807–2822.
Durstewitz, D., Seamans, J. K., and Sejnowski, T. J. (2000).
Neurocomputational models of working memory. Nat Neurosci Supp
3, 1184–1191.
Eagle, D. M., Baunez, C., Hutcheson, D. M., Lehmann, O., Shah, A. P.,
and Robbins, T. W. (2008). Stop-signal reaction-time task performance:
Role of prefrontal cortex and subthalamic nucleus. Cereb Cortex
18, 178–188. doi:10.1093/cercor/bhm044.
Ebner, C., Schroll, H., Winther, G., Niedeggen, M., and Hamker, F. H.
(2015). Open and closed cortico-subcortical loops: A neuro-computational
account of access to consciousness in the distractor-induced blindness
paradigm. Conscious Cogn 35, 295–307. doi:10.1016/j.concog.2015.02.007.
Ebrahimi, A., Pochet, R., and Roger, M. (1992). Topographical
organization of the projections from physiologically identified areas of
the motor cortex to the striatum in the rat. Neurosci Res
14, 39–60.
Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang,
Y., et al. (2012). A large-scale model of the
functioning brain. Science 338, 1202–5. doi:10.1126/science.1225266.
Elliott, R., and Dolan, R. J. (1999). Differential neural
responses during performance of matching and nonmatching to sample tasks
at two delay intervals. J Neurosci 19, 5066–5073.
Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O.
(2008). PyNEST: A Convenient Interface to the NEST
Simulator. Front. Neuroinform. 2, 12. doi:10.3389/neuro.11.012.2008.
Everitt, B. J., Dickinson, A., and Robbins, T. W. (2001). The
neuropsychological basis of addictive behaviour. Brain Res Brain
Res Rev 36, 129–138.
Eyny, Y. S., and Horvitz, J. C. (2003). Opposing
roles of D1 and D2 receptors in appetitive conditioning. J.
Neurosci. 23, 1584–7. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12629161.
Featherstone, R. E., and McDonald, R. J. (2004). Dorsal striatum and
stimulus-response learning: Lesions of the dorsolateral, but not
dorsomedial, striatum impair acquisition of a stimulus-response-based
instrumental discrimination task, while sparing conditioned place
preference learning. Neuroscience 124, 23–31. doi:10.1016/j.neuroscience.2003.10.038.
Feenstra, M. G., and Botterblom, M. H. (1996). Rapid sampling of
extracellular dopamine in the rat prefrontal cortex during food
consumption, handling and exposure to novelty. Brain Res
742, 17–24.
Feenstra, M. G., Botterblom, M. H., and Mastenbroek, S. (2000). Dopamine and
noradrenaline efflux in the prefrontal cortex in the light and dark
period: Effects of novelty and handling and comparison to the nucleus
accumbens. Neuroscience 100, 741–748.
Fiala, J. C., Grossberg, S., and Bullock, D. (1996). Metabotropic Glutamate Receptor Activation in Cerebellar
Purkinje Cells as Substrate for Adaptive Timing of the Classically
Conditioned Eye-Blink Response. J. Neurosci. 16,
3760–3774. Available at: http://www.jneurosci.org/content/16/11/3760.abstract?ijkey=697c406d79d57535ce2655e34eacf49875ac9778\&keytype2=tf\_ipsecsha.
Fidjeland, A. K., Roesch, E. B., Shanahan, M. P., and Luk, W. (2009).
NeMo: A Platform for Neural Modelling of Spiking
Neurons Using GPUs. in 2009 20th IEEE int. Conf. Appl. Syst.
Archit. process. (IEEE), 137–144. doi:10.1109/ASAP.2009.24.
Fields, H. L., Hjelmstad, G. O., Margolis, E. B., and Nicola, S. M.
(2007). Ventral tegmental area neurons in learned
appetitive behavior and positive reinforcement. Annu. Rev.
Neurosci. 30, 289–316. doi:10.1146/annurev.neuro.30.051606.094341.
Fieres, J., Schemmel, J., and Meier, K. (2008). Realizing biological
spiking network models in a configurable wafer-scale hardware system. in
Neural networks, 2008. IJCNN 2008. (IEEE world congress on
computational intelligence), 969–976. doi:10.1109/IJCNN.2008.4633916.
Fino, E., Glowinski, J., and Venance, L. (2005). Bidirectional activity-dependent plasticity at
corticostriatal synapses. J. Neurosci. 25, 11279–87.
doi:10.1523/JNEUROSCI.4476-05.2005.
Fiorillo, C. D., Newsome, W. T., and Schultz, W. (2008). The temporal precision of reward prediction in dopamine
neurons. Nat. Neurosci. doi:10.1038/nn.2159.
Fiorillo, C. D., Tobler, P. N., and Schultz, W. (2003). Discrete coding of reward probability and uncertainty by
dopamine neurons. Science 299, 1898–902. doi:10.1126/science.1077349.
Flaherty, A. W., and Graybiel, A. M. (1994). Input-output
organization of the sensorimotor striatum in the squirrel monkey.
J Neurosci 14, 599–610.
Frank, M. J., Loughry, B., and O’Reilly, R. C. (2001). Interactions
between frontal cortex and basal ganglia in working memory: A
computational model. Cogn Affect Behav Neurosci 1, 137–160.
Friston, K. (2010). The free-energy principle: A unified brain theory?
Nat Rev Neurosci 11, 127–138. doi:10.1038/nrn2787.
Fudge, J. L., and Haber, S. N. (2000). The central
nucleus of the amygdala projection to dopamine subpopulations in
primates. Neuroscience 97, 479–94. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10828531.
Funahashi, S., Bruce, C. J., and Goldman-Rakic, P. S. (1989). Mnemonic
coding of visual space in the monkey’s dorsolateral prefrontal cortex.
J Neurophysiol 61, 331–349.
Funahashi, S., Chafee, M. V., and Goldman-Rakic, P. S. (1993). Prefrontal neuronal activity in rhesus monkeys performing
a delayed anti-saccade task. Nature 365, 753–6. doi:10.1038/365753a0.
Furtak, S. C., Wei, S.-M., Agster, K. L., and Burwell, R. D. (2007).
Functional neuroanatomy of the parahippocampal region in the rat: The
perirhinal and postrhinal cortices. Hippocampus.
Fuster, J. M., and Alexander, G. E. (1971). Neuron activity related to
short-term memory. Science 173, 652–654.
Fuster, J. M., Bauer, R. H., and Jervey, J. P. (1981). Effects of cooling
inferotemporal cortex on performance of visual memory tasks. Exp
Neurol 71, 398–409.
Fuster, J. M., Bauer, R. H., and Jervey, J. P. (1985). Functional
interactions between inferotemporal and prefrontal cortex in a cognitive
task. Brain Res 330, 299–307.
Gallistel, C. R., and Gibbon, J. (2000). Time,
rate, and conditioning. Psychol. Rev. 107, 289–344.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/10789198.
Galtress, T., and Kirkpatrick, K. (2009). Reward
value effects on timing in the peak procedure. Learn.
Motiv. 40, 109–131. Available at: http://www.sciencedirect.com/science/article/pii/S0023969008000258.
Galtress, T., and Kirkpatrick, K. (2010). The role
of the nucleus accumbens core in impulsive choice, timing, and reward
processing. Behav. Neurosci. 124, 26–43. doi:10.1037/a0018464.
Galtress, T., Marshall, A. T., and Kirkpatrick, K. (2012). Motivation and timing: clues for modeling the reward
system. Behav. Processes 90, 142–53. doi:10.1016/j.beproc.2012.02.014.
Galvan, A., and Smith, Y. (2011). The primate thalamostriatal systems:
Anatomical organization, functional roles and possible involvement in
parkinson’s disease. Basal Ganglia 1, 179–189. doi:10.1016/j.baga.2011.09.001.
Geisler, S., Derst, C., Veh, R. W., and Zahm, D. S. (2007). Glutamatergic afferents of the ventral tegmental area in
the rat. J. Neurosci. 27, 5730–43. doi:10.1523/JNEUROSCI.0012-07.2007.
Geisler, S., and Wise, R. A. (2008). Functional
implications of glutamatergic projections to the ventral tegmental
area. Rev. Neurosci. 19, 227–44. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2735573\&tool=pmcentrez\&rendertype=abstract.
Gerfen, C. R., Engber, T. M., Mahan, L. C., Susel, Z., Chase, T. N.,
Monsma, F., Jr, et al. (1990). D1 and D2 dopamine
receptor-regulated gene expression of striatonigral and striatopallidal
neurons. Science 250, 1429–1432.
Gerstein, G. L., and Kiang, N. Y. (1960). An
approach to the quantitative analysis of electrophysiological data from
single neurons. Biophys. J. 1, 15–28. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1366309&tool=pmcentrez&rendertype=abstract.
Gerstner, W., Kempter, R., Hemmen, J. L. van, and Wagner, H. (1996).
A neuronal learning rule for sub-millisecond
temporal coding. Nature 383, 76–81. doi:10.1038/383076a0.
Gewaltig, M.-O., and Diesmann, M. (2007). NEST (NEural Simulation
Tool). Scholarpedia 2, 1430. doi:10.4249/scholarpedia.1430.
Gisiger, T., and Kerszberg, M. (2006). A model for integrating
elementary neural functions into delayed-response behavior. PLoS
Comput Biol 2, e25.
Goldman-Rakic, P. S., Lidow, M. S., Smiley, J. F., and Williams, M. S.
(1992). The anatomy of dopamine in monkey and human
prefrontal cortex. J. Neural Transm. Suppl. 36, 163–77.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/1527516.
Goldman-Rakic, P. S., Muly, E. C., and Williams, G. V. (2000). D1
receptors in prefrontal cells and circuits. Brain Res Rev 31,
295–301.
Goodman, D. F. M. (2010). Code generation: a
strategy for neural network simulators. Neuroinformatics
8, 183–96. doi:10.1007/s12021-010-9082-x.
Goodman, D., and Brette, R. (2008). Brian: a
simulator for spiking neural networks in python. Front.
Neuroinform. 2, 5. doi:10.3389/neuro.11.005.2008.
Gorelova, N., Seamans, J. K., and Yang, C. R. (2002). Mechanisms of
dopamine activation of fast-spiking interneurons that exert inhibition
in rat prefrontal cortex. J Neurophysiol 88, 3150–3166.
Goto, Y., and Grace, A. A. (2005). Dopaminergic
modulation of limbic and cortical drive of nucleus accumbens in
goal-directed behavior. Nat. Neurosci. 8, 805–12. doi:10.1038/nn1471.
Goulet, S., and Murray, E. A. (2001). Neural substrates of crossmodal
association memory in monkeys: The amygdala versus the anterior rhinal
cortex. Behav Neurosci 115, 271–284.
Grace, A. A. (1991). Phasic versus tonic dopamine release and the
modulation of dopamine system responsivity: A hypothesis for the
etiology of schizophrenia. Neuroscience 41, 1–24.
Groshek, F., Kerfoot, E., McKenna, V., Polackwich, A. S., Gallagher, M.,
and Holland, P. C. (2005). Amygdala central nucleus
function is necessary for learning, but not expression, of conditioned
auditory orienting. Behav. Neurosci. 119, 202–12. doi:10.1037/0735-7044.119.1.202.
Grossberg, S., and Schmajuk, N. A. (1989). Neural
dynamics of adaptive timing and temporal discrimination during
associative learning. Neural Networks 2, 79–102.
Available at: http://www.sciencedirect.com/science/article/pii/0893608089900269.
Gruber, A. J., Dayan, P., Gutkin, B. S., and Solla, S. A. (2006).
Dopamine modulation in the basal ganglia locks the gate to working
memory. J Comput Neurosci 20, 153–166.
Gruber, A. J., and McDonald, R. J. (2012). Context, emotion, and the
strategic pursuit of goals: Interactions among multiple brain systems
controlling motivated behavior. Front Behav Neurosci 6, 50.
doi:10.3389/fnbeh.2012.00050.
Gruber, A. J., Solla, S. A., Surmeier, D. J., and Houk, J. C. (2003).
Modulation of striatal single units by expected
reward: a spiny neuron model displaying dopamine-induced
bistability. J. Neurophysiol. 90, 1095–114. doi:10.1152/jn.00618.2002.
Guillery, R. W., and Sherman, S. M. (2002). Thalamic relay
functions and their role in corticocortical communication:
Generalizations from the visual system. Neuron 33, 163–175.
Gulley, J. M., Kosobud, A. E. K., and Rebec, G. V. (2002). Behavior-related
modulation of substantia nigra pars reticulata neurons in rats
performing a conditioned reinforcement task. Neuroscience
111, 337–349.
Gurney, K., Prescott, T. J., and Redgrave, P. (2001a). A computational
model of action selection in the basal ganglia. I. A new
functional anatomy. Biol Cybern 84, 401–410.
Gurney, K., Prescott, T. J., and Redgrave, P. (2001b). A computational
model of action selection in the basal ganglia. II.
Analysis and simulation of behaviour. Biol Cybern
84, 411–423.
Gutnikov, S. A., Ma, Y. Y., and Gaffan, D. (1997). Temporo-frontal
disconnection impairs visual-visual paired association learning but not
configural learning in macaca monkeys. Eur J Neurosci 9,
1524–1529.
Haber, S. N. (2003). The primate basal
ganglia: Parallel and integrative networks. J Chem
Neuroanat 26, 317–330.
Haber, S. N., Fudge, J. L., and McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an
ascending spiral from the shell to the dorsolateral striatum.
J. Neurosci. 20, 2369–82. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10704511.
Haber, S. N., and Knutson, B. (2010). The reward
circuit: linking primate anatomy and human imaging.
Neuropsychopharmacology 35, 4–26. doi:10.1038/npp.2009.129.
Hallanger, A. E., and Wainer, B. H. (1988). Ascending projections from the pedunculopontine tegmental
nucleus and the adjacent mesopontine tegmentum in the rat. J.
Comp. Neurol. 274, 483–515. doi:10.1002/cne.902740403.
Hamker, F. H. (2004a). A dynamic model of
how feature cues guide spatial attention. Vision Res 44,
501–521.
Hamker, F. H. (2004b). Predictions of a model of
spatial attention using sum- and max-pooling functions.
Neurocomputing 56, 329–343. doi:10.1016/j.neucom.2003.09.006.
Hamker, F. H. (2005a). The emergence of attention by population-based
inference and its role in distributed processing and cognitive control
of vision. J Comput Vis Image Underst 100, 64–106.
Hamker, F. H. (2005b). The reentry hypothesis: The putative interaction
of the frontal eye field, ventrolateral prefrontal cortex, and areas
V4, IT for attention and eye movement.
Cereb Cortex 15, 431–447.
Hazy, T. E., Frank, M. J., and O’Reilly, R. C. (2010). Neural mechanisms of acquired phasic dopamine responses
in learning. Neurosci. Biobehav. Rev. 34, 701–20. doi:10.1016/j.neubiorev.2009.11.019.
Hebb, D. O. (1949). The organization of
behavior: A neuropsychological theory. New York: Wiley.
Helie, S., Chakravarthy, S., and Moustafa, A. A. (2013). Exploring the
cognitive and motor functions of the basal ganglia: An integrative
review of computational cognitive neuroscience models. Front Comput
Neurosci 7, 174. doi:10.3389/fncom.2013.00174.
Hershey, T., Wu, J., Weaver, P. M., Perantie, D. C., Karimi, M., Tabbal,
S. D., et al. (2008). Unilateral vs. Bilateral STN DBS effects on
working memory and motor function in parkinson disease. Exp
Neurol 210, 402–408. doi:10.1016/j.expneurol.2007.11.011.
Hikosaka, O., Sakamoto, M., and Usui, S. (1989). Functional properties
of monkey caudate neurons. III. Activities
related to expectation of target and reward. J Neurophysiol 61,
814–832.
Hikosaka, O., Sesack, S. R., Lecourtier, L., and Shepard, P. D. (2008).
Habenula: crossroad between the basal ganglia and
the limbic system. J. Neurosci. 28, 11825–11829. doi:10.1523/JNEUROSCI.3463-08.2008.
Hines, M. L., and Carnevale, N. T. (1997). The
NEURON simulation environment. Neural Comput. 9,
1179–209. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9248061.
Hirata, A., and Castro-Alamancos, M. A. (2010). Neocortex network
activation and deactivation states controlled by the thalamus. J
Neurophysiol 103, 1147–1157. doi:10.1152/jn.00955.2009.
Hochreiter, S., and Schmidhuber, J. (1997). Long
short-term memory. Neural Comput. 9, 1735–80. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/9377276.
Hodgkin, A. L., and Huxley, A. F. (1952). A quantitative description of
membrane current and its application to conduction and excitation in
nerve. The Journal of physiology 117, 500–544. doi:10.1113/jphysiol.1952.sp004764.
Holland, P. C., and Gallagher, M. (2004). Amygdala–frontal interactions and reward
expectancy. Curr. Opin. Neurobiol. 14, 148–155.
Available at: http://www.sciencedirect.com/science/article/pii/S095943880400039X.
Hollerman, J. R., and Schultz, W. (1998). Dopamine
neurons report an error in the temporal prediction of reward during
learning. Nat. Neurosci. 1, 304–9. doi:10.1038/1124.
Holroyd, C. B., and Coles, M. G. H. (2002). The neural basis of
human error processing: Reinforcement learning, dopamine, and the
error-related negativity. Psychol Rev 109, 679–709.
Hong, S., and Hikosaka, O. (2008). The globus
pallidus sends reward-related signals to the lateral habenula.
Neuron 60, 720–9. doi:10.1016/j.neuron.2008.09.035.
Hong, S., Jhou, T. C., Smith, M., Saleem, K. S., and Hikosaka, O.
(2011). Negative reward signals from the lateral
habenula to dopamine neurons are mediated by rostromedial tegmental
nucleus in primates. J. Neurosci. 31, 11457–11471.
Available at: http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1384-11.2011.
Horel, J. A., Pytko-Joiner, D. E., Voytko, M. L., and Salsbury, K.
(1987). The performance of visual tasks while segments of the
inferotemporal cortex are suppressed by cold. Behav Brain Res
23, 29–42.
Horvitz, J. C. (2000). Mesolimbocortical and
nigrostriatal dopamine responses to salient non-reward events.
Neuroscience 96, 651–6. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10727783.
Horvitz, J. C. (2009). Stimulus-response and response-outcome learning
mechanisms in the striatum. Behav Brain Res 199, 129–140.
doi:10.1016/j.bbr.2008.12.014.
Houk, J. C., Adams, J. L., and Barto, A. G. (1995). “A model of
how the basal ganglia generate and use neural signal that predict
reinforcement,” in Models of information processing in the
basal ganglia, eds. J. C. Houk, J. L. Davis, and D. G. Beiser
(Cambridge, MA: The MIT Press).
Huang, Y. Y., and Kandel, E. R. (1995). D1/D5 receptor
agonists induce a protein synthesis-dependent late potentiation in the
CA1 region of the hippocampus. Proc Natl Acad Sci U S A 92,
2446–2450.
Humphries, M. D., Lepora, N., Wood, R., and Gurney, K. (2009). Capturing dopaminergic modulation and bimodal membrane
behaviour of striatal medium spiny neurons in accurate, reduced
models. Front. Comput. Neurosci. 3, 26. doi:10.3389/neuro.10.026.2009.
Humphries, M. D., and Prescott, T. J. (2010). The
ventral basal ganglia, a selection mechanism at the crossroads of space,
strategy, and reward. Prog. Neurobiol. 90, 385–417.
doi:10.1016/j.pneurobio.2009.11.003.
Hurd, Y. L., Suzuki, M., and Sedvall, G. C. (2001). D1 and
D2 dopamine receptor mRNA
expression in whole hemisphere sections of the human brain. J Chem
Neuroanat 22, 127–137.
Ibañez-Sandoval, O., Hernández, A., Florán, B., Galarraga, E., Tapia,
D., Valdiosera, R., et al. (2006). Control of the subthalamic
innervation of substantia nigra pars reticulata by D1 and D2 dopamine receptors. J
Neurophysiol 95, 1800–1811. doi:10.1152/jn.01074.2005.
Ikemoto, S. (2010). Brain reward circuitry beyond
the mesolimbic dopamine system: a neurobiological theory.
Neurosci Biobehav Rev 35, 129–150. doi:10.1016/j.neubiorev.2010.02.001.
Intrator, N., and Cooper, L. N. (1992). Objective
function formulation of the BCM theory of visual cortical plasticity:
Statistical connections, stability conditions. Neural
Networks 5, 3–17. doi:10.1016/S0893-6080(05)80003-6.
Ishikawa, M., Mu, P., Moyer, J. T., Wolf, J. A., Quock, R. M., Davies,
N. M., et al. (2009). Homeostatic synapse-driven membrane plasticity in
nucleus accumbens neurons. J Neurosci 29, 5820–5831. doi:10.1523/JNEUROSCI.5703-08.2009.
Ito, R., Robbins, T. W., McNaughton, B. L., and Everitt, B. J. (2006).
Selective excitotoxic lesions of the hippocampus
and basolateral amygdala have dissociable effects on appetitive cue and
place conditioning based on path integration in a novel Y-maze
procedure. Eur. J. Neurosci. 23, 3071–80. doi:10.1111/j.1460-9568.2006.04883.x.
Izhikevich, E. M. (2003). Simple model of spiking
neurons. IEEE Trans. Neural Netw. 14, 1569–72. doi:10.1109/TNN.2003.820440.
Izhikevich, E. M. (2007). Solving the distal reward
problem through linkage of STDP and dopamine signaling.
Cereb. Cortex 17, 2443–52. doi:10.1093/cercor/bhl152.
Izquierdo, A., Wiedholz, L. M., Millstein, R. A., Yang, R. J., Bussey,
T. J., Saksida, L. M., et al. (2006). Genetic and dopaminergic
modulation of reversal learning in a touchscreen-based operant procedure
for mice. Behav Brain Res 171, 181–188. doi:10.1016/j.bbr.2006.03.029.
Jhou, T. C., Fields, H. L., Baxter, M. G., Saper, C. B., and Holland, P.
C. (2009). The rostromedial tegmental nucleus
(RMTg), a GABAergic afferent to midbrain dopamine neurons, encodes
aversive stimuli and inhibits motor responses. Neuron
61, 786–800. doi:10.1016/j.neuron.2009.02.001.
Joel, D., Niv, Y., and Ruppin, E. (2002). Actor-critic models of the
basal ganglia: New anatomical and computational perspectives. Neur
Netw 15, 535–547.
Joel, D., and Weiner, I. (2000). The connections of
the dopaminergic system with the striatum in rats and primates: An
analysis with respect to the functional and compartmental organization
of the striatum. Neuroscience 96, 451–474.
Jonides, J., Schumacher, E. H., Smith, E. E., Koeppe, R. A., Awh, E.,
Reuter-Lorenz, P. A., et al. (1998). The role of parietal
cortex in verbal working memory. J Neurosci 18, 5026–5034.
Joshua, M., Adler, A., and Bergman, H. (2009). The dynamics of dopamine
in control of motor behavior. Current Opinion in Neurobiology
19, 615–620. doi:10.1016/j.conb.2009.10.001.
Joyner, D., Čertı́k, O., Meurer, A., and Granger, B. E. (2012). Open source computer algebra systems. ACM
Commun. Comput. Algebr. 45, 225. doi:10.1145/2110170.2110185.
Judice-Daher, D. M., and Bueno, J. L. O. (2013). Lesions of the nucleus accumbens disrupt reinforcement
omission effects in rats. Behav. Brain Res. 252, 439–43.
doi:10.1016/j.bbr.2013.06.028.
Kaplan, F., and Oudeyer, P.-Y. (2007). In search of the neural circuits
of intrinsic motivation. Front Neurosci 1, 225–236. doi:10.3389/neuro.01.1.1.017.2007.
Kelefouras, V., Kritikakou, A., Papadima, E., and Goutis, C. (2015).
A methodology for speeding up matrix vector
multiplication for single/multi-core architectures. J.
Supercomput. doi:10.1007/s11227-015-1409-9.
Keramati, M., and Gutkin, B. (2013). Imbalanced decision hierarchy in
addicts emerging from drug-hijacked dopamine spiraling circuit. PLoS
ONE 8. doi:10.1371/journal.pone.0061489.
Khamassi, M., and Humphries, M. D. (2012). Integrating
cortico-limbic-basal ganglia architectures for learning model-based and
model-free navigation strategies. Front Behav Neurosci 6, 79.
doi:10.3389/fnbeh.2012.00079.
Kincaid, A. E., Zheng, T., and Wilson, C. J. (1998). Connectivity and
convergence of single corticostriatal axons. J Neurosci 18,
4722–4731.
Kirkpatrick, K. (2013). Interactions of timing and
prediction error learning. Behav. Processes. doi:10.1016/j.beproc.2013.08.005.
Kirkpatrick, K., and Church, R. M. (2000). Stimulus and temporal cues in
classical conditioning. J Exp Psychol Anim Behav Process 26,
206–219.
Kita, H., Tachibana, Y., Nambu, A., and Chiken, S. (2005). Balance of
monosynaptic excitatory and disynaptic inhibitory responses of the
globus pallidus induced after stimulation of the subthalamic nucleus in
the monkey. J Neurosci 25, 8611–8619. doi:10.1523/JNEUROSCI.1719-05.2005.
Kita, H., Tokuno, H., and Nambu, A. (1999). Monkey globus
pallidus external segment neurons projecting to the neostriatum.
Neuroreport 10, 1467–1472.
Kleiner-Fisman, G., Herzog, J., Fisman, D. N., Tamma, F., Lyons, K. E.,
Pahwa, R., et al. (2006). Subthalamic nucleus deep brain stimulation:
Summary and meta-analysis of outcomes. Mov Disord 21 Suppl 14,
S290–S304. doi:10.1002/mds.20962.
Kobayashi, Y., and Okada, K.-I. (2007). Reward
prediction error computation in the pedunculopontine tegmental nucleus
neurons. Ann. N. Y. Acad. Sci. 1104, 310–23. doi:10.1196/annals.1390.003.
Koch, K. W., and Fuster, J. M. (1989). Unit activity in
monkey parietal cortex related to haptic perception and temporary
memory. Exp Brain Res 76, 292–306.
Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., and Ono, T.
(2001). Retrospective and prospective coding for
predicted reward in the sensory thalamus. Nature 412,
546–9. doi:10.1038/35087595.
Koo, J. W., Han, J.-S., and Kim, J. J. (2004). Selective neurotoxic lesions of basolateral and central
nuclei of the amygdala produce differential effects on fear
conditioning. J. Neurosci. 24, 7654–62. doi:10.1523/JNEUROSCI.1644-04.2004.
Kötter, R. (1994). Postsynaptic
integration of glutamatergic and dopaminergic signals in the
striatum. Prog Neurobiol 44, 163–196.
Krichmar, J. L. (2013). A neurorobotic platform to
test the influence of neuromodulatory signaling on anxious and curious
behavior. Front. Neurorobot. 7, 1. doi:10.3389/fnbot.2013.00001.
Krueger, K. A., and Dayan, P. (2009). Flexible shaping: How learning in
small steps helps. Cognition 110, 380–394. doi:10.1016/j.cognition.2008.11.014.
Kuhn, T. S. (1962). The structure of scientific revolutions.
1st ed. University of Chicago Press.
Kumar, A., Cardanobile, S., Rotter, S., and Aertsen, A. (2011). The role
of inhibition in generating and controlling parkinson’s disease
oscillations in the basal ganglia. Front Syst Neurosci 5, 86.
doi:10.3389/fnsys.2011.00086.
Kurzweil, R. (2005). The singularity is near. New York: Viking
Books.
Lammel, S., Lim, B. K., Ran, C., Huang, K. W., Betley, M. J., Tye, K.
M., et al. (2012). Input-specific control of reward
and aversion in the ventral tegmental area. Nature 491,
212–7. doi:10.1038/nature11527.
Landau, S. M., Lal, R., O’Neil, J. P., Baker, S., and Jagust, W. J.
(2009). Striatal dopamine and working memory. Cereb Cortex 19,
445–454. doi:10.1093/cercor/bhn095.
Lange, H., Thorner, G., and Hopf, A. (1976). [Morphometric-statistical
structure analysis of human striatum, pallidum and nucleus
su-thalamicus. III. Nucleus subthalamicus]. J Hirnforsch
17, 31–41.
Langley, P., Laird, J. E., and Rogers, S. (2009). Cognitive
architectures: Research issues and challenges. Cognitive Systems
Research 10, 141–160.
Lapicque, L. (1907). Recherches quantitatives sur l’excitation
électrique des nerfs traitée comme une polarisation. J. Physiol.
Pathol. Gen. 9, 620–635.
Lardeux, S., Pernaud, R., Paleressompoulle, D., and Baunez, C. (2009).
Beyond the reward pathway: coding reward magnitude
and error in the rat subthalamic nucleus. J.
Neurophysiol. 102, 2526–37. doi:10.1152/jn.91009.2008.
Lavezzi, H. N., and Zahm, D. S. (2011). The
mesopontine rostromedial tegmental nucleus: an integrative modulator of
the reward system. Basal Ganglia 1, 191–200. doi:10.1016/j.baga.2011.08.003.
Lawrence, A. D., Sahakian, B. J., and Robbins, T. W. (1998). Cognitive
functions and corticostriatal circuits: Insights from Huntington’s disease. Trends in Cognitive
Sciences 2, 379–388.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning.
Nature 521, 436–444. doi:10.1038/nature14539.
Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning applied to document
recognition. Proc. IEEE 86, 2278–2324. doi:10.1109/5.726791.
LeDoux, J. E. (2000). Emotion circuits in the
brain. Annu. Rev. Neurosci. 23, 155–84. doi:10.1146/annurev.neuro.23.1.155.
Lee, B., Groman, S., London, E. D., and Jentsch, J. D. (2007). Dopamine
D2/D3 receptors play a specific role in the reversal of a learned visual
discrimination in monkeys. Neuropsychopharmacology 32,
2125–2134. doi:10.1038/sj.npp.1301337.
Lee, D., and Chun, M. M. (2001). What are the units of visual short-term
memory, objects or spatial locations? Percept Psychophys 63,
253–257.
Lee, H. J., Wheeler, D. S., and Holland, P. C. (2011). Interactions between amygdala central nucleus and the
ventral tegmental area in the acquisition of conditioned cue-directed
behavior in rats. Eur. J. Neurosci. 33, 1876–84. doi:10.1111/j.1460-9568.2011.07680.x.
Lehky, S. R., and Tanaka, K. (2007). Enhancement of object
representations in primate perirhinal cortex during a visual
working-memory task. J Neurophysiol 97, 1298–1310.
Leung, L. S., and Yim, C. Y. (1993). Rhythmic
delta-frequency activities in the nucleus accumbens of anesthetized and
freely moving rats. Can. J. Physiol. Pharmacol. 71,
311–20. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8104675.
Levy, R., Friedman, H. R., Davachi, L., and Goldman-Rakic, P. S. (1997).
Differential
activation of the caudate nucleus in primates performing spatial and
nonspatial working memory tasks. J Neurosci 17, 3870–3882.
Levy, R., Hutchison, W. D., Lozano, A. M., and Dostrovsky, J. O. (2002).
Synchronized neuronal discharge in the basal ganglia of parkinsonian
patients is limited to oscillatory activity. J Neurosci 22,
2855–2861. doi:20026193.
Lewis, S. J. G., Dove, A., Robbins, T. W., Barker, R. A., and Owen, A.
M. (2004). Striatal contributions to working memory: A functional
magnetic resonance imaging study in humans. Eur J Neurosci 19,
755–760.
Linke, R., and Schwegler, H. (2000). Convergent and complementary
projections of the caudal paralaminar thalamic nuclei to rat temporal
and insular cortex. Cereb Cortex 10, 753–771.
Liu, Z., Richmond, B. J., Murray, E. A., Saunders, R. C., Steenrod, S.,
Stubblefield, B. K., et al. (2004). DNA targeting of rhinal
cortex D2 receptor protein reversibly blocks learning of
cues that predict reward. Proc Natl Acad Sci U S A 101,
12336–12341.
Ljungberg, T., Apicella, P., and Schultz, W. (1992). Responses of monkey dopamine neurons during learning of
behavioral reactions. J. Neurophysiol. 67, 145–63.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/1552316.
Lokwan, S. J., Overton, P. G., Berry, M. S., and Clark, D. (1999). Stimulation of the pedunculopontine tegmental nucleus in
the rat produces burst firing in A9 dopaminergic neurons.
Neuroscience 92, 245–54. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10392847.
Luciana, M., and Nelson, C. A. (1998). The functional
emergence of prefrontally-guided working memory systems in four- to
eight-year-old children. Neuropsychologia 36, 273–293.
Luck, S. J., and Vogel, E. K. (1997). The capacity of visual working
memory for features and conjunctions. Nature 390, 279–281.
Ludvig, E. A., Conover, K., and Shizgal, P. (2007). The effects of reinforcer magnitude on timing in
rats. J. Exp. Anal. Behav. 87, 201–18. Available at: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1832167\&tool=pmcentrez\&rendertype=abstract.
Ludvig, E. A., Sutton, R. S., and Kehoe, E. J. (2008). Stimulus representation and the timing of
reward-prediction errors in models of the dopamine system.
Neural Comput. 20, 3034–54. doi:10.1162/neco.2008.11-07-654.
Ludvig, E. A., Sutton, R. S., Verbeek, E., and Kehoe, E. J. (2009).
A computational model of hippocampal function in
trace conditioning. Adv. Neural Inf. Process. Syst. 21,
993—–1000.
Lustig, C., Matell, M. S., and Meck, W. H. (2005). Not "just" a coincidence: Frontal-striatal interactions
in working memory and interval timing. Memory 3/4,
441–448. Available at: http://www.bibsonomy.org/bibtex/2ccb5a59033ebd0fad86dc4267f1547dc/brian.mingus.
Luzardo, A., Ludvig, E. A., and Rivest, F. (2013). An adaptive drift-diffusion model of interval timing
dynamics. Behav. Processes 95, 90–99. Available at: http://www.sciencedirect.com/science/article/pii/S0376635713000247.
Maass, W., and Zador, A. M. (1999). Dynamic stochastic
synapses as computational units. Neural Comput 11, 903–917.
Mailly, P., Charpier, S., Menetrey, A., and Deniau, J.-M. (2003). Three-dimensional
organization of the recurrent axon collateral network of the substantia
nigra pars reticulata neurons in the rat. J Neurosci 23,
5247–5257.
Mancall, E. L., and Brock, D. G. (2011). Gray’s clinical
neuroanatomy: The anatomic basis for clinical neuroscience.
Elsevier Health Sciences.
Maren, S., and Quirk, G. J. (2004). Neuronal
signalling of fear memory. Nat. Rev. Neurosci. 5,
844–52. doi:10.1038/nrn1535.
Markram, H. (2006). The blue brain project. Nat Rev Neurosci 7,
153–60.
Markram, H., Lubke, J., Frotscher, M., and Sakmann, B. (1997). Regulation of Synaptic Efficacy by Coincidence of
Postsynaptic APs and EPSPs. Science (80-. ). 275,
213–215. doi:10.1126/science.275.5297.213.
Markram, H., Wang, Y., and Tsodyks, M. (1998). Differential signaling via the same axon of neocortical
pyramidal neurons. Proc. Natl. Acad. Sci. 95, 5323–5328.
doi:10.1073/pnas.95.9.5323.
Martin-Soelch, C., Linthicum, J., and Ernst, M. (2007). Appetitive conditioning: neural bases and implications
for psychopathology. Neurosci. Biobehav. Rev. 31,
426–40. doi:10.1016/j.neubiorev.2006.11.002.
Matell, M. S., and Meck, W. H. (2000). Neuropsychological mechanisms of interval timing
behavior. BioEssays 22, 94–103. Available at: http://www.bibsonomy.org/bibtex/23ff219ef9d6fd6b6214587ad1254f7ed/brian.mingus.
Matell, M. S., and Meck, W. H. (2004). Cortico-striatal circuits and interval timing:
coincidence detection of oscillatory processes. Cogn. Brain
Res. 21, 139–170. Available at: http://www.sciencedirect.com/science/article/pii/S0926641004001697.
Matsuda, W., Furuta, T., Nakamura, K. C., Hioki, H., Fujiyama, F., Arai,
R., et al. (2009). Single nigrostriatal dopaminergic neurons form widely
spread and highly dense axonal arborizations in the neostriatum. J
Neurosci 29, 444–453. doi:10.1523/JNEUROSCI.4029-08.2009.
Matsumoto, M., and Hikosaka, O. (2007). Lateral
habenula as a source of negative reward signals in dopamine
neurons. Nature 447, 1111–5. doi:10.1038/nature05860.
Matsumoto, M., and Hikosaka, O. (2009). Two types
of dopamine neuron distinctly convey positive and negative motivational
signals. Nature 459, 837–41. doi:10.1038/nature08028.
McClure, S. M., Berns, G. S., and Montague, P. R. (2003). Temporal prediction errors in a passive learning task
activate human striatum. Neuron 38, 339–46. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/12718866.
McCormick, D. A., Connors, B. W., Lighthall, J. W., and Prince, D. A.
(1985). Comparative electrophysiology of pyramidal and sparsely spiny
stellate neurons of the neocortex. J Neurophysiol 54, 782–806.
McDannald, M., Kerfoot, E., Gallagher, M., and Holland, P. C. (2004).
Amygdala central nucleus function is necessary for
learning but not expression of conditioned visual orienting.
Eur. J. Neurosci. 20, 240–8. doi:10.1111/j.0953-816X.2004.03458.x.
McGinty, V. B., and Grace, A. A. (2009). Activity-dependent depression of medial prefrontal cortex
inputs to accumbens neurons by the basolateral amygdala.
Neuroscience 162, 1429–36. doi:10.1016/j.neuroscience.2009.05.028.
McNab, F., and Klingberg, T. (2008). Prefrontal cortex and basal ganglia
control access to working memory. Nat Neurosci 11, 103–107.
doi:10.1038/nn2024.
Meck, W. H. (2006). Neuroanatomical localization of
an internal clock: a functional link between mesolimbic, nigrostriatal,
and mesocortical dopaminergic systems. Brain Res. 1109,
93–107. doi:10.1016/j.brainres.2006.06.031.
Melchitzky, D. S., and Lewis, D. A. (2001). Dopamine
transporter-immunoreactive axons in the mediodorsal thalamic nucleus of
the macaque monkey. Neuroscience 103, 1033–1042.
Mena-Segovia, J., Bolam, J. P., and Magill, P. J. (2004).
Pedunculopontine nucleus and basal ganglia: Distant relatives or part of
the same family? Trends Neurosci 27, 585–588. doi:10.1016/j.tins.2004.07.009.
Meunier, M., Bachevalier, J., Mishkin, M., and Murray, E. A. (1993).
Effects on visual recognition of combined and separate ablations of the
entorhinal and perirhinal cortex in rhesus monkeys. J Neurosci
13, 5418–5432.
Middleton, F. A., and Strick, P. L. (1996). The temporal lobe is
a target of output from the basal ganglia. Proc Natl Acad Sci U
S A 93, 8683–8687.
Miller, E. K., and Cohen, J. D. (2001). An integrative theory of
prefrontal cortex function. Annu Rev Neurosci 24, 167–202.
Miller, E. K., Erickson, C., and Desimone, R. (1996). Neural mechanisms
of visual working memory in prefrontal cortex of the macaque. J
Neurosci 16, 5154–5167.
Miller, E. K., Gochin, P. M., and Gross, C. G. (1993a). Suppression of
visual responses of neurons in inferior temporal cortex of the awake
macaque monkey by addition of a second stimulus. Brain Res 616,
25–29.
Miller, E. K., Li, L., and Desimone, R. (1993b). Activity of neurons in
anterior inferior temporal cortex during a short-term memory task. J
Neurosci 13, 1460–1478.
Minsky, M. (1968). Semantic information processing. Cambridge,
MA: MIT Press.
Mirenowicz, J., and Schultz, W. (1994). Importance of
unpredictability for reward responses in primate dopamine neurons.
J Neurophysiol 72, 1024–1027.
Mirolli, M., Santucci, V. G., and Baldassarre, G. (2013). Phasic
dopamine as a prediction error of intrinsic and extrinsic reinforcements
driving both action acquisition and reward maximization: A simulated
robotic study. Neural Netw 39, 40–51. doi:10.1016/j.neunet.2012.12.012.
Miyachi, S., Lu, X., Imanishi, M., Sawada, K., Nambu, A., and Takada, M.
(2006). Somatotopically arranged inputs from putamen and subthalamic
nucleus to primary motor cortex. Neurosci Res 56, 300–308.
doi:10.1016/j.neures.2006.07.012.
Mogami, T., and Tanaka, K. (2006). Reward association affects neuronal
responses to visual stimuli in macaque te and perirhinal cortices. J
Neurosci 26, 6761–6770.
Momiyama, T., Sim, J. A., and Brown, D. A. (1996). Dopamine
D1-like receptor-mediated presynaptic inhibition of
excitatory transmission onto rat magnocellular basal forebrain neurones.
J Physiol 495 ( Pt 1), 97–106.
Mongillo, G., Amit, D. J., and Brunel, N. (2003). Retrospective and
prospective persistent activity induced by hebbian learning in a
recurrent cortical network. Eur J Neurosci 18, 2011–2024.
Montague, P. R., Dayan, P., and Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on
predictive Hebbian learning. J. Neurosci. 16, 1936–47.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/8774460.
Morita, M., and Suemitsu, A. (2002). Computational
modeling of pair-association memory in inferior temporal cortex.
Brain Res Cogn Brain Res 13, 169–178.
Morris, R. W., and Bouton, M. E. (2006). Effect of
unconditioned stimulus magnitude on the emergence of conditioned
responding. J. Exp. Psychol. Anim. Behav. Process. 32,
371–85. doi:10.1037/0097-7403.32.4.371.
Morrison, A., Straube, S., Plesser, H. E., and Diesmann, M. (2007).
Exact subthreshold integration with continuous
spike times in discrete-time neural network simulations.
Neural Comput. 19, 47–79. doi:10.1162/neco.2007.19.1.47.
Muller, J. F., Mascagni, F., and McDonald, A. J. (2007). Postsynaptic targets of somatostatin-containing
interneurons in the rat basolateral amygdala. J. Comp.
Neurol. 500, 513–529. doi:10.1002/cne.21185.
Murray, E. A. (2007). The amygdala, reward and
emotion. Trends Cogn. Sci. 11, 489–97. doi:10.1016/j.tics.2007.08.013.
Murray, E. A., Gaffan, D., and Mishkin, M. (1993). Neural substrates of
visual stimulus-stimulus association in rhesus monkeys. J
Neurosci 13, 4549–4561.
Murray, E. A., and Richmond, B. J. (2001). Role of perirhinal cortex in
object perception, memory, and associations. Curr Opin
Neurobiol 11, 188–193.
Murray, and Bussey (1999). Perceptual-mnemonic
functions of the perirhinal cortex. Trends Cogn Sci 3,
142–151.
Mushiake, H., and Strick, P. L. (1995). Pallidal neuron
activity during sequential arm movements. J Neurophysiol
74, 2754–2758.
Mutch, J., Knoblich, U., and Poggio, T. (2010). CNS: a GPU-based framework for simulating
cortically-organized networks. Cambridge, MA:
MIT-CSAIL-TR-2010-013 / CBCL-286, Massachusetts Institute of Technology.
N’guyen, S., Thurat, C., and Girard, B. (2014). Saccade learning with
concurrent cortical and subcortical basal ganglia loops. Front
Comput Neurosci 8, 48. doi:10.3389/fncom.2014.00048.
Nakahara, H., Doya, K., and Hikosaka, O. (2001). Parallel cortico-basal
ganglia mechanisms for acquisition and execution of visuomotor sequences
- a computational approach. J Cogn Neurosci 13, 626–647.
Nakamura, K., and Kubota, K. (1995). Mnemonic firing of neurons in the
monkey temporal pole during a visual recognition memory task. J
Neurophysiol 74, 162–178.
Nakamura, K., Matsumoto, K., Mikami, A., and Kubota, K. (1994). Visual response
properties of single neurons in the temporal pole of behaving
monkeys. J Neurophysiol 71, 1206–1221.
Nakamura, K., and Ono, T. (1986). Lateral
hypothalamus neuron involvement in integration of natural and artificial
rewards and cue signals. J. Neurophysiol. 55, 163–81.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/3512788.
Nambu, A. (2011). Somatotopic organization of the primate basal ganglia.
Front Neuroanat 5, 26. doi:10.3389/fnana.2011.00026.
Nambu, A., Kaneda, K., Tokuno, H., and Takada, M. (2002). Organization of
corticostriatal motor inputs in monkey putamen. J
Neurophysiol 88, 1830–1842.
Nawrot, M., Aertsen, A., and Rotter, S. (1999). Single-trial estimation of neuronal firing rates: from
single-neuron spike trains to population activity. J.
Neurosci. Methods 94, 81–92. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10638817.
Naya, Y., Yoshida, M., Takeda, M., Fujimichi, R., and Miyashita, Y.
(2003). Delay-period activities in two subdivisions of monkey
inferotemporal cortex during pair association memory task. Eur J
Neurosci 18, 2915–2918.
Nicola, S. M. (2007). The nucleus accumbens as part
of a basal ganglia action selection circuit.
Psychopharmacology (Berl). 191, 521–50. doi:10.1007/s00213-006-0510-4.
Nicola, S. M., Surmeier, J., and Malenka, R. C. (2000). Dopaminergic
modulation of neuronal excitability in the striatum and nucleus
accumbens. Annu Rev Neurosci 23, 185–215.
Nishijo, H., Hori, E., Tazumi, T., and Ono, T. (2008). Neural correlates to both emotion and cognitive functions
in the monkey amygdala. Behav. Brain Res. 188, 14–23.
doi:10.1016/j.bbr.2007.10.013.
Nishijo, H., Ono, T., Uwano, T., Kondoh, T., and Torii, K. (2000). Hypothalamic and amygdalar neuronal responses to various
tastant solutions during ingestive behavior in rats. J.
Nutr. 130, 954S–9S. Available at: http://www.ncbi.nlm.nih.gov/pubmed/10736360.
Niv, Y., Daw, N. D., Joel, D., and Dayan, P. (2007). Tonic dopamine: opportunity costs and the control of
response vigor. Psychopharmacology (Berl). 191, 507–20.
doi:10.1007/s00213-006-0502-4.
Nordlie, E., Gewaltig, M.-O., and Plesser, H. E. (2009). Towards reproducible descriptions of neuronal network
models. PLoS Comput. Biol. 5, e1000456. doi:10.1371/journal.pcbi.1000456.
O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., and Dolan, R.
J. (2003). Temporal difference models and
reward-related learning in the human brain. Neuron 38,
329–37. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12718865.
O’Donnell, P., and Grace, A. A. (1995). Synaptic
interactions among excitatory afferents to nucleus accumbens neurons:
hippocampal gating of prefrontal cortical input. J.
Neurosci. 15, 3622–39. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7751934.
O’Reilly, R. C., and Frank, M. J. (2006). Making
working memory work: a computational model of learning in the prefrontal
cortex and basal ganglia. Neural Comput. 18, 283–328.
doi:10.1162/089976606775093909.
O’Reilly, R. C., Frank, M. J., Hazy, T. E., and Watz, B. (2007).
PVLV: The primary value and learned value pavlovian
learning algorithm. Behav Neurosci 121, 31–49.
Obeso, J. A., Rodriguez-Oroz, M. C., Javier Blesa, F., and Guridi, J.
(2006). The globus pallidus pars externa and parkinson’s disease. Ready
for prime time? Exp Neurol 202, 1–7. doi:10.1016/j.expneurol.2006.07.004.
Ohbayashi, M., Ohki, K., and Miyashita, Y. (2003). Conversion of working
memory to motor sequence in the monkey premotor cortex. Science
301, 233–236.
Oja, E. (1982). A simplified neuron model as a
principal component analyzer. J. Math. Biol. 15, 267–73.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/7153672.
Olshausen, B. A., and Field, D. J. (1997). Sparse coding with an
overcomplete basis set: A strategy employed by V1? Vision
Res 37, 3311–3325.
Ono, T., Nishijo, H., and Uwano, T. (1995). Amygdala role in conditioned associative learning.
Prog. Neurobiol. 46, 401–422. Available at: http://www.sciencedirect.com/science/article/pii/030100829500008J.
Oprisan, S. A., and Buhusi, C. V. (2011). Modeling
pharmacological clock and memory patterns of interval timing in a
striatal beat-frequency model with realistic, noisy neurons.
Front. Integr. Neurosci. 5, 52. doi:10.3389/fnint.2011.00052.
Oudeyer, P.-Y., and Kaplan, F. (2007). What is intrinsic motivation? A
typology of computational approaches. Front Neurorobot 1, 6.
doi:10.3389/neuro.12.006.2007.
Owen, A. M., Herrod, N. J., Menon, D. K., Clark, J. C., Downey, S. P.,
Carpenter, T. A., et al. (1999). Redefining the
functional organization of working memory processes within human lateral
prefrontal cortex. Eur J Neurosci 11, 567–574.
Packard, M. G., and Knowlton, B. J. (2002). Learning and memory
functions of the basal ganglia. Annu Rev Neurosci 25, 563–593.
doi:10.1146/annurev.neuro.25.112701.142937.
Pan, W.-X., and Hyland, B. I. (2005). Pedunculopontine tegmental nucleus controls conditioned
responses of midbrain dopamine neurons in behaving rats. J.
Neurosci. 25, 4725–32. doi:10.1523/JNEUROSCI.0277-05.2005.
Pan, W.-X., Schmidt, R., Wickens, J. R., and Hyland, B. I. (2005).
Dopamine cells respond to predicted events during classical
conditioning: Evidence for eligibility traces in the reward-learning
network. J Neurosci 25, 6235–6242. doi:10.1523/JNEUROSCI.1478-05.2005.
Pape, H.-C., and Pare, D. (2010). Plastic synaptic
networks of the amygdala for the acquisition, expression, and extinction
of conditioned fear. Physiol. Rev. 90, 419–63. doi:10.1152/physrev.00037.2009.
Parent, A., and Hazrati, L. N. (1995a). Functional anatomy of the basal
ganglia. I. The cortico-basal ganglia-thalamo-cortical
loop. Brain Res Brain Res Rev 20, 91–127.
Parent, A., and Hazrati, L. N. (1995b). Functional anatomy of the basal
ganglia. II. The place of subthalamic nucleus and external
pallidum in basal ganglia circuitry. Brain Res Brain Res Rev
20, 128–54.
Parker, A., Eacott, M. J., and Gaffan, D. (1997). The recognition
memory deficit caused by mediodorsal thalamic lesion in non-human
primates: A comparison with rhinal cortex lesion. Eur J
Neurosci 9, 2423–2431.
Partiot, A., Vérin, M., Pillon, B., Teixeira-Ferreira, C., Agid, Y., and
Dubois, B. (1996). Delayed response
tasks in basal ganglia lesions in man: Further evidence for a
striato-frontal cooperation in behavioural adaptation.
Neuropsychologia 34, 709–721.
Pennartz, C. M. (1995). The ascending
neuromodulatory systems in learning by reinforcement: Comparing
computational conjectures with experimental findings. Brain Res
Brain Res Rev 21, 219–245.
Petrides, M. (2000). Dissociable roles of
mid-dorsolateral prefrontal and anterior inferotemporal cortex in visual
working memory. J Neurosci 20, 7496–7503.
Pihlajamäki, M., Tanila, H., Hänninen, T., Könönen, M., Mikkonen, M.,
Jalkanen, V., et al. (2003). Encoding of novel picture pairs activates
the perirhinal cortex: An fMRI study.
Hippocampus 13, 67–80.
Plenz, D., and Aertsen, A. (1996). Neural dynamics in
cortex-striatum co-cultures–i. Anatomy and electrophysiology of neuronal
cell types. Neuroscience 70, 861–891.
Plenz, D., and Kital, S. T. (1999). A basal ganglia pacemaker formed by
the subthalamic nucleus and external globus pallidus. Nature
400, 677–682. doi:10.1038/23281.
Pozo, K., and Goda, Y. (2010). Unraveling mechanisms of homeostatic
synaptic plasticity. Neuron 66, 337–351. doi:10.1016/j.neuron.2010.04.028.
Price, T. F., Peterson, C. K., and Harmon-Jones, E. (2012). The emotive
neuroscience of embodiment. Motivation and Emotion 36, 27–37.
doi:10.1007/s11031-011-9258-1.
Ranganath, C. (2006). Working memory for visual objects: Complementary
roles of inferior temporal, medial temporal, and prefrontal cortex.
Neurosci 139, 277–289.
Ranganath, C., Cohen, M. X., Dam, C., and D’Esposito, M. (2004).
Inferior temporal, prefrontal, and hippocampal contributions to visual
working memory maintenance and associative memory retrieval. J
Neurosci 24, 3917–3925.
Ranganath, C., and D’Esposito, M. (2005). Directing the mind’s eye:
Prefrontal, inferior and medial temporal mechanisms for visual working
memory. Curr Opin Neurobiol 15, 175–182.
Rao, R. P. N. (2010). Decision making under
uncertainty: a neural model based on partially observable markov
decision processes. Front. Comput. Neurosci. 4, 146.
doi:10.3389/fncom.2010.00146.
Rast, A., Galluppi, F., Davies, S., Plana, L., Patterson, C., Sharp, T.,
et al. (2011). Concurrent heterogeneous neural model simulation on
real-time neuromimetic hardware. Neural Networks 24, 961–978.
doi:http://dx.doi.org/10.1016/j.neunet.2011.06.014.
Raybuck, J. D., and Lattal, K. M. (2013). Bridging
the interval: Theory and Neurobiology of Trace Conditioning.
Behav. Processes. doi:10.1016/j.beproc.2013.08.016.
Redgrave, P., and Gurney, K. (2006). The short-latency dopamine signal:
A role in discovering novel actions? Nat Rev Neurosci 7,
967–975.
Redgrave, P., Gurney, K., and Reynolds, J. (2008). What is reinforced by phasic dopamine signals?
Brain Res. Rev. 58, 322–39. doi:10.1016/j.brainresrev.2007.10.007.
Redgrave, P., Prescott, T. J., and Gurney, K. (1999). Is the
short-latency dopamine response too short to signal reward error?
Trends Neurosci 22, 146–151.
Redgrave, P., Rodriguez, M., Smith, Y., Rodriguez-Oroz, M. C., Lehericy,
S., Bergman, H., et al. (2010). Goal-directed and habitual control in
the basal ganglia: Implications for parkinson’s disease. Nat Rev
Neurosci 11, 760–772. doi:10.1038/nrn2915.
Rempel-Clower, N. L., and Barbas, H. (2000). The laminar pattern of
connections between prefrontal and anterior temporal cortices in the
rhesus monkey is related to cortical structure and function. Cereb
Cortex 10, 851–865.
Repovs, G., and Baddeley, A. (2006). The multi-component model of
working memory: Explorations in experimental cognitive psychology.
Neuroscience 139, 5–21. doi:10.1016/j.neuroscience.2005.12.061.
Reutimann, J., Yakovlev, V., Fusi, S., and Senn, W. (2004). Climbing neuronal activity as an event-based cortical
representation of time. J. Neurosci. 24, 3295–303.
doi:10.1523/JNEUROSCI.4098-03.2004.
Reynolds, J. N. J., and Wickens, J. R. (2002). Dopamine-dependent plasticity of corticostriatal
synapses. Neural Networks 15, 507–521. Available at: http://www.sciencedirect.com/science/article/pii/S089360800200045X.
Reynolds, J. N., Hyland, B. I., and Wickens, J. R. (2001). A cellular
mechanism of reward-related learning. Nature 413, 67–70. doi:10.1038/35092560.
Reynolds, J. N., and Wickens, J. R. (2000). Substantia nigra
dopamine regulates synaptic plasticity and membrane potential
fluctuations in the rat neostriatum, in vivo. Neuroscience
99, 199–203.
Riesenhuber, M., and Poggio, T. (1999). Hierarchical models of object recognition in
cortex. Nat. Neurosci. 2, 1019–25. doi:10.1038/14819.
Rivest, F., Kalaska, J. F., and Bengio, Y. (2010). Alternative time representation in dopamine
models. J. Comput. Neurosci. 28, 107–30. doi:10.1007/s10827-009-0191-1.
Rivest, F., Kalaska, J. F., and Bengio, Y. (2013). Conditioning and time representation in long short-term
memory networks. Biol. Cybern. doi:10.1007/s00422-013-0575-1.
Robbins, T. W., and Everitt, B. J. (1996). Neurobehavioural mechanisms of reward and
motivation. Curr. Opin. Neurobiol. 6, 228–36. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/8725965.
Rodriguez-Oroz, M. C., Jahanshahi, M., Krack, P., Litvan, I., Macias,
R., Bezard, E., et al. (2009). Initial clinical manifestations of
parkinson’s disease: Features and pathophysiological mechanisms.
Lancet Neurol 8, 1128–1139. doi:10.1016/S1474-4422(09)70293-5.
Rolls, E. T. (2000). Hippocampo-cortical and cortico-cortical
backprojections. Hippocampus 10, 380–388.
Rolls, E., and Deco, G. (2001). Computational neuroscience of
vision. Oxford Univ. Press.
Romanski, L. M. (2007). Representation and integration of auditory and
visual stimuli in the primate ventral lateral prefrontal cortex.
Cereb Cortex 17 Suppl 1, i61–i69. doi:10.1093/cercor/bhm099.
Rose, J., Schmidt, R., Grabemann, M., and Güntürkün, O. (2009). Theory meets pigeons: the influence of reward-magnitude
on discrimination-learning. Behav. Brain Res. 198,
125–9. doi:10.1016/j.bbr.2008.10.038.
Rossum, M. C. W. van, and Turrigiano, G. G. (2001). Correlation based
learning from spike timing dependent plasticity. Neurocomputing
38-40, 409–415.
Rougier, N. P. (2009). Implicit and explicit representations. Neural
Netw 22, 155–160. doi:10.1016/j.neunet.2009.01.008.
Rougier, N. P., and Fix, J. (2012). DANA:
distributed numerical and adaptive modelling framework.
Network 23, 237–53. doi:10.3109/0954898X.2012.721573.
Rougier, N. P., Noelle, D. C., Braver, T. S., Cohen, J. D., and
O’Reilly, R. C. (2005). Prefrontal cortex and flexible cognitive
control: Rules without symbols. Proc Natl Acad Sci U S A 102,
7338–7343. doi:10.1073/pnas.0502455102.
Rougier, N. P., and Vitay, J. (2006). Emergence of attention within a
neural population. Neur Netw 19, 573–581.
Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., and Passingham,
R. E. (2000). The
prefrontal cortex: Response selection or maintenance within working
memory? Science 288, 1656–1660.
Rueda-Orozco, P. E., Mendoza, E., Hernandez, R., Aceves, J. J.,
Ibanez-Sandoval, O., Galarraga, E., et al. (2009). Diversity in
long-term synaptic plasticity at inhibitory synapses of striatal spiny
neurons. Learn Mem 16, 474–478. doi:10.1101/lm.1439909.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986).
“Learning internal representations by error propagation,”
in Parallel distributed processing: Explorations in the
microstructure of cognition, eds. D. E. Rumelhart and J. L.
McClelland (Cambridge, MA: MIT Press), 318–362.
Sah, P., Faber, E. S. L., Lopez De Armentia, M., and Power, J. (2003).
The amygdaloid complex: anatomy and
physiology. Physiol. Rev. 83, 803–34. doi:10.1152/physrev.00002.2003.
Sakai, K., and Miyashita, Y. (1991). Neural organization for the
long-term memory of paired associates. Nature 354, 152–155.
doi:10.1038/354152a0.
Samejima, K., and Doya, K. (2007). Multiple
representations of belief states and action values in corticobasal
ganglia loops. Ann. N. Y. Acad. Sci. 1104, 213–28.
doi:10.1196/annals.1390.024.
Sánchez-González, M. A., Garcı́a-Cabezas, M. A., Rico, B., and Cavada, C.
(2005). The primate thalamus is a key target for brain dopamine. J
Neurosci 25, 6076–6083. doi:10.1523/JNEUROSCI.0968-05.2005.
Schiller, J., Major, G., Koester, H. J., and Schiller, Y. (2000).
NMDA spikes in basal dendrites of cortical pyramidal
neurons. Nature 404, 285–289.
Schroll, H., Beste, C., and Hamker, F. H. (2015). Combined lesions of
direct and indirect basal ganglia pathways but not changes in dopamine
levels explain learning deficits in patients with huntington’s disease.
Eur J Neurosci 41, 1227–1244. doi:10.1111/ejn.12868.
Schroll, H., Vitay, J., and Hamker, F. H. (2012). Working memory and response selection: a computational
account of interactions among cortico-basalganglio-thalamic
loops. Neural Netw. 26, 59–74. doi:10.1016/j.neunet.2011.10.008.
Schroll, H., Vitay, J., and Hamker, F. H. (2014). Dysfunctional and compensatory synaptic plasticity in
Parkinson’s disease. Eur. J. Neurosci. 39, 688–702.
doi:10.1111/ejn.12434.
Schultz, W. (1998). Predictive reward signal of dopamine neurons. J
Neurophysiol 80, 1–27.
Schultz, W., Apicella, P., and Ljungberg, T. (1993). Responses of monkey dopamine neurons to reward and
conditioned stimuli during successive steps of learning a delayed
response task. J. Neurosci. 13, 900–13. Available at: http://www.ncbi.nlm.nih.gov/pubmed/8441015.
Schultz, W., Apicella, P., Scarnati, E., and Ljungberg, T. (1992). Neuronal activity in monkey ventral striatum related to
the expectation of reward. J. Neurosci. 12, 4595–610.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/1464759.
Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction and reward.
Science 275, 1593–9. Available at: http://www.ncbi.nlm.nih.gov/pubmed/9054347.
Seamans, J. K., and Yang, C. R. (2004). The
principal features and mechanisms of dopamine modulation in the
prefrontal cortex. Prog. Neurobiol. 74, 1–58. doi:10.1016/j.pneurobio.2004.05.006.
Searle, J. R. (1980). Minds, brains, and programs. Behavioral and
Brain Sciences 3, 417–424.
Seger, C. A. (2008). How do the basal ganglia contribute to
categorization? Their roles in generalization, response
selection, and learning via feedback. Neurosci Biobehav Rev 32,
265–278. doi:10.1016/j.neubiorev.2007.07.010.
Seger, C. A., and Spiering, B. J. (2011). A critical review of habit
learning and the basal ganglia. Front Syst Neurosci 5, 66.
doi:10.3389/fnsys.2011.00066.
Selemon, L. D., and Goldman-Rakic, P. S. (1985). Longitudinal
topography and interdigitation of corticostriatal projections in the
rhesus monkey. J Neurosci 5, 776–794.
Semba, K., and Fibiger, H. C. (1992). Afferent
connections of the laterodorsal and the pedunculopontine tegmental
nuclei in the rat: a retro- and antero-grade transport and
immunohistochemical study. J. Comp. Neurol. 323,
387–410. doi:10.1002/cne.903230307.
Sesack, S. R., and Grace, A. A. (2010). Cortico-Basal Ganglia reward network:
microcircuitry. Neuropsychopharmacology 35, 27–47.
doi:10.1038/npp.2009.93.
Shen, W., Flajolet, M., Greengard, P., and Surmeier, D. J. (2008). Dichotomous dopaminergic control of striatal synaptic
plasticity. Science 321, 848–51. doi:10.1126/science.1160575.
Shimokawa, T., and Shinomoto, S. (2009). Estimating
instantaneous irregularity of neuronal firing. Neural
Comput. 21, 1931–51. doi:10.1162/neco.2009.08-08-841.
Simen, P., Balci, F., Souza, L. de, Cohen, J. D., and Holmes, P. (2011).
A model of interval timing by neural
integration. J. Neurosci. 31, 9238–53. doi:10.1523/JNEUROSCI.3121-10.2011.
Singh, T., McDannald, M. A., Takahashi, Y. K., Haney, R. Z., Cooch, N.
K., Lucantonio, F., et al. (2011). The role of the
nucleus accumbens in knowing when to respond. Learn.
Mem. 18, 85–7. doi:10.1101/lm.2008111.
Skinner, B. F. (1938). The behavior of organisms. New York:
Appleton-Century-Crofts.
Smith, A., Li, M., Becker, S., and Kapur, S. (2006). Dopamine,
prediction error and associative learning: A model-based account.
Network 17, 61–84. doi:10.1080/09548980500361624.
Smith, J. D., Redford, J. S., Gent, L. C., and Washburn, D. A. (2005).
Visual search and the collapse of categorization. J Exp Psychol
Gen 134, 443–460.
Smith, K. S., Tindell, A. J., Aldridge, J. W., and Berridge, K. C.
(2009). Ventral pallidum roles in reward and
motivation. Behav. Brain Res. 196, 155–167. doi:10.1016/j.bbr.2008.09.038.
Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning through
spike-timing-dependent synaptic plasticity. Nat.
Neurosci. 3, 919–26. doi:10.1038/78829.
Sporns, O., and Alexander, W. H. (2002). Neuromodulation and plasticity in an autonomous
robot. Neural Netw. 15, 761–74. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12371525.
Spratling, M. W. (1999). Pre-synaptic lateral inhibition provides a
better architecture for self-organizing neural networks.
Network 10, 285–301.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and
Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958.
Stimberg, M., Goodman, D. F. M., Benichoux, V., and Brette, R. (2014).
Equation-oriented specification of neural models
for simulations. Front. Neuroinform. 8, 6. doi:10.3389/fninf.2014.00006.
Stocco, A., Lebiere, C., and Anderson, J. R. (2010). Conditional routing
of information to the cortex: A model of the basal ganglia’s role in
cognitive coordination. Psychol Rev 117, 541–574. doi:10.1037/a0019077.
Stopper, C. M., and Floresco, S. B. (2011). Contributions of the nucleus accumbens and its subregions
to different aspects of risk-based decision making. Cogn.
Affect. Behav. Neurosci. 11, 97–112. doi:10.3758/s13415-010-0015-9.
Suri, R. E., and Schultz, W. (1999). A neural network model with
dopamine-like reinforcement signal that learns a spatial delayed
response task. Neuroscience 91, 871–90.
Suri, R. E., and Schultz, W. (2001). Temporal
difference model reproduces anticipatory neural activity.
Neural Comput. 13, 841–62. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11255572.
Surmeier, D. J., Ding, J., Day, M., Wang, Z., and Shen, W. (2007). D1
and D2 dopamine-receptor modulation of striatal glutamatergic signaling
in striatal medium spiny neurons. Trends Neurosci 30, 228–235.
doi:10.1016/j.tins.2007.03.008.
Sutton, R. (1988). Learning to predict by the methods of temporal
differences. Machine Learning 3, 9–44. doi:10.1007/BF00115009.
Sutton, R. S., and Barto, A. G. (1981). Toward a
modern theory of adaptive networks: expectation and prediction.
Psychol. Rev. 88, 135–70. Available at: http://www.ncbi.nlm.nih.gov/pubmed/7291377.
Sutton, R. S., and Barto, A. G. (1998). Reinforcement learning: An introduction. MIT
press.
Suzuki, T., Miura, M., Nishimura, K., and Aosaki, T. (2001). Dopamine-dependent
synaptic plasticity in the striatal cholinergic interneurons. J
Neurosci 21, 6492–6501.
Suzuki, W. A., and Amaral, D. G. (1994). Perirhinal and parahippocampal
cortices of the macaque monkey: Cortical afferents. J Comp
Neurol 350, 497–533.
Suzuki, W. A., Miller, E. K., and Desimone, R. (1997). Object and place
memory in the macaque entorhinal cortex. J Neurophysiol 78,
1062–1081.
Tachibana, Y., and Hikosaka, O. (2012). The primate
ventral pallidum encodes expected reward value and regulates motor
action. Neuron 76, 826–37. doi:10.1016/j.neuron.2012.09.030.
Takada, M., Tokuno, H., Nambu, A., and Inase, M. (1998). Corticostriatal
projections from the somatic motor areas of the frontal cortex in the
macaque monkey: Segregation versus overlap of input zones from the
primary motor cortex, the supplementary motor area, and the premotor
cortex. Exp Brain Res 120, 114–128.
Takeda, M., Naya, Y., Fujimichi, R., Takeuchi, D., and Miyashita, Y.
(2005). Active maintenance of associative mnemonic signal in monkey
inferior temporal cortex. Neuron 48, 839–848. doi:10.1016/j.neuron.2005.09.028.
Tan, C. O., and Bullock, D. (2008). A local circuit
model of learned striatal and dopamine cell responses under
probabilistic schedules of reward. J. Neurosci. 28,
10062–74. doi:10.1523/JNEUROSCI.0259-08.2008.
Tanaka, K. (2000). Mechanisms of visual object
recognition studied in monkeys. Spat. Vis. 13, 147–63.
Available at: http://www.ncbi.nlm.nih.gov/pubmed/11198228.
Tanimura, Y., King, M. A., Williams, D. K., and Lewis, M. H. (2011).
Development of repetitive behavior in a mouse model: Roles of indirect
and striosomal basal ganglia pathways. Int J Dev Neurosci 29,
461–467. doi:10.1016/j.ijdevneu.2011.02.004.
Taylor, J. G. (1999). Neural bubble dynamics in two dimensions:
foundations. Biol Cyb 80, 393–409.
Taylor, K. I., Moss, H. E., Stamatakis, E. A., and Tyler, L. K. (2006).
Binding crossmodal object features in perirhinal cortex. Proc Natl
Acad Sci U S A 103, 8239–8244.
Tepper, J. M., Wilson, C. J., and Koós, T. (2008). Feedforward and
feedback inhibition in neostriatal GABAergic spiny neurons.
Brain Res Rev 58, 272–281. doi:10.1016/j.brainresrev.2007.10.008.
Thibeault, C. M., Hoang, R. V., and F. C., H. (2011). A Novel
Multi-GPU Neural Simulator. in 3rd int. Conf. Bioinforma.
Comput. Biol. (BICoB 2011) (New Orleans, LA: ISCA), 146–151.
Thompson, R. F., and Steinmetz, J. E. (2009). The
role of the cerebellum in classical conditioning of discrete behavioral
responses. Neuroscience 162, 732–55. doi:10.1016/j.neuroscience.2009.01.041.
Thorndike, E. L. (1911). Animal intelligence: Experimental
studies. Macmillan.
Tindell, A. J., Berridge, K. C., and Aldridge, J. W. (2004). Ventral pallidal representation of pavlovian cues and
reward: population and rate codes. J. Neurosci. 24,
1058–69. doi:10.1523/JNEUROSCI.1437-03.2004.
Tobler, P. N., Fiorillo, C. D., and Schultz, W. (2005). Adaptive coding of reward value by dopamine
neurons. Science 307, 1642–5. doi:10.1126/science.1105370.
Tomita, H., Ohbayashi, M., Nakahara, K., Hasegawa, I., and Miyashita, Y.
(1999). Top-down signal from prefrontal cortex in executive control of
memory retrieval. Nature 401, 699–703.
Turrigiano, G. G. (2008). The self-tuning neuron:
synaptic scaling of excitatory synapses. Cell 135,
422–35. doi:10.1016/j.cell.2008.10.008.
Turrigiano, G. G., and Nelson, S. B. (2004). Homeostatic plasticity in
the developing nervous system. Nat Rev Neurosci 5, 97–107.
Tye, K. M., Cone, J. J., Schairer, W. W., and Janak, P. H. (2010). Amygdala neural encoding of the absence of reward during
extinction. J. Neurosci. 30, 116–25. doi:10.1523/JNEUROSCI.4240-09.2010.
Ungerleider, L. G., and Mishkin, M. (1982). “Two cortical visual
systems,” in Analysis of visual behavior, eds. D. J.
Ingle, M. A. Goodale, and R. J. W. Mansfield (Cambridge, MA: The MIT
Press), 549–586.
Usuda, I., Tanaka, K., and Chiba, T. (1998). Efferent projections of the nucleus accumbens in the rat
with special reference to subdivision of the nucleus: biotinylated
dextran amine study. Brain Res. 797, 73–93. Available
at: http://www.ncbi.nlm.nih.gov/pubmed/9630528.
Uttal, W. R. (2015). Macroneural theories in cognitive
neuroscience. Psychology Press.
van der Meulen, J. A. J., Joosten, R. N. J. M. A., de Bruin, J. P. C.,
and Feenstra, M. G. P. (2007). Dopamine and noradrenaline efflux in the
medial prefrontal cortex during serial reversals and extinction of
instrumental goal-directed behavior. Cereb Cortex 17,
1444–1453. doi:10.1093/cercor/bhl057.
Velik, R. (2012). AI reloaded: Objectives, potentials, and challenges of
the novel field of brain-like artificial intelligence. BRAIN. Broad
Research in Artificial Intelligence and Neuroscience 3.
Vijayraghavan, S., Wang, M., Birnbaum, S. G., Williams, G. V., and
Arnsten, A. F. T. (2007). Inverted-u dopamine D1 receptor actions on
prefrontal neurons engaged in working memory. Nat Neurosci 10,
376–384. doi:10.1038/nn1846.
Vitay, J., Dinkelbach, H. Ü., and Hamker, F. H. (2015). ANNarchy: A code
generation approach to neural simulations on parallel hardware.
Front Neuroinform 9, 19. doi:10.3389/fninf.2015.00019.
Vitay, J., and Hamker, F. H. (2008). Sustained
activities and retrieval in a computational model of the perirhinal
cortex. J. Cogn. Neurosci. 20, 1993–2005. doi:10.1162/jocn.2008.20147.
Vitay, J., and Hamker, F. H. (2010). A
computational model of Basal Ganglia and its role in memory retrieval in
rewarded visual memory tasks. Front. Comput. Neurosci.
4. doi:10.3389/fncom.2010.00013.
Vitay, J., and Hamker, F. H. (2014). Timing and expectation of reward: A
neuro-computational model of the afferents to the ventral tegmental
area. Front Neurorobot 8, 4. doi:10.3389/fnbot.2014.00004.
Vogels, T. P., and Abbott, L. F. (2005). Signal
propagation and logic gating in networks of integrate-and-fire
neurons. J. Neurosci. 25, 10786–95. doi:10.1523/JNEUROSCI.3508-05.2005.
Voorn, P., Vanderschuren, L. J. M. J., Groenewegen, H. J., Robbins, T.
W., and Pennartz, C. M. A. (2004). Putting a spin on the dorsal-ventral
divide of the striatum. Trends Neurosci 27, 468–474. doi:10.1016/j.tins.2004.06.006.
Walker, A. G., and Steinmetz, J. E. (2008). Hippocampal lesions in rats differentially affect long-
and short-trace eyeblink conditioning. Physiol. Behav.
93, 570–8. doi:10.1016/j.physbeh.2007.10.018.
Walt, S. van der, Colbert, S. C., and Varoquaux, G. (2011). The NumPy Array: A Structure for Efficient Numerical
Computation. Comput. Sci. Eng. 13, 22–30. doi:10.1109/MCSE.2011.37.
Wan, H., Aggleton, J. P., and Brown, M. W. (1999). Different
contributions of the hippocampus and perirhinal cortex to recognition
memory. J Neurosci 19, 1142–1148.
Wang, X.-J. (2002). Probabilistic decision making
by slow reverberation in cortical circuits. Neuron 36,
955–68. Available at: http://www.ncbi.nlm.nih.gov/pubmed/12467598.
Watanabe, Y., and Funahashi, S. (2004). Neuronal activity throughout the
primate mediodorsal nucleus of the thalamus during oculomotor
delayed-responses. II. Activity encoding visual versus
motor signal. J Neurophysiol 92, 1756–1769. doi:10.1152/jn.00995.2003.
Webster, M. J., Bachevalier, J., and Ungerleider, L. G. (1994). Connections of
inferior temporal areas TEO and TE with
parietal and frontal cortex in macaque monkeys. Cereb
Cortex 4, 470–483.
Wickens, J. R., and Oorshcot, D. E. (2000). “Neuronal dynamics and
surround inhibition in the neostriatum: A possible connection,”
in Brain dynamics and the striatal complex, eds. R. Miller and
J. R. Wickens (Australia: Harwood Academic Publishers), 141--150.
Williams, S., Oliker, L., Vuduc, R., Shalf, J., Yelick, K., and Demmel,
J. (2007). Optimization of sparse matrix-vector
multiplication on emerging multicore platforms. in Proc. 2007
ACM/IEEE conf. Supercomput. - SC ’07 (New York, New York, USA: ACM
Press), 1. doi:10.1145/1362622.1362674.
Wiltschut, J., and Hamker, F. H. (2009). Efficient coding correlates
with spatial frequency tuning in a model of V1 receptive field
organization. Vis Neurosci 26, 21–34. doi:10.1017/S0952523808080966.
Winn, P. (2006). How best to consider the structure and function of the
pedunculopontine tegmental nucleus: Evidence from animal studies. J
Neurol Sci 248, 234–250. doi:10.1016/j.jns.2006.05.036.
Winstanley, C. A., Baunez, C., Theobald, D. E. H., and Robbins, T. W.
(2005). Lesions to the subthalamic nucleus decrease
impulsive choice but impair autoshaping in rats: the importance of the
basal ganglia in Pavlovian conditioning and impulse control.
Eur. J. Neurosci. 21, 3107–16. doi:10.1111/j.1460-9568.2005.04143.x.
Witt, K., Pulkowski, U., Herzog, J., Lorenz, D., Hamel, W., Deuschl, G.,
et al. (2004). Deep brain stimulation of the subthalamic nucleus
improves cognitive flexibility but impairs response inhibition in
parkinson disease. Arch Neurol 61, 697–700. doi:10.1001/archneur.61.5.697.
Wolf, J. A., Moyer, J. T., Lazarewicz, M. T., Contreras, D.,
Benoit-Marand, M., O’Donnell, P., et al. (2005). NMDA/AMPA ratio impacts state transitions and entrainment
to oscillations in a computational model of the nucleus accumbens medium
spiny projection neuron. J. Neurosci. 25, 9080–95.
doi:10.1523/JNEUROSCI.2220-05.2005.
Wolf, M. E., Sun, X., Mangiavacchi, S., and Chao, S. Z. (2004). Psychomotor stimulants and neuronal plasticity.
Neuropharmacology 47 Suppl 1, 61–79. doi:10.1016/j.neuropharm.2004.07.006.
Woodman, G. F., and Luck, S. J. (2007). Do the contents of visual
working memory automatically influence attentional selection during
visual search? J Exp Psychol Hum Percept Perform 33, 363–377.
doi:10.1037/0096-1523.33.2.363.
Wu, G.-Y., Yao, J., Hu, B., Zhang, H.-M., Li, Y.-D., Li, X., et al.
(2013). Reevaluating the role of the hippocampus in
delay eyeblink conditioning. PLoS One 8, e71249. doi:10.1371/journal.pone.0071249.
Wu, W., Black, M. J., Mumford, D., Gao, Y., Bienenstock, E., and
Donoghue, J. P. (2004). Modeling and decoding motor
cortical activity using a switching Kalman filter. IEEE
Trans. Biomed. Eng. 51, 933–42. doi:10.1109/TBME.2004.826666.
Yang, C. R., and Seamans, J. K. (1996). Dopamine D1
receptor actions in layers V-VI rat prefrontal cortex
neurons in vitro: Modulation of dendritic-somatic signal integration.
J Neurosci 16, 1922–1935.
Yin, H. H., Knowlton, B. J., and Balleine, B. W. (2004). Lesions of
dorsolateral striatum preserve outcome expectancy but disrupt habit
formation in instrumental learning. Eur J Neurosci 19,
181–189.
Yoshioka, M., Matsumoto, M., Togashi, H., and Saito, H. (1996). Effect of conditioned
fear stress on dopamine release in the rat prefrontal cortex.
Neurosci Lett 209, 201–203.
Zahm, D. S., and Heimer, L. (1990). Two
transpallidal pathways originating in the rat nucleus accumbens.
J. Comp. Neurol. 302, 437–46. doi:10.1002/cne.903020302.
Zahrt, J., Taylor, J. R., Mathew, R. G., and Arnsten, A. F. (1997).
Supranormal stimulation of D1 dopamine receptors in the rodent
prefrontal cortex impairs spatial working memory performance. J
Neurosci 17, 8528–8535.
Zaytsev, Y. V., and Morrison, A. (2014). CyNEST: a
maintainable Cython-based interface for the NEST simulator.
Front. Neuroinform. 8, 23. doi:10.3389/fninf.2014.00023.
Zenke, F., and Gerstner, W. (2014). Limits to
high-speed simulations of spiking neural networks using general-purpose
computers. Front. Neuroinform. 8, 76. doi:10.3389/fninf.2014.00076.
Zheng, T., and Wilson, C. J. (2002). Corticostriatal
combinatorics: The implications of corticostriatal axonal
arborizations. J Neurophysiol 87, 1007–1017.
Zirnsak, M., Beuth, F., and Hamker, F. H. (2011). Split of spatial attention as predicted by a
systems-level model of visual attention. Eur. J.
Neurosci. 33, 2035–45. doi:10.1111/j.1460-9568.2011.07718.x.
Zola-Morgan, S., Squire, L. R., Amaral, D. G., and Suzuki, W. A. (1989).
Lesions of perirhinal and parahippocampal cortex that spare the amygdala
and hippocampal formation produce severe memory impairment. J
Neurosci 9, 4355–4370.